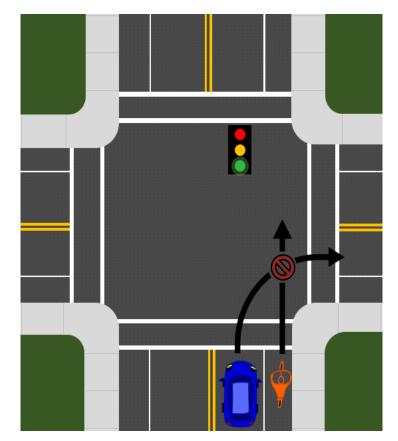
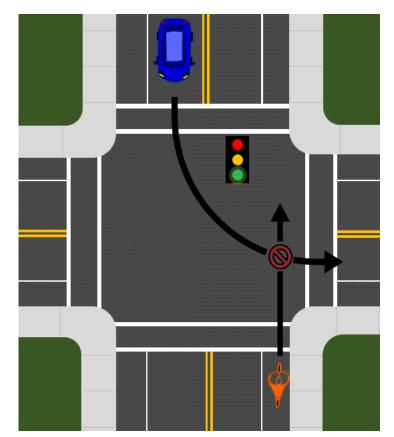

Assessing the Impact of Three Intersection Treatments in a Bicycling Simulator

Road Safety and Simulation 2022 Presented on June 9th, 2022


Logan Scott-Deeter, MSCE Oregon State University David Hurwitz, PhD Oregon State University Brendan Russo, PhD Northern Arizona University Edward Smaglik, PhD Northern Arizona University Sirisha Kothuri, PhD Portland State University



Motivation

- There have been proven economic, health, and environmental benefits associated with biking (Simmons et al., 2015)
- 857 bicyclist fatalities in the US 2018 (NHTSA, 2020)
 Due to crashes with vehicles
 79% occurred in urban environments
- Improved safety can promote more bicyclists
- Assess three treatments and their effectiveness at reducing right and left hook crashes

Right and Left Hook Crashes

Bike Box

- Adopted from the advanced stop bar

 Common in European countries
- Provides bicyclist with a "waiting area"
 o Helps assist turning or through bicyclists
 o Makes cyclist more visible to motorists
- Unique pavement markings and geometry

Bike box in Portland, OR

Bicycle Signal

- Dictates movement of bicyclists
 Separate phase from vehicular signals
- Distinguishable by bicycle icon or housing unit color
- MUTCD guidelines require:

 o 8- or 12- inch diameter
 o Accompanied by R10-10B sign

Bicycle signal in Portland, OR

Mixing Zone

- Mixing zone with yield entry markings
- Brings the right-hook crash potential back from the intersection
 Reduces mental load at intersection
- Allows bicyclists to claim the lane

 Requires vehicles to yield to bicyclists
 Provides opportunity to move away from turning side of the vehicle

Mixing zone in Portland, OR

OSU Bicycling Simulator

7

Experimental Equipment

- OSU Bicycling Simulator

 Outputs instantaneous timespace data about rider
- ASL Mobile Eye XG
 - Provides fixation and saccade data
- Shimmer3 GSR Device

 Measures skin conductance

GSR (top) and eye tracking (bottom) equipment

Field to Simulator – Bike box

Bike box in real-world

Modeled for simulator

Field to Simulator – Bicycle Signal

Bicycle Signal in real-world

Modeled for Simulator

Field to Simulator – Mixing Zone

Mixing zone in real-world

11

Modeled for Simulator

Experimental Design

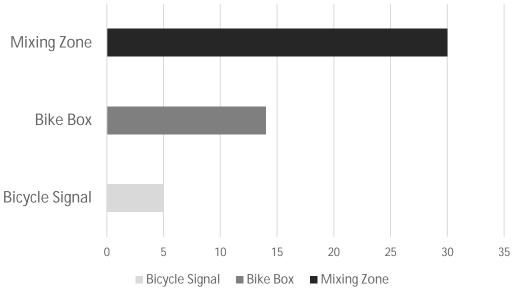
- Variables of Interest
 - o Conflict type
 - o Treatment
 - o Stopping requirement
- Performance Measures
 - o Survey
 - o Lateral position
 - Conflict recognition
 - o Level of stress

Independent Variable Levels

VARIABLE	CATEGORY	LEVEL	LEVEL DESCRIPTION
	Nominal (categorical)	1	Right turning vehicle is arriving at intersection
Type of Conflict		2	Right turning vehicle is waiting at intersection
		3	Left turning vehicle
		4	No conflicting vehicle
	Nominal (categorical)	1	Bike Box
Intersection		2	Bicycle Signal
Treatment		3	Mixing Zone
	Discrete	1	Red indication upon arrival
Stopping Requirement		2	Green indication upon arrival

Results – Pre Ride Survey

- 23 Female 17 Male
- Well distributed in bicycling experience and frequency
- Majority of riders selected that they ride local
 - Local refers to riding around Corvallis, OR
 - o Urban is a dense city environment
 - Rural is open land-use where majority is not buildings

