Identification of evasive action in traffic conflicts

ALIAKSEI LAURESHTYN | LUND UNIVERSITY, SWEDEN
Why bother?
Why bother?

Traffic dynamics

Undisturbed

Conflict

Evasive action

Traffic continuation

successful

Collision

not successful

Güttinger, 1982
Why bother?

Güttinger, 1982
Why bother?

Continuous indicators (t.ex. TTC)

(TTC at onset of evasive action)
Why bother?

Traffic dynamics

Undisturbed

Conflict

Evasive action

Collision

Traffic continuation

Successful

Not successful

Güttinger, 1982

TA

(TTC at onset of Evasive Action)

TTC\textsubscript{min}

Normal traffic

Conflict

Collision
Why bother?

Continuous indicators

Motion prediction issues

Lefèvre et al. (2014)
Mohamed & Saunier (2013)
Why bother?
Continuous indicators
Motion prediction issues
Severity is ‘decided’ at EA onset

Yastremska-Kravchenko (2022)
Kruysse & Wijlhuizen (1992)
Kruysse (1991)
Why bother?

Continuous indicators

Motion prediction issues

Severity is ‘decided’ at EA onset

Validation studies

Svensson (1992)
Grayson (1984)
Method
Studied site & interaction

Barcelona, Spain
Trajectory ‘similarity’
Similarity measure

\[\text{Similarity}_t = \frac{\sum_{i=1}^{n} \Delta s_i}{n} \]
Number of ‘similar’ trajectories

onset of Evasive Action
Motion prediction

Probability of a collision course (PCC) + Probabilistic TTC

\[\text{TTC} = \frac{\sum_{i=1}^{n} (p_i \cdot TTC_i)}{\sum_{i=1}^{n} p_i}, \]

Saunier et al. (2010)
Calibration & validation
Exploration
Interaction types

No detected evasive action
Interaction types

No detected evasive action

Detected evasive action, no collision course (PCC=0)
Interaction types

No detected evasive action

Detected evasive action, no collision course (PCC=0)

Detected evasive action, PCC>0
Interaction types

No detected evasive action,
Detected evasive action, no collision course (PCC=0)
Detected evasive action, PCC>0
Immediately detected evasive action:
Interaction types

No detected evasive action,

Detected evasive action, no collision course (PCC=0)

Detected evasive action, PCC>0

Immediately detected evasive action:

- ‘abnormal’ manoeuvres
- already in an interaction
Normal interactions vs. conflicts

<table>
<thead>
<tr>
<th>Category</th>
<th>All encounters (24 hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. No evasive action</td>
<td>26 (6%)</td>
</tr>
<tr>
<td>2. Evasive action detected, PCC=0</td>
<td>286 (69%)</td>
</tr>
<tr>
<td>3. Evasive action detected, PCC>0</td>
<td>62 (15%)</td>
</tr>
<tr>
<td>4. Evasive action detected immediately</td>
<td>43 (10%)</td>
</tr>
<tr>
<td>Total</td>
<td>417 (100%)</td>
</tr>
</tbody>
</table>
Normal interactions vs. conflicts

<table>
<thead>
<tr>
<th>Category</th>
<th>All encounters (24 hours)</th>
<th>Traffic conflict (6 weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. No evasive action</td>
<td>26 (6%)</td>
<td>3 (2%)</td>
</tr>
<tr>
<td>2. Evasive action detected, PCC=0</td>
<td>286 (69%)</td>
<td>68 (48%)</td>
</tr>
<tr>
<td>3. Evasive action detected, PCC>0</td>
<td>62 (15%)</td>
<td>48 (34%)</td>
</tr>
<tr>
<td>4. Evasive action detected immediately</td>
<td>43 (10%)</td>
<td>23 (16%)</td>
</tr>
<tr>
<td>Total</td>
<td>417 (100%)</td>
<td>142 (100%)</td>
</tr>
</tbody>
</table>
Normal interactions vs. conflicts

<table>
<thead>
<tr>
<th>Category</th>
<th>All encounters (24 hours)</th>
<th>Traffic conflict (6 weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. No evasive action</td>
<td>26 (6%)</td>
<td>3 (2%)</td>
</tr>
<tr>
<td>2. Evasive action detected, PCC=0</td>
<td>286 (69%)</td>
<td>68 (48%)</td>
</tr>
<tr>
<td>3. Evasive action detected, PCC>0</td>
<td>62 (15%)</td>
<td>48 (34%)</td>
</tr>
<tr>
<td>4. Evasive action detected immediately</td>
<td>43 (10%)</td>
<td>23 (16%)</td>
</tr>
<tr>
<td>Total</td>
<td>417 (100%)</td>
<td>142 (100%)</td>
</tr>
</tbody>
</table>

- mostly ‘abnormal’ manouvres
- mostly secondary interactions
Conclusions

High reliability in primary interactions
Conclusions

High reliability in primary interactions

Fails in secondary interactions
Conclusions

High reliability in primary interactions
Fails in secondary interactions
Many traffic conflicts involve secondary interactions
Conclusions

High reliability in primary interactions
Fails in secondary interactions
Many traffic conflicts involve secondary interactions
Increased reference dataset may solve abnormal manoeuvres, but not multiple interactions
Carl Johnsson
carl.johnsson@tft.lth.se

Aliaksei Laureshyn
aliaksei.laureshyn@tft.lth.se
Acknowledgements

‘InDeV’, Horizon 2020 project (grant 635895)
‘Third Eye’, Swedish Innovation Agency (Vinnova)
References

