The Effect of Speed Limits on Accident Frequency on the German Autobahn

A Causal Machine Learning Approach

Maike Metz-Peeters

Frankfurt a.H. Olpe Köln-Ost A contend A conte

Ruhr-University Bochum, RVVI Essen

Background



- No binding speed limit on \sim 70% of the German motorway network.
 - Vital public debate Central question: effects of speed limits on crash frequency?
- Last large-scale experiment on 130km/h from 1974-1976: -10% of all crashes, -20% of severely and fatally injured (BASt, 1977).
- Conducting new experiments politically not feasible.
- Since then, major changes in roadway design and vehicle capabilities etc., no comparable environment in other countries.
- > Learn about relationship through observational study.
- > Challenges:
 - No readily available dataset → Combine various geospatial data sources.
 - Unobserved heterogeneity \rightarrow Introduce upper bound assumption.
- > Causal forest: mild assumptions about data generating process (DGP) \rightarrow spatial overfitting?

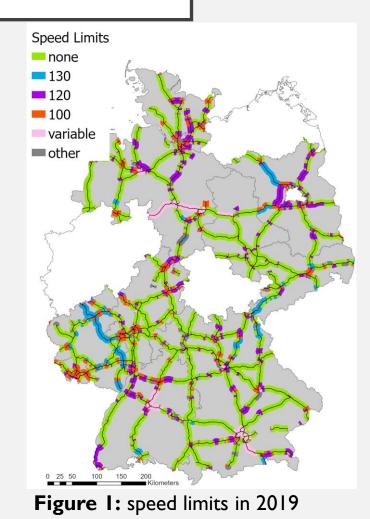
Data

- Combine various geospatial data sources:
 - Federal statistical offices: injury crash locations,
 - Open Street Maps: design & geometric characteristics of motorways,
 - **BASt**: automatic vehicle counting station data (interpolate), network shape, road surface condition measures
 - **NASA**: elevation profile
 - **DWD**: weather data
 - **BBSR**: regional socio-demographic characteristics
 - > Include **spatial lags**.
- > Fully automated with ArcGIS & Python.
- > Almost all open data: open version of dataset (& code) planned.
- > Dataset with characteristics of 500m segments for 13,000 km (50%) of network, 2017-2019.

Reduce to 4

components

principal



Methodology: Causal Forest

(Athey, Tibshirani & Wager, 2019)

- Based on random forests (RF) by Breiman (2001) Extension for treatment effect (TE) estimation.
- Ensemble of (de-correlated) regression or classification trees.
- ~ Adaptive form of k-nearest neighbor matching:
 - Compare segments with and without speed limits, similar w.r.t. relevant observed characteristics.
 - Let neighborhoods get wide along irrelevant dimensions \rightarrow Overcome curse of dimensionality.
- **Potential outcomes framework**: requires conditional independence assumption feasibility?
- > Instead: upper bound assumption \rightarrow Uncontrolled factors increasing (decreasing) crash frequency also increase (decrease) speed limit probability.
 - > Estimated effects upward biased: negative upper bound \Rightarrow larger effects in absolute value.
- Estimates individual treatment effects \rightarrow Learn about effect heterogeneity.
- Not ideal for strong smooth signals
- \rightarrow Use crash rates instead of counts as outcomes.

Methodology: Spatial Prediction - Background

- Robust TE estimation employs *propensity score* & *main effect function* estimates conditional on covariates.
- Default: separate RF for treatment probability & outcome, out-of-bag predictions for each observation.
- Problem: treatment, outcomes & many covariates strongly spatially auto-correlated
 > Spatial over-fitting?
- Solutions (Meyer et al., 2018)?:
 - Leave-location-out cross validation (LLO-CV): whole locations into CV-fold, evaluate on *unknown locations*.
 - Forward-Feature Selection: Start with all possible 2-variable models, choose best one in LLO-CV, recursively add variable most improving fit on unknown locations, stop if no improvements possible.

Methodology: Spatial Prediction - Experiment

- Estimate following setups:
 - a. Random CV with all variables,
 - b. Spatial CV with all variables, and
 - c. Spatial CV with FFS.

- LLO-CV improves out-of-location fit for 120 & 130 km/h, not for 100 km/h
- FFS does not lead to any improvements.

