

The causal effect of citywide speed limit reduction on crash risk

Presented by Dr. Kun Xie

Authors: Guocong Zhai^a, Kun Xie^a, Di Yang^b, Hong Yang^c ^a Dept. of Civil & Environmental Engineering, Old Dominion University (ODU) ^b Dept. of Civil & Urban Engineering, New York University ^c Dept. of Computational Modeling & Simulation Engineering, ODU

Transportation Informatics Lab @ ODU June 9, 2022, Athens, Greece Session 12: Safety Modelling (Room 6)

Agenda

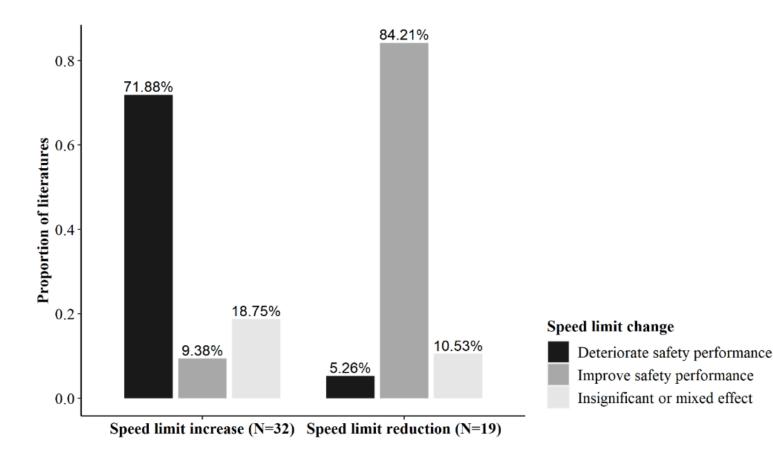
- Introduction
 - Background
 - Challenges and solutions
- Data Preparation
- Method
 - PSM (Propensity Score Matching)
 - SDID (Spatial Difference in Differences)
- Results
- Conclusions

Introduction: Background

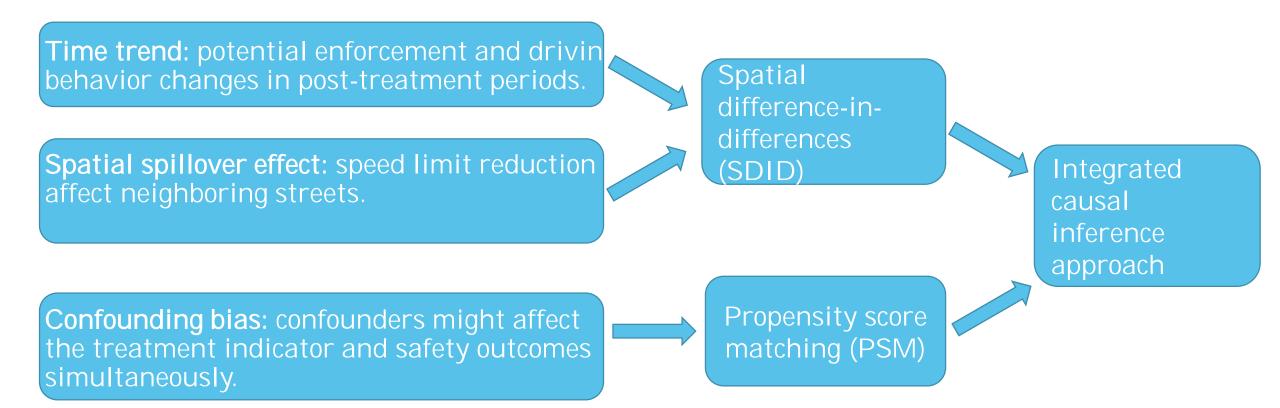
- Citywide speed limit reduction in New York City
 - The default speed limit was changed from 30 mph to 25 mph.
 - Effective on November 7th, 2014.
- Safety impacts
 - Give road users more time to react to unexpected safety-related events.
 - Reduce impact speeds when crashes occur.

