

Defining Vehicle Passing Trajectories utilizing GNSS Data

Stergios Mavromatis NTUA

Together with: Vassilios Matragos, Nikolaos-Panagiotis Trantas, Vangelis Zacharis

National Technical University of Athens Department of Transportation Planning and Engineering

Introduction

Overtaking

- not yet adequately modeled
- remains a cutting edge research topic
- Overtaking process is comprised of two successive lane changing maneuvers
- In total three distinct, successive and independent maneuvers:
 - left lane change
 - tangent motion
 - right lane change
- The overtaking and lane change maneuvers are not clearly distinguished in the existing literature

Problem Statement

- Various geometric curves have been proposed in the past:
 - polynomial expressions
 - circular arcs
 - sigmoids
 - spiral arcs (clothoids)
- The forthcoming Advanced Driver Assistance Systems (ADAS) in the near future are expected to:
 - > address more accurately the **passing process**
 - standardize vehicle passing path

Methodology

- The present research aims to develop a new mathematical model for the overtaking maneuver that incorporates a series of successive parametric spiral arcs
 - spiral curves are mathematical curves with a linearly changing curvature profile widely utilized in current road design practice
- A field-driving experiment was conducted to record passing maneuvers by means of GNSS receivers
- Overtaking trajectory database was created
 - quantification of the spiral curves geometry
 - design of predictive models

Overtaking Maneuvers

- Passing maneuvers comprise of 3 segments
 - segment 1 (1st reverse curve set) vehicle motion from the original driving lane to the opposing lane
 - segment 2: vehicle travels along the opposing lane (tangent)
 - segment 3: return to the original lane (2nd reverse curve set) vehicle motion from the original driving lane

Criteria (1/2)

- > The analysis assumes:
 - free flow conditions
 - overtaking maneuvers performed on tangent sections
 - opposing vehicle was ignored
 - passing and passed vehicle were supposed to never exceed the posted speed of the roadway

$$V_{posted1} = 90 \text{km/h}$$

$$V_{posted2} = 110 \text{km/h}$$

Criteria (2/2)

- The two involved vehicles had different motion characteristics
 - the motion of the passed vehicle was under steady state conditions with a speed value 20km/h below the posted speed of the roadway
 - the passing vehicle's motion during the overtaking process was under acceleration mode, but respecting the posted speed
 - the passing vehicle's speed value at the starting phase was set equal to the relevant speed of the passed vehicle

Stergio

Data Collection Process (1/2)

- Urban divided freeway for safety reasons
- 16km long driveway with three lanes (3x3.50m wide) per direction of travel, with both tangents and curves
- The participants were asked to drive 3 times including one lap for warming up and getting acquainted with the driving environment
- For every run (22min duration) the participants were able to perform
 between 7 and 9 passing maneuvers

Data Collection Process (2/2)

- The trajectories of both the passing and the impeding vehicles were recorded with high accuracy, using a GPS receiver mounted at the roof of each vehicle
- Utilization of low-cost, u-blox type, GNSS receivers:
 - all-weather devices
 - designed especially for field measurements
- In total 170 valid accelerated passing maneuvers were recorded:
 - 32 participants aged between 21 to 58 years old
 - > 19 male participants (mean age 27 years, experience 8 years)
 - > 13 female participants (mean age 24years, experience 4years)
 - no known health or vision problems
 - valid driving license
 - frequent drivers

Overtaking Trajectory Determination

- Azimuth Diagram defines the angular change rate of the vehicle path along with driven distance
 - tangents: horizontal line
 - circle arc: inclined line
 - clothoid: parabola

8-10 June 2022 • Athens, Greece 🚱 🖬

Azimuth Diagram

> Overtaking trajectory vs overtaking azimuth diagram

Assigning Spiral Curves

- Spiral curves are mathematical curves with a linearly changing curvature profile widely utilized in current road design practice
- For every phase, it was decided to adopt a sequence of curve consisting of entry spiral – circular arc – exit spiral
- Such an assumption is not far from the reality, since during an overtaking process the driver constantly alters the steering angle of the vehicle
- > A lane shift maneuver was considered to consist of four consecutive spiral curves

Overtaking Geometry Determination

- Regression analysis to define overtaking geometry
- Determination of
 - entry spiral
 - point radius
 - exit spiral

Dynamic Approach

The present research is focused on defining:
 the geometry of the passing vehicle
 the distance between the passing and impeding vehicle,

at the start of the maneuver (headway)

- For each of the five overtaking phases the mean acceleration of the passing vehicle was calculated
- The headway was calculated at the starting point of the overtaking (start of Phase 1)

KEEP SAFE

Outputs (1/2)

- Aiming to standardize the passing maneuver, for both posted speed values, special emphasis was given to the median values of the boxplot output data, which included:
 - > the length and point radii of each overtaking phase
 - the total length of the overtaking procedure

Outputs (2/2)

Overtaking Sub-Phase

Conclusions (1/2)

- The speed increases along with the total length required to complete the overtaking maneuver
- The total time required to complete the overtaking remains more or less constant, regardless of the speed of the two vehicles participating in the maneuver procedure
- The acceleration of the passing vehicle, during the first two phases, was approximately the same in both examined speed scenarios

Conclusions (2/2)

- The passing vehicle accelerated during Phase 1 and Phase 2 overtaking
- During Phase 3 zero acceleration was reported, the vehicle had reached the maximum speed limit (posted speed/+20km/h compared to impeding vehicle)
- > The utilization of spiral curves
 - delivers very high coefficients of determination values (R²>95%) for all examined cases
 - ensures the continuity of the curvature diagram during the overtaking procedure
 - is strongly recommended to
 standardize the trajectory
 of an overtaking maneuver

Further Research

- Integration of the lateral distance between the passing and the impeding vehicle (lateral safety margin)
- Separation of the dataset
 - aggressive driving behavior
 - normal driving behavior
- Overtaking process can be standardised and therefore deployed in existing ADAS
 - normalise overtaking length
 - determine vehicle's steering angle
 - assess emergency situations

Defining Vehicle Passing Trajectories utilizing GNSS Data

Stergios Mavromatis NTUA

Together with: Vassilios Matragos, Nikolaos-Panagiotis Trantas, Vangelis Zacharis

National Technical University of Athens Department of Transportation Planning and Engineering