	Oob e a	rror b	с	Valida a	tion er b	ror c
100	0.037	0.053	0.052	0.049	0.051	0.051
120	0.048	0.12	0.118	0.128	0.125	0.126
130	0.018	0.073	0.072	0.061	0.056	0.057

Table I: Cross validation results for propensity scoreestimates: mean squared error evaluated on hold-outset with only unseen location.

Note: cluster robust causal forests implement LLO-CV.

Methodology: Spatial Prediction - Reasons

- Random CV performs well at pointing to restricted segments, but not generalizable!
 - > Does not capture important features of DGP.
 - > Spatial auto-correlation causes "leak" in the algorithm: Limit on a segment increases probability of limit on neighboring segment (political reasons, traffic planning, etc.).
- Possible reasons for no improvement for 100 km/h:
 - Less spatial clustering, stronger signal.
- For main effect, no improvements through spatial CV & FFS
 - > Spatial clustering in crash rates only through covariates?
- > ML methods on spatial data require explicit consideration of spatial nature, especially when:
 - Outcome in one location affects outcome in neighboring location and
 - **Aim** is estimating generalizable function.
- > Spatial CV implemented with cluster robust causal forests.

Results

- Large and strongly significant effects of all limits on total crash rate.
- Larger effects on fatal and also on severe crash rate.
- Larger effects on at least severe crashes for more restrictive limits.

Note:

- Largest unobserved heterogeneity for 100 km/h
- Strong spatial clustering of I30 km/h limit → Enough variance in X to capture main features of DGP?
- Most reliable results: I 20 km/h

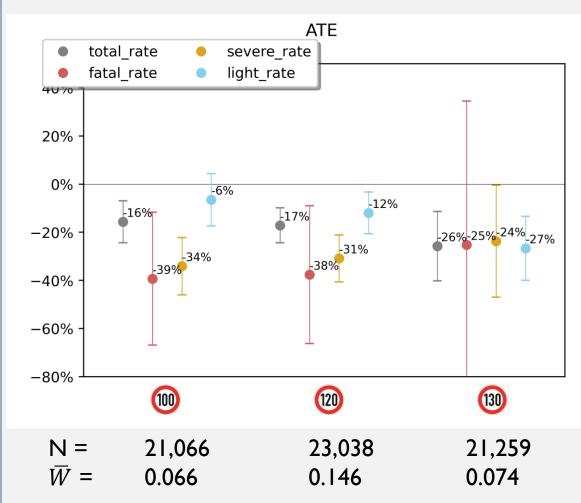


Figure 2: ATEs estimated with cluster robust causal forests, with 15,000 trees.

Effect Heterogeneity

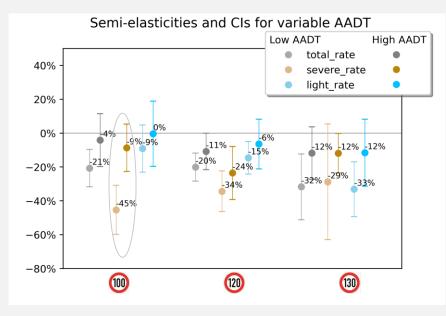
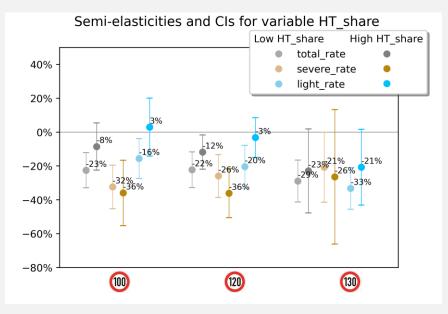


Figure 3: CATEs for segments with low and high AADT



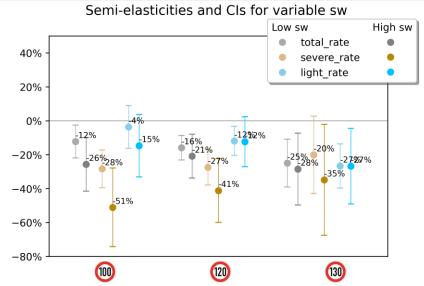


Figure 4: CATEs for segments with and without access and exit ramps. **Figure 5:** CATEs for segments with low and high shares of heavy traffic

 \geq Larger effects on segments with larger speed variance.

• Note: Weak statistical significance of differences.

Thank you for your attention!

