

Toronto Metropolitan University **Department of Civil Engineering** Faculty of Engineering & Architectural Science

Issues in Developing and Applying Crash-Conflict Models

Thanushan Rajeswaran Bhagwant Persaud Alireza Jafari Anarkooli

Motivation

- Vision Zero City of Toronto: Eliminate traffic-related fatalities and serious injuries, e.g., through:
 - Red Light Cameras
 - Automated Speed Enforcement
 - VRU measures such as
 - Leading Pedestrian Intervals,
 - bike lanes
 - Left turn hardening
 - Speed Limit Reduction
- Planning and evaluation process for innovative strategies may be challenging, as prior information may not exist.
- Challenge could be addressed with the use of surrogate measures, such as traffic conflicts.
- Statistical models relating crashes to conflicts are fundamental to this application.

Objectives/Research Approach

- Investigate key issues in the development and application of crash-conflict models for safety assessments
 - model specification
 - definition of conflicts
 - model transferability
 - use of models for estimating of crash modification factors (CMFs)
- Model specification and conflict definition Issues are addressed with a case study
 - four-legged signalized intersections in the City of Toronto.
 - traffic conflicts identified from time to collision (TTC) and post encroachment time (PET) generated from microsimulation
- Transferability of models to another jurisdiction investigated by estimating calibration factors and assessing goodness-of-fit.
- Application for CMF estimation investigated with hypothetical left turn protection treatment.

Surrogate Safety Measures

SURROGATE SAFETY MEASURE

DESCRIPTION

Time-to-Collision (TTC)	TTC is the necessary time for two vehicles to collide if they continue at the same speed and path.
Post-Encroachment Time (PET)	PET is the difference in time when the first vehicle leaves a position and the second vehicle subsequently arrives at that position.
Maximum Speed (MaxS)	Maximum speed recorded of either vehicle during the conflict.
First/Second VMinTTC	Speed of the first and second vehicle respectively observed at the TTC.

Methodology

Peak Hour Conflict Statistics

Conflict Threshold	Conflicts	Average Speed	Maximum Speed
PET 5 sec	179.09	26.75	32.70
PET 2.5 sec	108.83	26.36	32.23
TTC 1 sec	17.80	28.96	33.85
TTC 0.5 sec	3.30	34.11	37.66

Maximum Speed vs. PET for a Sample Intersection

Crash - Conflict	PET 2.5 sec			TTC 0.5 sec						
Relationship	Crash - Conflict	Total ·	- Total	Injury	- Total	Crash - Conflict	Total ·	- Total	Injury	- Total
	Coefficient	Estimate	$\Pr > \chi^2$	Estimate	$\Pr > \chi^2$	Coefficient	Estimate	$\Pr > \chi^2$	Estimate	$\Pr > \chi^2$
Crash - Conflict	α	0.7501	0.1761	-0.1559	0.774	α	2.5225	<.0001	1.1488	<.0001
Model	β ₁	0.4333	0.0003	0.3254	0.0056	β ₁	0.2447	0.0002	0.2141	0.0011
	К	0.2	246	0.2	048	K	0.2	67 0.1975		975
	Coefficient	Estimate	$\Pr > \chi^2$	Estimate	$\Pr > \chi^2$	Coefficient	Estimate	$\Pr > \chi^2$	Estimate	$\Pr > \chi^2$
Crash - Conflict and	α	-3.0989	0.0337	-4.4347	0.0027	α	1.0874	0.0341	-0.2026	0.7429
Average Speed	β ₁	0.67	<.0001	0.5754	<.0001	β ₁	0.2492	<.0001	0.2176	0.0007
Model	β2	0.8467	0.0048	0.9595	0.0021	β2	0.4066	0.005	0.3832	0.0276
	К	0.2	0.2271 0.1809		809	K	0.2315		0.1857	
	Coefficient	Estimate	$\Pr > \chi^2$	Estimate	$\Pr > \chi^2$	Coefficient	Estimate	$\Pr > \chi^2$	Estimate	$\Pr > \chi^2$
Crash - Conflict and	α	-2.5079	0.0976	-4.1153	0.0071	α	1.134	0.0302	-0.1767	0.776
Maximum Speed	β ₁	0.6188	<.0001	0.5393	<.0001	β ₁	0.2428	0.0001	0.2112	0.001
Model	β ₂	0.6951	0.0216	0.8596	0.0059	β ₂	0.3841	0.0078	0.3669	0.0316
	K	0.2	331	0.1	855	K	0.2	233	0.1	864