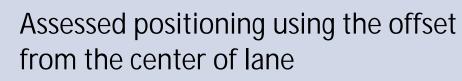

Pre-ride survey response breakdown

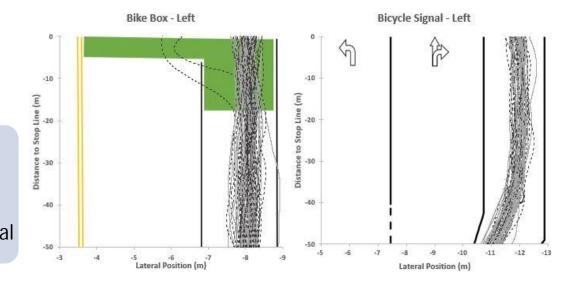
	·			
Question	Response	# of	% of	
	Options	Participants	Participants	
	0 times	7	17.5	
How often do you	1 time	10	25	
ride a bike per	2-4 times	9	22.5	
week?	5-10 times	11	27.5	
	More than 10	3	7.5	
	0-1 hour	18	45	
How long do you	1-2 hours	7	17.5	
ride a bike per	2-3 hours	6	15	
week?	3-4 hours	2	5	
	> 4 hours	7	17.5	
	Urban	8	20	
What type of	Rural	3	7.5	
riding do you do?	Local	22	55	
	None	7	17.5	

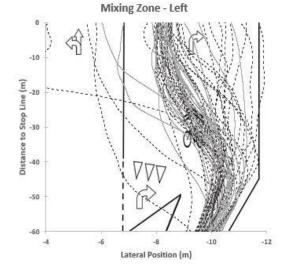
Results – Post Ride Survey

- Majority of participants (90%) have not seen at least one treatment
 - Indicates potential for more promotion of newer treatments
- 69% were uncomfortable approaching an unfamiliar design
- Additional free response question

 Asked for participants to indicate which treatment made them feel discomfort
 - Participants were allowed >1 answer


Participant response indicating discomfort traversing certain treatments


Results – Positioning



Visualizations show
 participant movements •

Dark/dotted line indicates red arrival Grey/solid line indicates green arrival

Statistical Analysis - Positioning

- Assessed positioning as offset from center of lane
 Recommended by SAE Standards
- Average offset from lane center:
 - o Mixing zone = 1.02 m
 - o Bike box = 0.24 m
 - \circ Bicycle signal = 0.17 m
- Repeated Measures ANOVA showed statistical significance
- Bonferroni Pairwise Comparison Test

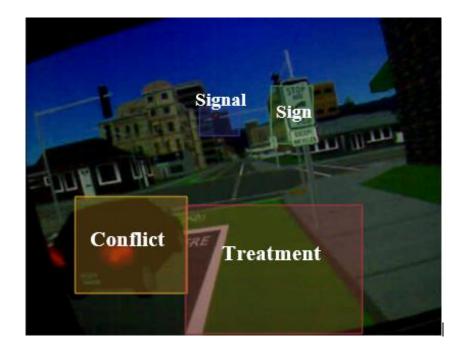
 Largest offset in Mixing zone

Statistical Analysis - Positioning

Bonferroni Comparison on Positioning

Treatment (i)	Treatment (j)	Estimate	SE	p-value	95% CI	
					Lower	Upper
Bike Box	Mixing Zone	0.782	0.153	<0.01*	0.399	1.166
	Bicycle Signal	-0.067	0.024	0.029*	-0.128	-0.005
Mixing Zone	Bike Box	-0.782	0.153	<0.01*	-1.166	-0.399
	Bicycle Signal	-0.849	0.160	<0.01*	-1.250	-0.448
Bicycle Signal	Bike Box	0.067	0.024	0.029*	0.005	0.128
	Mixing Zone	0.849	0.160	<0.01*	0.448	1.250

*Note: All measurements in meters


Results – Conflict Recognition

Visual attention was used to assess conflict recognition

Total Fixation Duration (TFD) on conflict vehicle

Results – Conflict Recognition

- Mixing zone resulted in largest TFD values
- Statistically significant result found from ANOVA test

 P-value<0.01
- Bonferroni Pairwise Comparison Test
 - Mixing zone had TFD values of 1.9 and 2.8 seconds more
 - o Bicycle signal had lowest TFD values

	Bonferroni test on Treatment type						
	Treatment (i)	Treatment (j)	Est.	SE	р	95% Lower	% CI Upper
ł			_			LOVEI	Opper
	Bike Box	Mixing Zone	-1.906	0.300	<0.01*	-2.686	-1.126
		Bicycle Signal	0.976	0.210	<0.01*	0.430	1.522
	Mixing Zone	Bike Box	1.906	0.300	<0.01*	1.126	2.686
		Bicycle Signal	2.882	0.287	<0.01*	2.135	3.628
5	Bicycle	Bike Box	-0.976	0.210	<0.01*	-1.522	-0.430
	Signal	Mixing Zone	-2.882	0.287	<0.01*	-3.628	-2.135

Recommendations

- All designs had positive and negative attributes
- Bicycle signal may be too safe
 Did not require riders to perceive the potential conflict danger
- Mixing zone made participant feel uncomfortable
 o Although it promoted safe riding habits participants did not enjoy
- Bike box provided a good balance of safety and functionality

 No extreme findings Improved safety without eliciting unsafe behaviors
- We recommend:
 - o Bicycle signal be installed only when a clear need is present
 - o Mixing zone be installed where fatal crashes occur
 - o Bike box is the most versatile and can be installed most frequently

Acknowledgements

Thank you to the Oregon Department of Transportation for sponsoring this project (SPR 833)