FOR A SAFER NYC

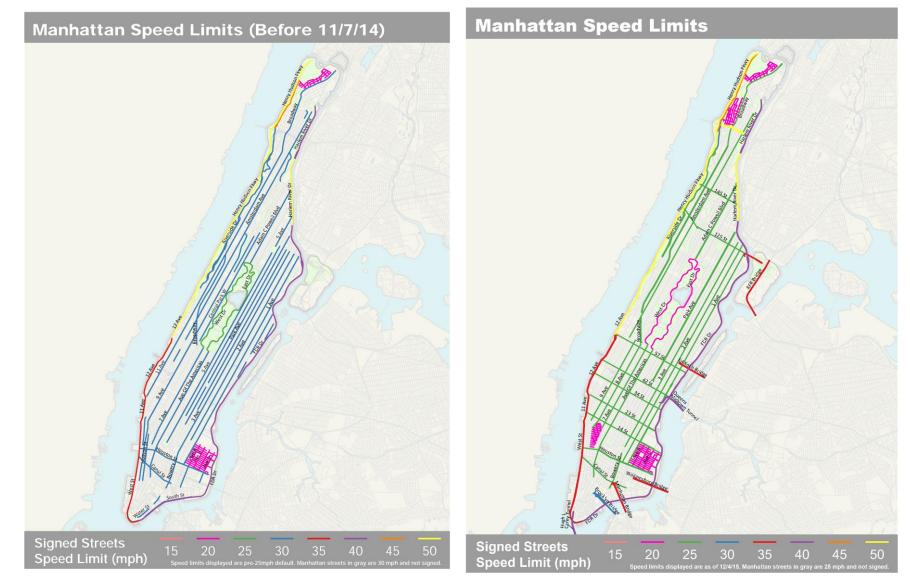
Source: https://www1.nyc.gov/html /dot/html/motorist/vision-zero-safedriving.shtml


Introduction: Background

- Randomized control trails (RCTs) are the "Gold Standard"
- Drawbacks of RCTs?:
 - Cost
 - Unethical
- What can we do when an experiment is not possible?
 - Observational studies

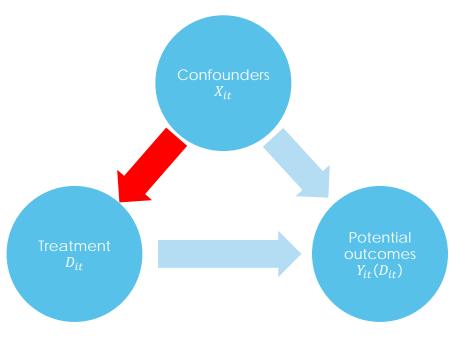

Introduction: Background

 Previous observational studies on safety effectiveness of speed limit changes (before 2021)



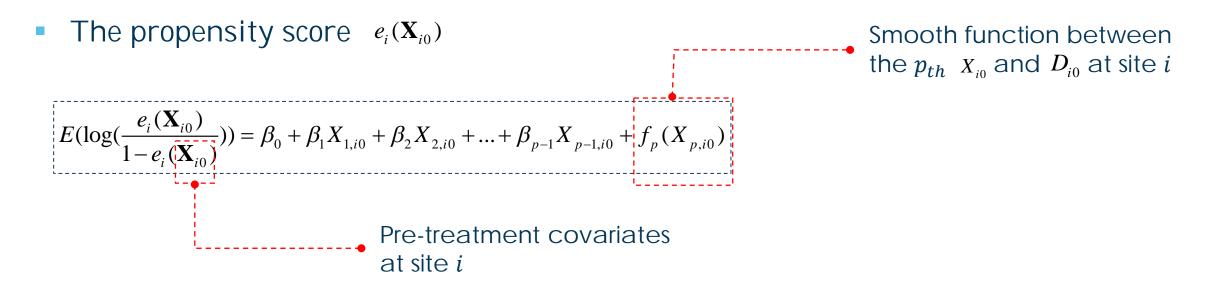
Introduction: Challenges and Solutions

Data Preparation: <u>Speed Limit Reduction</u>


Source: https://www1.nyc.gov/html/dot/downloads/pdf/current-pre-vision-zero-speed-limit-maps.pdf

