Changes in Intersection Scanning Behavior Due to Intersection Collision Warning Systems

Shauna Hallmark, Raju Thapa, Neal Hawkins, and Skylar Knickerbocker

Image source: Shutterstock

Road Safety and Digitalization

08-10 June 2022 • Athens, Greece

Background

- Rural intersection crashes are problematic
 - ✓ Intersections = 30% of severe crashes
 - ✓ Frequently angle crashes
- Factors
 - ✓ Inappropriate gap selection (minor approach)
 - Failure to yield (minor approach)
 - Minor street driver initiates actions leading to crash

mage source: Shutterstock

Intersection Collision Warning Systems

Minnesota (US State) installed ICWS at various locations to

address rural intersection crashes

 Sensors on mainline warn minor stop controlled approaches

5 locations selected for evaluation

Location of Evlauation Sites

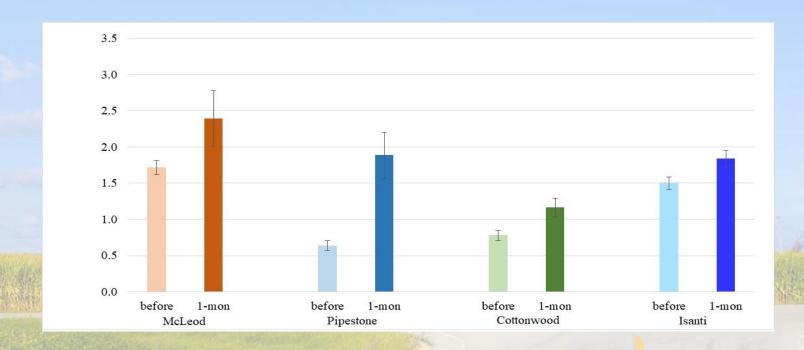
County	Intersection	Roadway
McLeod	MN7 and County Rd 1	2-lane/2-lane
Pipestone	MN 23 and County Rd 16	2-lane/2-lane
Cottonwood	MN 60 and County Hwy 1	4-lane divided/2-lane
Isanti	MN 47 and County Rd 8	2-lane/2-lane
Chippewa	MN 7 and MN 15	2-lane/2-lane

Data Collection

- Collected data 1-3 mon before install
- Collect baseline data ~ 1 week
- Nighttime depends on lighting conditions
- Collect after data
 - ✓ 1 to 3 months
 - ✓ Similar weather/traffic conditions as before
- Overhead camera and camera focused to side of vehicle

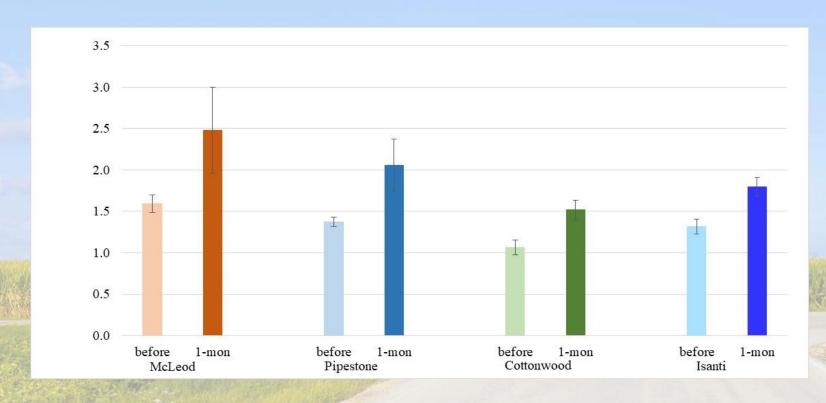
Data Reduction

- Randomly selected sample of vehicles
- Manually reduced data for drivers on minor street
- Started when vehicle approached stop bar
- Reduced
 - ✓ Number of glances left
 - Number of glances right
 - ✓ Presence of distraction (if obvious)


Analysis

- Drivers scan intersection to identify on-coming traffic
- Assumes multiple scans have positive safety benefit
- Concerns with ICWS drivers would rely on system to indicate oncoming resulting in less scanning
- No information on what entails good scanning
- Compared glances left and glances right

Changes in Glances to the Right



- Right glances increased at all locations
- Most significant increase 0.6 to 1.9 glances at
 Pipestone

Changes in Glances to the Left

- Left glances increased at all locations
- Most significant increase 1.6 to 2.5 glances at McCleod

Changes With System Active

- Compared with system active (approaching vehicle) versus not active (no on-coming)
- Increased glances when system was active
- Glances slightly higher but not statistically different when not active

Summary

- ICWS warn drivers on minor stop controlled approach about oncoming traffic
- May lead to drivers relying on the system to determine when they can proceed
- Evaluated scan behavior
- Glances left and right increase after ICWS was installed
- More likely to glance when system is active

Acknowledgement

 The authors wish to thanks to the Minnesota Department of Transportation (MnDOT) for funding this research along with the excellent Technical Advisory Panel members for their input and guidance.

