Short Term Future Proofing Strategies for Local Agencies to Prepare for Connected and Automated Vehicles

INSTITUTE FOR TRANSPORTATION IOWA STATE UNIVERSITY

mage source: Shutterstock

eneziano

Road Safety and Digitalization

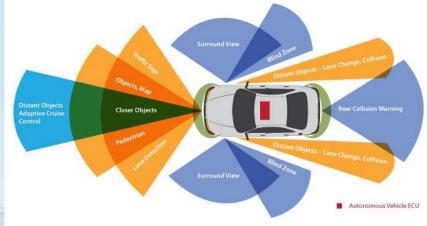
08-10 June 2022 • Athens, Greece

Connected and Autonomous Vehicles

- Autonomous vehicles (AV) are able to conduct driving tasks with/without human intervention
- Connected vehicle (CV) have advanced technologies allowing them to communicate to external systems, other vehicles or the roadway infrastructure
- Benefits
 - ✓ Decrease crashes
 - Improve mobility for road users
 - Increased capacity

Impact on Local Transportation Agencies

- Operate/maintain significant portions of roadway
- Resource strapped
- In long run CAV may reduce but in short run creates additional cost/maintenance burden
- Full CAV scenario unknown
- Need strategies to focus investments



08-10 June 2022 • Athens, Greece 🏽 🏦 🐋

CAV Functions Relevant to Infrastructure

- Cameras
 - Capture images
 - Challenges in low light, inclement weather
- LIDAR
 - Uses light pulses reflected off surfaces to create 3D map
 - Challenges in low light, inclement weather
- GPS
 - Provides location
 - Challenges in urban canyons, lost signal, etc.

Long Range RADARs 🛛 📕 LIDAR, SRR 🛛 🔳 Camera – Stereo, Monocular 🖉 Ultrasonic Sensc

CAV Functions Relevant to Infrastructure

- System processing
- Captures data (i.e. images) and translates to actionable information for driver or vehicle control system
- Machine learning algorithms process images to identify and classify objects
- Impacted by inconsistency and complexity

Image source: https://www.v7labs.com/l project-ideas

Pavement Markings

- Indicate road alignment and vehicle position within the lane
- Problematic
 - ✓ Discontinuities
 - ✓ Faded
 - ✓ Wet markings
- Recommendations :
 - ✓ 6-inch markings,
 - ✓ Uniformity
 - Gore areas
 - Contrast marking patterns
 - Delineation of special lanes (i.e., HOV, bike lanes)

Signing

- Traffic sign recognition
 - System notices then interprets lettering, symbols
- Problematic
 - ✓ inconsistency
 - ✓ Damaged/faded
 - ✓ location

Signing Recommendations

- Pictograms rather than text
- Sign maintenance (retroreflection)
- Vegetation management
- Redundancies
- Uniformity
 - ✓ Sign use and type
 - ✓ Placement

NO

URN

Traffic Signals

- System notices signal then interprets phase and other information
- Problematic
 - ✓ inconsistency
 - ✓ Lens angle
 - ✓ Glare
 - Signals may have also have static signs which also need to be interpreted

LEFT TURN

ON FLASHING

grove/

Traffic Signal Recommendations

- Uniformly placed, horizontal traffic signals are particularly problematic
- Standardization: position, location, color, shape, and refresh rate
- Backplates beneficial for east/west placement particularly in low sun conditions
- Clear, unambiguous association with a specific lane
- 12-inch diameter signal head is preferred over an 8- inch

Acknowledgement

 The authors wish to thanks to the Minnesota Department of Transportation (MnDOT) for funding this research along with the excellent Technical Advisory Panel members for their input and guidance.