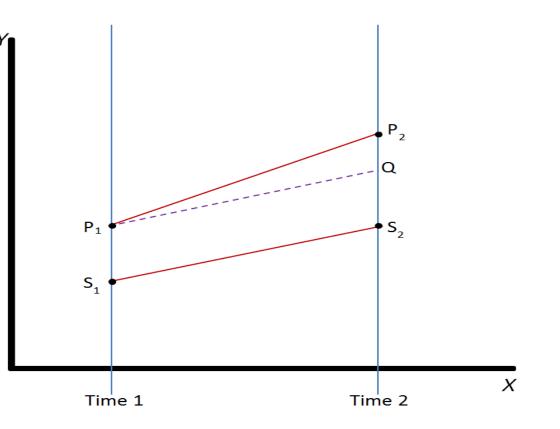
	Before the speed limit reduction (year: 2013)				After the speed limit reduction (year: 2015)				
Variables		ent sites		ol sites	Treatm	ent sites		ol sites	(())
	Mean	Std. Dev	Mean	Std. Dev	Mean	Std. Dev	Mean	Std. Dev	
Fatal crash frequency	0.07	0.30	0.04	0.25	0.06	0.27	0.06	0.33	
Injury crash frequency	11.04	17.97	7.17	12.20	9.99	16.02	6.17	11	
PDO crash frequency	43.38	80.67	29.65	49.71	46.32	84.37	30.10	54.04	
Bronx (no = 0, yes = 1)	0.18	0.38	0.06	0.25	0.18	0.38	0.06	0.25	
Brooklyn (no = 0, yes = 1)	0.27	0.45	0.13	0.33	0.27	0.45	0.13	0.33	
Manhattan (no = 0, yes = 1)	0.19	0.39	0.22	0.41	0.19	0.39	0.22	0.41	
Queens (no = 0, yes = 1)	0.29	0.45	0.34	0.48	0.29	0.45	0.34	0.48	
Staten Island (no = 0, yes = 1)	0.07	0.25	0.24	0.43	0.07	0.25	0.24	0.43	
Arterial street (no = 0, yes = 1)	0.37	0.48	0.48	0.50	0.37	0.48	0.48	0.50	
One-way street (no = 0, yes = 1)	0.51	0.50	0.66	0.48	0.51	0.50	0.66	0.48	
Number of intersections	10.60	13.44	8.04	10.89	10.60	13.44	8.04	10.89	
Log VMT (vehicle. mile)	7.72	1.48	8.27	1.62	7.67	1.52	8.27	1.62	
Number of lanes	2.31	1.13	3.19	1.96	2.31	1.17	3.21	1.97	8
Number of	3 745		167		3 7/15		167		

Methods


- Ignorability assumption: $(Y_{it}(0), Y_{it}(1)) \perp D_{it} | X_{it}$
- Positivity assumption: $0 < P(D_{it} | X_{it}) < 1$
- SUTVA (Stable unit treatment value assumption): Potential outcomes of one site are unrelated to treatment status of other sites

Methods: PSM

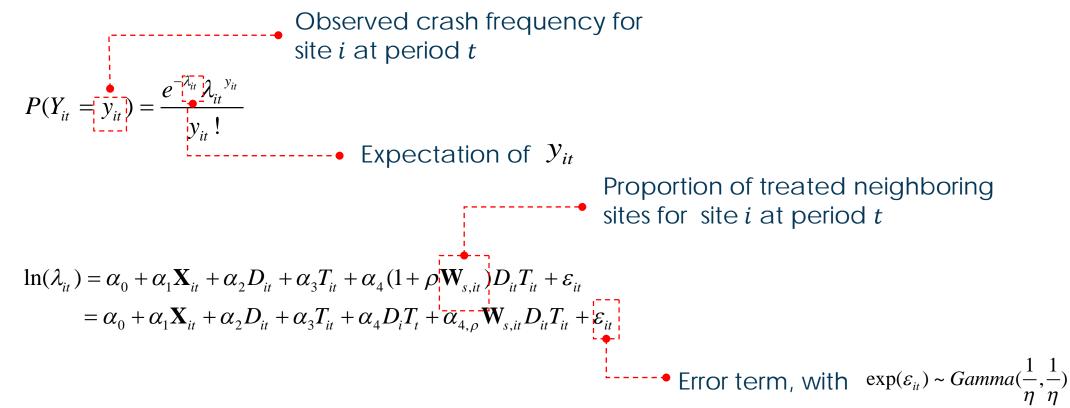
 Logistic generalized additive model: identify nonlinear relationships between the treatment indicator and covariates.



 Matching with replacement: repeated use of control sites (much more treatment sites than control sites).

