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Introduction

Two general applications of traffic conflicts:

(1) Quick assessment of crash risk and countermeasures
effectiveness (safety engineers)

(2) Safety effects analysis using statistical models (safety
researchers)

This presentation provides the ML-based connection of traffic
conflicts to crashes and discusses its estimation suitable for
safety engineers.



Introduction

തܨ ߠ,݇|ݔ = 1 − ܨ ߠ,݇|ݔ = 1 + ݔߠ ି௞

ܳ௖ = ݊ · തܨ ௖ݔ = ݊ · 1 + ௖ݔߠ ି௞

Failure-caused traffic events include conflicts and crashes. During a conflict,
crash does not occur but is uncomfortably close.
Let x be Lomax-distributed response time measured from the moment when
crash is too close be acceptable to the moment of evasive action.
The corresponding tail (exceedance) distribution of response time is:

Let n be the number of failure-caused traffic events when time-to-collision
is shorter than acceptable .௖ݔ
The expected number of crashes associated with n events is:

At crash, response time x is truncated at ௖ݔ and x is not observable in its entirety.
Let c be the number of crashes.



Introduction
OLS Estimate of k Parameter

Assume ߠ = ௖ݔ/1 ?

?

− ln 1 − ݅ − 0.5)/݊ = ݇ ln 1 + ௜ݔߠ ݅ = 1 … (݊ − ܿ)

෠ܳ௖ = ݊ · 2ି෠௞

Sort n response times ௜ݔ in the increasing order.
Calculate തܨ ௜ݔ = 1− ݅ − 0.5)/݊ .
Take ln of both sides of equation: 1 − ݅ − 0.5)/݊ = 1 + ௜ݔߠ ି௞.

OLS estimate of k is: ෠݇ = ି ∑೔సభ
೙ష೎ ୪୬ ଵି(௜ି଴.ହ ⁄) ௡ ୪୬ ଵାఏ௫೔

∑೔సభ
೙ష೎ ୪୬ ଵାఏ௫೔ మ

assumed



Three Points to Be Addressed

1. ML estimation of ݇ parameter

2. Sensitivity of ݇ and ܳ௖ estimates to assumed ߠ
parameter in single-parameter estimation

3. Two-parameter estimation of Lomax



ML Estimate of k Parameter
LL for c crashes and (݊ − ܿ) traffic conflicts under ௖ݔ threshold is:

traffic conflicts                                       crashes

ܮܮ = ݊ − ܿ ln(݇ߠ) − ݇ + 1 ෍
௜ୀଵ

௡ି௖
ln 1 + ௜ݔߠ − ܿ݇ ln 1 + ௖ݔߠ

ܮܮ߲
߲݇ = 0 yieds:

݇ =
݊ − ܿ

∑௜ୀଵ
௡ି௖ ln 1 + ௜ݔߠ + ܿ ln(1 + (௖ݔߠ

For ߠ = :௖ݔ/1

݇ =
݊ − ܿ

∑௜ୀଵ
௡ି௖ ln 1 + ௖ݔ/௜ݔ + ܿ ln(2)



Selection of Threshold ௖ݔ

௖ݔ

Confidence
interval

Unbiased most
efficient estimate



Expected Crashes Profiles
Female drivers 45-64 Male drivers 45-64 Male drivers 16-24

ML ML

OLS

ML

OLS OLS



Comparison of OLS and ML Estimates
Rear-end Collisions in of SHRP2

Driver
Category Method Threshold

xc

No. of
Conflicts Parameter k

Prob. of Crash
Given Conflict

PrC

Expected
Crashes

Female
45-64

OLS 1.45 47 11.257 0.000408 0.0192
ML 1.45 47 10.797 0.000562 0.0264

Male
45-64

OLS 1.45 56 9.885 0.001057 0.0592
ML 1.45 56 9.647 0.001247 0.0699

Male
16-24

OLS 1.25 52 7.040 0.007601 0.3953
ML 1.25 52 6.955 0.008059 0.4191

Note: The values of threshold xc were determined with a higher precision than in the original
publication (Tarko, 2020).



Comparing ML and OLS Estimates
Simulation Experiments

• The Lomax distributions obtained for the SHRP2 drivers were
used in the experiments

• Three sources of variability in crash estimates were studied:
1) Arbitrary selection of parameter θ (range 0.38− 1.15)
2) Randomness (90% conf. interval length)
3) Driver types (male 16-24, female 45-64)



Variability in Expected Number of
Crashes Estimatesܳ௖ (spread)

Source of ࢉࡽ
Estimate Variability

ࢉࡽ Spread = ࢞ࢇ࢓,ࢉࡽ - ࢔࢏࢓,ࢉࡽ
NotesOLS

Estimate
ML

Estimate

Parameter θ selected
from [0.385, 1.155]

0.673 – 0.390
= 0.283

0.709 – 0.298
= 0.411

Average from 200 trials
to control randomness

Randomness (90%
confidence interval)

1.024 – 0.163
= 0.861

1.007 – 0.153
= 0.854 Sample of 100 conflicts

Driver type (male 16-24
vs. female 45-64)

0.527-0.067
= 0.460

0.494 – 0.062
= 0.432

Fixed exposure (50,000
miles of car following)



Reparametrized Lomax Distribution
Altun (2021)

ߠ =
1

m ݇ − 1 ݂ ݔ =
݇

m ݇ − 1
1 +

ݔ
m ݇ − 1

ି௞ିଵ



Concluding Remarks
Neither ML nor OLS methods are efficient in estimating both the Lomax parameters.
This finding concurs with the published research.

The existing OLS and ML single-parameter methods with θ set at ௖ݔ seems to be
acceptable for estimating the crash frequency.

The reparametrized Lomax distribution seems to be promising but estimates of the
shape parameter k exhibit strong variance. More research is needed.

Currently, estimation efficiency as more important than estimation consistency.
Massive data potentially available in the future may increase the importance of the
estimation consistency.

This presentation did not discuss accounting for heterogeneity via regression analysis
to avoid its estimation complexity.



Thank you


