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Introduction

More than
1.35 million
people died
annually as a
result of road
traffic crashes.

- WHO, 2018 -

Works on understanding crash mechanisms began since 1960s.

Conventional Accident
Frequency Studies

Accident occurs.

Implication starts.

Tralfic
Dynamics
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Fig.1 Normal and disruptive traffic dynamics (Oh et al., 2001)
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Works on understanding crash mechanisms began since 1960s.

Real-Time Crash
Prediction

More than .
1.35 million to classify crash from non-crash traffic situations.
people died

A
annua”y aS a Implication starts. \
result of road e |
traffic crashes. o)

< >id >

Normal traffic condition Disnptive traffic condition

- WHO, 2018 -

Fig.1 Normal and disruptive traffic dynamics (Oh et al., 2001)
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Studied commenced since Models with different statistical and
1990s with the advocate of machine learning methods were
Active Traffic Management developed.
System (a safety paradigm Use of full-dataset classification in
shift from reactive to recent studies (Data imbalance issue)
proactive)

With disaggregated data became
available, real-time crash prediction
models were made feasible.

Common methodology of classify
crash from non-crash cases using
matched case-control sampling.
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 |_iterature Review — Imbalanced Data Issue

e Crashisrare and stochastic
e |ntraffic data
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Transferability i
-ability of the model or the findings of one sample to be applied to

another sample” - Polit and Beck, 2010 -

Spatio-Temporal
Transfer

3 types of transferability modes:

Temporal Transfer 2 Spatial Transfer
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Class Aim Model
Imbalance waewipa Transferability

transferable

. il i real-time crash .
. using highly transferability
iImbalanced
disaggregated real- e Transfer Learning

« Oversampling for class  ime traffic data
balancing (i.e. WGAN)




2®» Data Collection and Preparation

Accident +

Data

: Loop

Minute-Level

Traffic Data 7 (DS
Data

Data integration, matching,
cleansing, aggregation

/// \\\

\

\
Real-time \

imbalanced ‘{ o+ Synthetic
traffic /; Data

dataset J

/

/

Dataset for Real-time Crash
Prediction Models
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6 Datasets
Study Area: M1, M4, M6 | Data: 2017 and 2018
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Figure 2. Study Area
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This experiment is conducted as o
follow: e
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— =

=
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_—Tithedamused 16—
- develop baseline =

e —
T— maode] 7 -
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Figure 3. Flowchart of Current Study
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Noise Generator
= Concept from the generator sample (2) (G) T
learns from the feedback of S
0.0 . QD
the critic network who tells if Original Q

Critic (C)

the synthetic data generate
IS good or bad.

= Avariant of GAN

= Generative model for
synthetic data

Figure 4. WGAN Architecture

= Better training quality than
GAN

]
Figure 5. Example of synthetic images generated from WGAN (adopted from Liu et al., 2019)
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= Employed in computer
science

o E.g. translation software,
word character recognition

= Fitting the weights trained
from the source model (M1
2017) to dataset to be
transferred

- Layers Can be flne tuned Figure 5. Transfer Learning Procedure
customising hidden layers to
be frozen
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DNN Is used as real-
time crash prediction
model

Abllity to learn large
datasets In a non-linear
manner

High model predictability
In literature

Figure 6. Architecture of Deep Neural Network
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* Transfer Learning was applied

= Weights trained from M1 2017
model was applied to 5 other
datasets with fine tuning
performed

= Best performance in temporal
transfer with 0.95 AUC

= Direct Testing does not work

Figure 7. Examples of Results between Direct Testing and Transfer Learning
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(;_'ﬂmpar[snn in AUC Values between the Best Transferred Model and Standalone Model

I AUC of the Best Transfermed Midiel
I AUC of Standalone Model

1| ] 1-| ik
Dataset

Figure 8. Comparison of Model Performance between Best Transferred Model and Standalone Model

= Five separate standalone
models trained for comparison

= Transfer Learning achieved
even better performance
than standalone models

AUC Values




M Loughborough

®» Discussion D University

Transfer Learning Outperforms:
« Direct Testing (
e Standalone Models

/Do \
(GIE
7//

Can save time and

\(Q effort for tuning and
/ training

: : — B hyperparameters for
Easier for highway -~7- > :
managers to deploy real (?“%%) different models
time crash prediction —
model o
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Use of Large Incl_usion of datq from
Datasets in future “~__ various dataset in

model transferabillity
Use of different ‘;‘

ML/AI models for
transferabllity test

02

03 .
\ Test the minimum

amount of data required
for model transfer
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Thank You !

Any Questions?