Crash – Conflict Models (PET ≤ 2.5 sec) (TTC ≤ 0.5 sec)

Crashes/year = $e^{\alpha} * (Conflicts)^{\beta_1}$ Crashes/year = $e^{\alpha} * (Conflicts)^{\beta_1} * (Average Speed)^{\beta_2}$ Crashes/year = $e^{\alpha} * (Conflicts)^{\beta_1} * (Maximum Speed)^{\beta_2}$

PET 2.5 sec						
Crash - Conflict	Total ·	- Total	Injury - Total			
Coefficient	Estimate	$\Pr > \chi^2$	Estimate	$\Pr > \chi^2$		
α	2.3469	<.0001	1.0107	<.0001		
β ₁	0.1084 0.0525		0.1023	0.0587		
β ₂	0.1729	0.0198	0.1197	0.0876		
RS	36	65	480			
K	0.2	397	0.2011			

Link Function and Risk Score Approach (PET ≤ 2.5 sec) $Risk \ Score = \frac{Speed \ of \ First \ Vehicle + Speed \ of \ Second \ Vehicle}{PET}$ $Crashes = \ e^{\alpha} * (Conflicts < x)^{\beta_1} * (Conflicts > x)^{\beta_2} * Years$

X = Specified Risk Score Threshold

Cumulative Residual Plots for Models Based on a PET threshold of 2.5 sec

Key Findings from Models

- Models that incorporate the PET threshold tend to be slightly better.
- Models with the 2.5 sec. PET threshold tend to be better than those with the 5 sec. threshold.

- The addition of the speed results in a better model.
- The average speed variable tends to perform better than the maximum speed variable.
- Most speed-based models indicate a stronger effect of speed for injury crashes than for total crashes.

- Risk Score approach produced insignificant models with TTC threshold
- Coefficient for PET conflicts classed as more severe by risk score is larger than that for less severe ones.

York Region – Transferability results (using FHWA Calibrator Software) https://safety.fhwa.dot.gov/rs dp/downloads/fhwasa17016u pdated0618.pdf

The Calibrator: An SPF Calibration and Assessment Tool Updated User Guide

York Region – Transferability results (using FHWA Calibrator Software)

Transferability Results – Injury Crash Models (PET < 2.5 sec)

Crash Conflict		Droforrod Values		
	Conflict Model	Conflict- Average Speed	Conflict Maximum Speed	Fieleneu values
Crashes Observed	162	162	162	-
Crashes Predicted	220.1	204.75	209.91	-
Calibration Factor	0.74	0.79	0.77	Around 1
V(C)	0.03	0.04	0.04	Small
CV(C)	0.25	0.26	0.26	Less than 0.15
Modified R ²	0.29	0.3	0.28	Large
MAD	7.25	7.02	7.08	Small
Dispersion	0.43	0.46	0.46	Small
Max Cure Deviation	29.04	25.11	25.98	Small
% Cure Deviation	0.00%	7.69%	0.00%	Less than 5%
AIC	-558.74	-558.13	-558.11	Small
BIC	-558.18	-557.57	-557.54	Small

Application of Hypothetical Safety Treatment

10 City of Toronto Intersections

Change Left Turn Phase from Permissive to Permissive-Protected

Estimated CMFs with Application of Hypothetical Left Turn Treatment

- Phasing of the intersections was modified in Synchro
- Simulation was performed in VISSIM → conflicts generated
- Crash Conflict and Average Speed models with a PET of 5 sec.

were used to estimate crashes before and after treatment and CMFs.

	Total Crashes	Injury Crashes
Average predicted crashes/year before treatment	14.36	3.47
Average predicted crashes/year after treatment	12.26	2.98
Average CMF	0.85	0.86
Minimum value of CMF	0.67	0.71
Maximum value of CMF	0.96	0.96

- Separate CMFs could be estimated for each intersection
- Average CMFs were consistent with CMFs from crash-based before-after studies

Questions