Contact: Maike.Metz-Peeters@rub.de

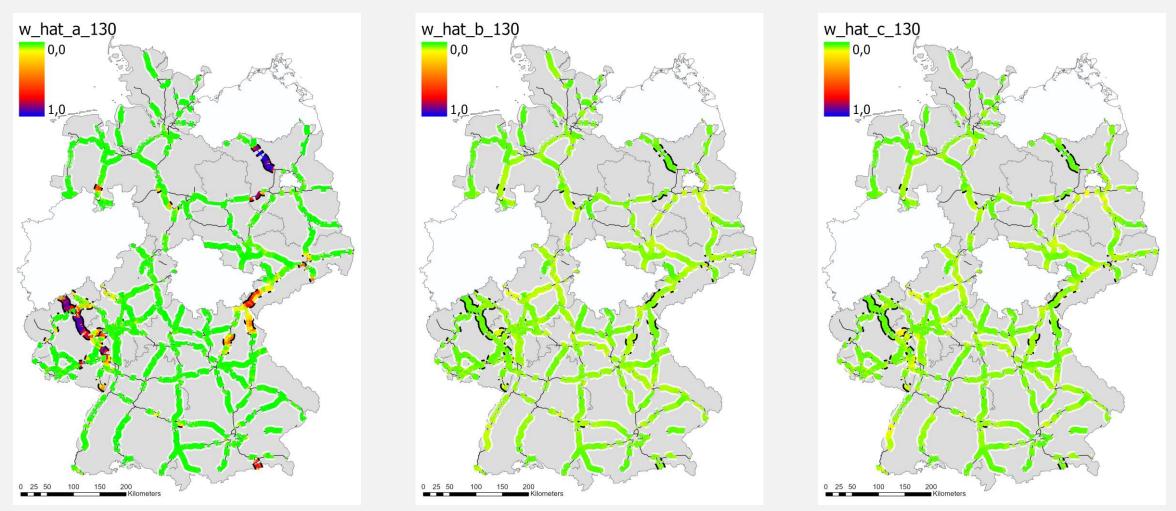


Figure 6, a-c: Propensity scores for speed limit of 130, estimated according to setup a, b, and c. Actually restricted segments displayed with a black outline.

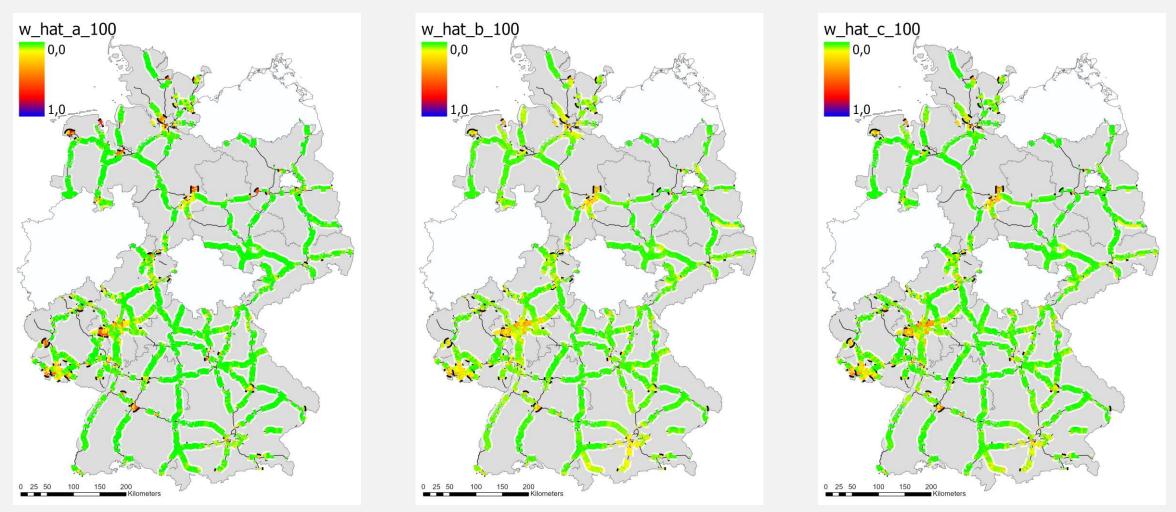


Figure 7, a-c: Propensity scores for speed limit of 100, estimated according to setup a, b, and c. Actually restricted segments displayed with a black outline.