Methods: sdid

- Assume parallel trend of control and treatment sites.
- Use a spatial lag framework to address spatial spillover effect of the treatment,



Source: https://en.wikipedia.org/wiki/Difference_in_differences

Methods: sdid

Model specification

Methods: sdid

Average direct treatment effect for the treated (ADTT)

 $\tau_{ADTT} = \alpha_4$

Average spatial spillover effect (average indirect treatment effect, AITT)

$$\tau_{AITT} = \alpha_{4,\rho} \mathbf{W}_{s,it} D_{it}$$

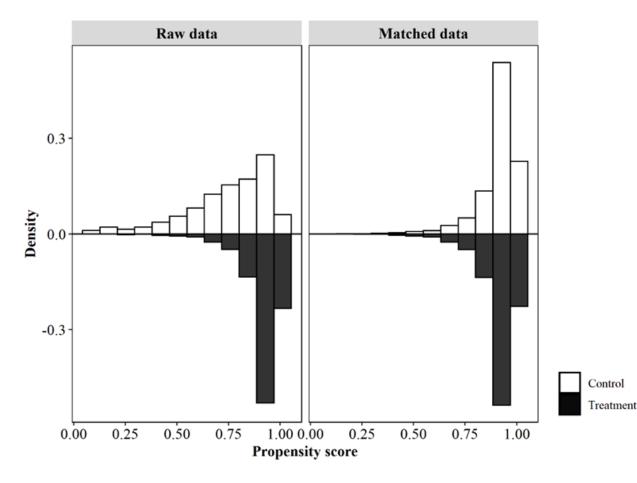
$$se(\tau_{AITT}) = \sqrt{Var(\tau_{AITT})} = \sqrt{Var(\alpha_{4,\rho})} \times \overline{W_{s,it} D_{it}}$$

• Average treatment effect for the treated $\tau_{ATT} = \tau_{ADTT} + \tau_{AITT} = \alpha_4 + \alpha_{4,\rho} \overline{\mathbf{W}_{s,it} D_{it}}$ Covariance between the two parameters $se(\tau_{ATT}) = \sqrt{Var(\tau_{ATT})} = \sqrt{Var(\alpha_4) + \overline{\mathbf{W}_{s,it} D_{it}}^2 Var(\alpha_{4,\rho}) + 2\overline{\mathbf{W}_{s,it} D_{it}} Cov(\alpha_4, \alpha_{4,\rho})}$

Modeling results for the integrated causal approach: PSM

		Logistic GAM		Logistic regression	
Variables		Coefficient	Std. Error	Coefficient	Std. Error
Intercept		3.70***	0.20	6.66***	0.36
Borough areas (base:	Manhattan	-0.83***	0.16	-0.86***	0.16
Bronx & Brooklyn)	Queens	-1.14***	0.15	-1.13***	0.14
	Staten Island	-2.69***	0.17	-2.71***	0.17
One-way street		-0.63***	0.12	-0.64***	0.12
Number of intersections		0.05***	0.01	0.05***	0.01
Number of lanes		-0.21***	0.04	-0.25***	0.04
Arterial street		-0.24*	0.12	-0.23*	0.11
Log (VMT)		-	-	-0.37***	0.05
Approximate significant	ce of smooth terms				
		Effective degree of freedom	Chi. squared		
Smooth function of Log (VMT)		6.18	80.66***	-	-
AIC		2444		2463	

<u>Statistical significance levels: $*0.01 \le p$ -value < 0.05; $**0.001 \le p$ -value < 0.01; ***p-value < 0.001</u>


Modeling results for the integrated causal approach: Balance statistics

	0	0					
	Raw data			Matched data			
Covariates	Mean of	Mean of control	ASMD	Mean of treatment	Mean of control	I ASMD	
	treatment sites	sites	ASIVID	sites	sites	ASIVID	
Manhattan	0.19	0.22	0.08	0.19	0.20	0.02	
Queens	0.29	0.34	0.11	0.29	0.34	<0.10	
Staten Island	0.07	0.24	0.71	0.07	0.05	0.07	
One-way street	0.51	0.66	0.29	0.51	0.49	0.04	
Arterial street	0.40	0.55	0.31	0.40	0.40	0.01	
Number of intersections	10.52	8.05	0.18	10.17	10.41	0.02	
Number of lanes	2.31	3.19	0.78	2.31	2.25	0.05	
Log (VMT)	7.66	8.27	0.38	7.68	7.59	0.06	

