USERS' PERCEPTIONS AND ATTITUDES TOWARD AUTONOMOUS VEHICLE TECHNOLOGIES AFTER SIMULATION EXPOSURE – A STUDY ACROSS THE LIFESPAN

Virginia P. Sisiopiku, Wencui Yang, Brandy McKinney

Department of Civil, Construction, and Environmental Engineering University of Alabama at Birmingham Birmingham, AL Justin Mason, Seung Woo Hwangbo, Sherrilene Classen

Department of Occupational Therapy University of Florida Gainesville, FL

RSS 2022 – Athens, GR June 16, 2022

INTRODUCTION

- Autonomous vehicles (AV) will have significant impacts on drivers among different age groups
- Previous studies suggest age is an important indicator for acceptance of autonomous vehicles.
- Recent perceptions are measured by surveys only.
- It is important to expose study participants to live experience of AV technology and understand its impact on the acceptance of AV technology across the lifespan.

OBJECTIVES

- Quantify the young (n= 34), middle-age (n=17), and older (n=50) adults' perceptions of AVs.
- Determine if any differences existed before and after exposure, by age group, and by gender.

HYPOTHESES

- Participants would demonstrate an increase in *Intention to* Use, reduction in perceived *Barriers*, and increase in Acceptance of AV technology after exposure to the simulator (vs. pre-exposure)
- 2. Older drivers' perceptions would have the greatest magnitude of change (vs. middle-aged and younger adults)
- 3. Women participants would demonstrate more positive changes in acceptance of AV technology after exposure to the simulator (vs. men)

METHODOLOGY

- Ethics: IRB-01 Approved
- Design: Repeated measures of drivers' perceptions before and after being exposed to "driving" an AV simulator

• Participants: (N=101)

Inclusion Criteria:

- N= 34; 18-39 years old
- N= 17; 40-64 years old
- N= 50; 65 years old +
- Valid driver's license

Exclusion Criterion:

< 18 MoCA (mod-severe cog decline)

• Equipment:

RTI High Fidelity Driving Simulator

SIMULATOR

Smart House, Oak Hammock, Gainesville, FL

RTI simulator: Integrated into a full car cab with 7 HD visual channels creating a 180° field of view

- 3 forward, 2 side, 1 rearview, 1 virtual dash display car
- Operates at a 60Hz refresh rate for smooth graphics projected on 3 flat screens with high intensity projectors
- Simulator Sickness Questionnaire
- Main drive
 - o autonomous drive (SAE Level 4)
 - o ambient traffic interacting with other vehicles
 - o realistic road infrastructure, buildings
 - low to moderate speed (15-35 mph)
 - o suburban area

DATA COLLECTION

• Visit 1: Baseline Measures

- Demographics
- Trail-Making Test A & B
- AV User Perception Survey (AVUPS)
- Technology Acceptance Model
- Technology Readiness Index 2.0
- Driving Habits Questionnaire
- Life Space Questionnaire

• Visit 2: Post-Exposure Measures

- Simulator (SAE Level 4)
- Motion Sickness Questionnaire
- AVUPS

DATA MANAGEMENT

• Data Collection:

- Trained Research Assistant
- Research Electronic Data Capture (REDCap)

Data Processing and Analysis:

- R Studios and R version 4.0.2
- p <u><</u> 0.05

RESULTS: DEMOGRAPHIC

	Factor	Value	Frequency (%)
		Young	34(34%)
	Age	Middle-aged	17(17%)
		Older	50(49%)
N – 101	Gender	Male	45 (45%)
$\mathbf{N} = 101$	Cindei	Female	56 (55%)
		African-American or Black	10 (10%)
	Ethnicity	Asian/Pacific Islander	18 (18%)
		Caucasian or White	64(63%)
		Hispanic or Latino	5 (5%)
		Multiracial	1 (1%)
		Other	3 (3%)
		High school graduate or equivalent	3 (8%)
		Some college credits	16 (16%)
	Education	Trade/Technical/Vocational training	1 (1%)
		Associate's degree	11 (11%)
		Bachelor's degree	28 (28%)
		Master's degree	28 (28%)
		Doctorate/Professional degree	14(14%)
	Marital Status	Single, never married	34 (34%)
		Married or domestic partnership	52 (51%)
	Marital Otatus	Widowed	7 (7%)
		Divorced	8 (8%)
		Part-time	12 (12%)
		Full-time	15 (15%)
Employment	Employment	Retired	47 (47%)
		Student	24 (24%)
		Unable to work	3 (3%)

RESULTS: BEFORE EXPOSURE TO THE SIMULATOR

Male vs. Female: A series of t-tests

AVUPS scores	Male vs. Female
Intention to Use	t (99) = -0.802, p = 0.4245
Barriers	t (99) = -0.026, p = 0.979
Acceptance	t (99) = -0.669, p = 0.505

Young vs. Middle-aged vs. Old: ANOVAs

AVUPS scores	Young vs. Middle vs. Older	Post-hoc
Intention to Use	F (2,98) = 3.397, p = 0.037, η_G^2 = 0.065	Older > Middle: p = 0.031
Barriers	F (2,98) = 1.418, p = 0.247, η_G^2 = 0.028	
Acceptance	F (2,98) = 4.346, p = 0.016, η_G^2 = 0.081	Older > Middle: p = 0.011

