The Effect of Speed Limits on Accident
Frequency on the German Autobahn
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Background

2

No binding speed limit on ~70% of the German motorway network.
Vital public debate - Central question: effects of speed limits on crash frequency!’

Last large-scale experiment on |30km/h from1974-1976:-10% of all crashes, -20% of severely
and fatally injured (BASt, 1977).

Conducting new experiments politically not feasible.

Since then, major changes in roadway design and vehicle capabilities etc., no comparable
environment in other countries.

Learn about relationship through observational study.

Challenges:
No readily available dataset —> Combine various geospatial data sources.
Unobserved heterogeneity —> Introduce upper bound assumption.

Causal forest: mild assumptions about data generating process (DGP) = spatial overfitting?



Data

Speed Limits
Combine various geospatial data sources: i "
= L
Federal statistical offices: injury crash locations, -138 R t . ‘ ’
variable - Ry P
Open Street Maps: design & geometric characteristics of motorways, m—other = ._ N » C

BASt: automatic vehicle counting station data (interpolate),
network shape, road surface condition measures

NASA: elevation profile
DWD: weather data Reduce to 4

| | | . principal ‘
BBSR: regional socio-demographic characteristics components “)’\h"" 7‘
Include spatial lags. "“,

Fully automated with ArcGIS & Python.

0 25 50 100 150 200
Kil

- — e Kilometers

Almost all open data: open version of dataset (& code) planned. g ep— “I'ﬁts in 2019

Dataset with characteristics of 500m segments for 13,000 km (50%) of network,2017-2019.



Methodology: Causal Forest

(Athey, Tibshirani & Wager, 2019)

Based on random forests (RF) by Breiman (2001) - Extension for treatment effect (TE)
estimation.

Ensemble of (de-correlated) regression or classification trees.
~ Adaptive form of k-nearest neighbor matching:

Compare segments with and without speed limits, similar w.r.t. relevant observed characteristics.

Let neighborhoods get wide along irrelevant dimensions > Overcome curse of dimensionality.

Potential outcomes framework: requires conditional independence assumption — feasibility?

Instead: upper bound assumption = Uncontrolled factors increasing (decreasing) crash
frequency also increase (decrease) speed limit probability.

Estimated effects upward biased: negative upper bound = larger effects in absolute value.

Estimates individual treatment effects —> Learn about effect heterogeneity.

Not ideal for strong smooth signals —> Use crash rates instead of counts as outcomes.



Methodology: Spatial Prediction - Background

Robust TE estimation employs propensity score & main effect function estimates
conditional on covariates.

Default: separate RF for treatment probability & outcome, out-of-bag predictions for
each observation.

Problem: treatment, outcomes & many covariates strongly spatially auto-correlated
—> Spatial over-fitting?

Solutions (Meyer et al., 2018)?:

Leave-location-out cross validation (LLO-CV): whole locations into CV-fold,
evaluate on unknown locations.

Forward-Feature Selection: Start with all possible 2-variable models, choose
best one in LLO-CV, recursively add variable most improving fit on unknown
locations, stop if no improvements possible.



Methodology: Spatial Prediction - Experiment

Estimate following setups: Ocb error Validation error
a b C a b C
Random CV with all variables, 100 [0.037 0.053 0.052|0.049 0.051 0.051

Spatial CV with all variables, and

Spatial CV with FFS. 120 |0.048 0.12 0.118]0.128 0.125 0.126

130 |0.018 0.073 0.072]0.061 0.056 0.057

LLO-CV improves out-of-location fit

for 120 & 130 km/h, not for 100 km/h  papje 1: Cross validation results for propensity score
FFS does not lead to any estimates: mean squared error evaluated on hold-out
set with only unseen location.

improvements.

Note: cluster robust causal forests implement LLO-CV.



Methodology: Spatial Prediction - Reasons

Random CV performs well at pointing to restricted segments, but not generalizable!
Does not capture important features of DGP.

Spatial auto-correlation causes “leak” in the algorithm: Limit on a segment increases probability
of limit on neighboring segment (political reasons, traffic planning, etc.).

Possible reasons for no improvement for 100 km/h:
Less spatial clustering, stronger signal.
For main effect, no improvements through spatial CV & FFS

Spatial clustering in crash rates only through covariates?

ML methods on spatial data require explicit consideration of spatial nature, especially when:
Outcome in one location affects outcome in neighboring location and
Aim is estimating generalizable function.

Spatial CV implemented with cluster robust causal forests.



Results

Large and strongly significant effects of
all limits on total crash rate.

Larger effects on fatal and also on
severe crash rate.

Larger effects on at least severe
crashes for more restrictive limits.

Note:

* Largest unobserved heterogeneity for
100 km/h

» Strong spatial clustering of 130 km/h
limit = Enough variance in X to
capture main features of DGP?

» Most reliable results: 120 km/h
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Figure 2: ATEs estimated with cluster robust causal
forests, with 15,000 trees.
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Figure 5: CATEs for segments with low
and high shares of heavy traffic

Larger effects on segments with larger speed variance.

Note: Weak statistical significance of differences.



Thank you for your attention!

Contact: Maike.Metz-Peeters@rub.de
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Figure 6, a-c: Propensity scores for speed limit of 130, estimated according to setup a, b, and c.
Actually restricted segments displayed with a black outline.
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Figure 7, a-c: Propensity scores for speed limit of 100, estimated according to setup a, b, and c.
Actually restricted segments displayed with a black outline.
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