$$ASMD = \frac{\left|\mu_{w_{i0}\mathbf{X}_{i0}|D_{i0}=1} - \mu_{w_{i0}\mathbf{X}_{i0}|D_{i0}=0}\right|}{s_{w_{i0}X_{i0}|D_{i0}=1}} = \frac{\left|\frac{1}{n_{1}}\sum_{D_{i0}=1}w_{i0}X_{i0} - \frac{1}{n_{0}}\sum_{D_{i0}=0}w_{i0}X_{i0}\right|}{\sqrt{\frac{\sum_{i\in\{i:D_{i0}=1\}}(w_{i0}X_{i0} - \mu_{w_{i0}\mathbf{X}_{i0}|D_{i0}=1})^{2}}{n_{1}-1}}}$$

Modeling results for the integrated causal approach: Propensity score distributions

Modeling results for our integrated causal approach

		Fatal crashes		Injury crashes		PDO crashes	
		Coeff.	Std. Err	Coeff.	Std. Err	Coeff.	Std. Err
Intercept		-9.39***	0.64	-2.46***	0.09	-1.07***	0.09
Borough areas	Manhattan	-0.33*	0.13	-	-	0.55***	0.03
(base: Brooklyn &	Queens	-0.40***	0.12	-0.46***	0.03	-0.29***	0.03
Bronx)	Staten Island	-1.50***	0.33	-1.18***	0.05	-0.83***	0.05
One-way street		-	-	-0.04'	0.02	0.07**	0.02
Arterial street		-	-	-	-	0.08***	0.02
Number of intersection	ions	0.02***	<0.01	0.03***	<0.01	0.03***	<0.01
Log (VMT)		0.58***	0.05	0.54***	0.01	0.50***	0.01
T _{it}		0.79	0.58	-0.14	0.07	0.06	0.08
D_{it}		1.84***	0.49	0.06	0.05	0.08	0.06
$D_{it}T_{it}$		-0.01	0.73	0.24	0.14	0.22	0.14
$W_{s,it}D_{it}T_{it}$		-1.10*	0.52	-0.19	0.12	-0.19	0.12
η		1.81*	0.78	1.32***	0.03	1.00***	0.02
AIC		3232.25		46841.11		69132.50	
Pseudo R-Squared		0.16		0.52		0.51	

Statistical significance levels: ' $0.05 \le p$ -value < 0.10; * $0.01 \le p$ -value < 0.05; ** $0.001 \le p$ -value < 0.01; *** p-value < 0.001

Safety effectiveness of the speed limit reduction

Safety	Causal	$ au_{\scriptscriptstyle ADTT}$		$ au_{\scriptscriptstyle AITT}$		$ au_{ATT}$	
effectiveness	approach	Coeff.	Std. Error	Coeff.	Std. Error	Coeff.	Std. Error
	CG	-		-		-0.60	-
	PSM	-		-		-0.63*	0.31
Fatal crash	DID	-		-		-0.60*	0.33
frequency	SDID	0.30	0.60	-0.68*	0.33	-0.50***	0.12
	PSM + DID	-		-		-1.06*	0.47
	PSM + SDID	-0.01	0.73	-0.96*	0.39	-0.97*	0.48
	CG	-		-		0.05	-
	PSM	-		-		0.18***	0.06
Injury crash	DID	-		-		0.11	0.07
frequency	SDID	0.16	0.14	-0.04	0.07	0.11	0.07
	PSM + DID	-		-		0.06	0.08
	PSM + SDID	0.24	0.14	-0.17	0.09	0.07	0.10
	CG	-		-		0.05	-
	PSM	-		-		0.22***	0.06
PDO crash	DID	-		-		0.11	0.07
frequency	SDID	0.18	0.14	-0.05	0.07	0.12	0.08
	PSM + DID	-		-		0.04	0.08
	PSM + SDID	0.22	0.14	-0.17	0.09	0.05	0.08

Conclusions

- Speed limit reduction is estimated to decrease the fatal crash frequency by 62.09% (exp^{-0.97}-1), likely due to the reduced impact speed of collisions.
- Spatial spillover effect of speed limit reduction is found to be significant.
- Insignificant impacts on injury and PDO crashes, likely due to less awareness in a low-speed environment.

Thank you!

Questions?

Contact: Dr. Kun Xie (<u>kxie@odu.edu</u>)