Male vs. Female: A series of Wilcoxon tests

AVUPS scores	Male vs. Female
Intention to Use	p = 0.456
Barriers	Female > Male: p = 0.022
Acceptance	p = 0.356

Young vs. Middle-aged vs. Old: ANOVAs or ANCOVAs

AVUPS scores	Young vs. Middle vs. Older
Intention to Use	F (2,97) = 0.37, p = 0.692, η_G^2 = 0.008
Barriers	F (2,98) = 1.928, p = 0.151, η_G^2 = 0.038
Acceptance	F (2,97) = 0.529, p = 0.591, η_G^2 = 0.011

All participants combined (N=101)

AVUPS Scores	Before vs. after exposure to simulator
Intention to Use (Wilcoxon tests)	p < 0.001
Barriers (t-tests)	t (100) = -3.540, p <0.001
Acceptance (Wilcoxon tests)	p < 0.001

Exposure to the simulator results in higher scores for all three AVUPS scores compared to the baseline

AVUPS Domain Score Differences Before and After Exposure to the Simulator in AV Mode (N=101)

Differences based on age group

• The young group

AVUPS Scores	Before vs. After exposure to simulator
Intention to Use	t (33) = -1.316, p = 0.099
Barriers	t (33) = -1.166, p = 0.126
Acceptance (Wilcoxon tests)	p = 0.072

• The middle-aged group

AVUPS Scores	Before vs. After exposure to simulator
Intention to Use	t (16) = -1.543, p =0.071
Barriers	t (16) = -1.936, p = 0.035(After > Before)
Acceptance	t (16) = -1.831, p = 0.043

• The older group

AVUPS Scores Intention to Use Barriers (Wilcoxon tests) Acceptance

Before vs. After exposure to simulator t (49) = -2.597, p = 0.006(After > Before) p = 0.024(After > Before) t (49) = -2.745, p = 0.004(After > Before)

Differences based on gender group

Males (Wilcoxon tests): No significant differences between baseline and after exposure to the simulator

Intention to Use: p = 0.228Barriers: p = 0.604Acceptance: p = 0.579

Females (t-tests):

The scores after exposure to the simulator are significantly higher than the baseline

Intention to Use: t (55) = -4.026, p < 0.001Barriers: t (55) = -4.541, p < 0.001Acceptance: t (55) = -4.723, p < 0.001

The percentage of score change based on age group

No difference among the young, middle-aged, and older group: Intention to Use (ANOVA): F (2,98) = 0.909, p = 0.406, $\eta_g^2 = 0.018$ Barriers(Kruskal-Wallis tests): X² (2) = 2.366, p = 0.306Acceptance (Kruskal-Wallis tests): X² (2) = 0.914, p = 0.633

The percentage of score change based on gender group

The changes for female participants are greater than for males after exposure (Shapiro-Wilk tests):

Intention to Use: p = 0.005Barriers: p < 0.001Acceptance: p < 0.001

The three-way mixed ANOVA revealed that there are **no interactions between gender and age at the baseline and after exposure to the simulator:**

Intention to Use: F (2,95) = 0.129, p = 0.879, $\eta_g^2 < 0.001$ Barriers: F (2,95) = 2.304, p = 0.105, $\eta_g^2 = 0.007$ Acceptance: F (2,95) = 0.856, p = 0.428, $\eta_g^2 = 0.002$

RESULTS: COMPARISON BEFORE & AFTER EXPOSURE

Intention to Use by gender and age at the baseline and after exposure to the simulator

RESULTS: COMPARISON BEFORE & AFTER EXPOSURE

Acceptance by gender and age at the baseline and after exposure to the simulator

CONCLUSIONS

- All 3 study hypotheses were supported
 - Intention to Use, Barriers, and Acceptance significantly improved after exposure to the AV simulator
 - Older drivers' perceptions show the greatest magnitude of change (vs. middle-aged and younger adults) after exposure to the AV simulator
 - Women demonstrate more positive changes in acceptance of AV technology after exposure to the technology (vs. men)
- Gender differences in the context of AV technology perceptions vary by age, and the gender-age impacts must be further examined
- Lived experiences via exposure to "driving" a simulator in autonomous mode can increase user acceptance and reduce perceived barriers pertaining to AV technology

ACKNOWLEDGEMENT

Funding Agency

U.S. DOT, Office of the Assistant Secretary for Research and Technology (OST-R) through the **STRIDE** Center (*Project A3*)

Project Team

- Sherrilene Classen, PhD
- Virginia Sisiopiku, PhD
- Justin Mason, PhD
- Wencui Yang, PhD
- Seung Woo Hwangbo, OTD
- Brandy McKinney

Stakeholders

- Transdev
- City of Gainesville
- Oak Hammock Residential Community
- Rotary Clubs Gainesville
- UF Transportation Institute
- FDOT
- ALDOT
- FL Safe Mobility for Life
 Coalition

QUESTIONS AND COMMENTS

THANK YOU