A Statistics and Reaction Time based Framework for Impact Prediction of Automated Vehicles on Road Safety of Vulnerable Road Users

8th Road Safety & Simulation Conference June 9th, 2022 Athens

Andreas Hula
AIT Low-Emission Transport
Transportation Infrastructure Technologies
Road Safety

Unmotorized Vulnerable Road Users

- Consider pedestrians and cyclists.
- Difficult to cover their interactions with AVs in microsimulation.
- Suggest statistical approach, based on accident data with accident causes.

Accident Statistics and Implied Effects of AVs

- Consider urban accident data (carpedestrian accidents).
- Accident types to be fully mitigated can be determined based on AV models.
- Ideally all causes (except VRU error) should be eliminated with AVs.

"Suspected Causes" upon registration:

1	Nonadjusted Speed	-16
2	Ignoring priority, Ignoring a red light	-262
3	overtaking	-7
4	distraction	-448
5	alcohol, medication	-23
6	fatigue	-0
7	Pedestrian error	-290
8	heart-/healthproblems	-0
9	lack of safety margin	-9
10	violation of road laws	-10
11	technical defect	-0
12	obstacles on the road	-5
no	data	-264

Effect of AVs on not-fully mitigated accidents

- Even VRU error should be reduced, dependent on reaction times of AVs.
- Reports note the pedestrians to be "at-fault" in 30% of the cases.
- The "at-fault" percentage was at 30% for cyclist–car accidents as well.

Country/City	Pedestrian at-Fault	Cyclist at- Fault
Hungary	33%	30%
Vienna 2016	20%	18%
San Francisco	30%	44%
Hawaii	7%	Not stated
North Carolina	59%	Not stated
Israel (on "urban" roads)	30%	Not stated

Impacts on "VRU at-fault" Accidents

- Assume 30% of accidents with VRUs in an urban setting are not mitigated since the VRU was "at-fault".
- Use braking distance formula and AV's reaction time to estimate further reductions:

$$d = v RT + \frac{v^2}{2a}$$

v... Speed RT... Reaction Time

a... Deceleration

d... braking distance

Obtain "equivalent" speed by equating braking distances:

$$v_{Human} RT_{AV} + \frac{v_{Human}^2}{2a_{AV}} = v_{AV}RT_{Human} + \frac{v_{AV}^2}{2a_{Human}}$$

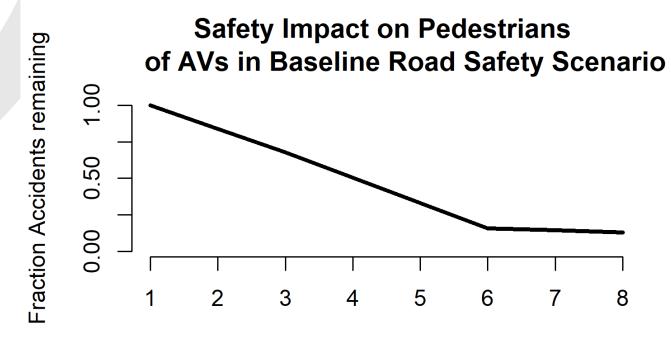
Use "power model(s)" of accident numbers:

Number Accidents New = Number Accidents Old *
$$\left(\frac{v_{AV}}{v_{Human}}\right)^2$$

Parameters and Impact Estimate

Made equation parameters coherent with microsimulation:

	Max Deceleration				
Human	5 m/s^2				
1st Generation AV	7 m/s^2				
2nd Generation AV	9 m/s^2				


	RT
Human	1.5 s
1st Generation AV	1.0 s
2nd Generation AV	0.5 s

- Consider first and second generation AVs separately.
- Final Formula:

$$prop_{new} = 0.7 * prop_{human} + 0.3 * (prop_{human} + prop_{1stGen} * \left(\frac{v_{1stGen}}{v_{Human}}\right)^{2} + prop_{2ndGen} * \left(\frac{v_{2ndGen}}{v_{Human}}\right)^{2})$$

Impact on Road Safety Baseline Scenario

		\sim	
Basel	lına	SCO	าวทา
Dase		OCCI	iaiio

Baseline Step	1	2	3	4	5	6	7	8
Human	100%	80%	60%	40%	20%	0%	0%	0%
1st Gen AV	0%	20%	40%	40%	40%	40%	20%	0%
2nd Gen AV	0%	0%	0%	20%	40%	60%	80%	100%
Percentage remaining	100%	84%	68%	51%	33%	16%	14%	13%

Combine Results with Microsimulation

- Fundamental connection: AV model parameters (RT, deceleration).
- Proportional decrease can be applied to absolute accident numbers or different types of relative accident numbers (per amount of vehicles or per kilometers driven in particular).
- Relative numbers can reflect results from microsimulation (changes in kilometers driven, changes in number of vehicles on road).

Limitations - Future Work

- Usage restrictions of AVs could be reflected in the share of accidents they affect (weather conditions, time of day, area they can operate in -> data preparation).
- Additional risks for AV systems (failure to recognize object, system hacks) not included here.
- Connection between power model and RT based approach and classical risk models or surrogate safety measures to be investigated further.

References

- 1. Elvik, R., Christensen, P. and Amundsen, A. Speed and road accidents; An evaluation of the Power Model. Institute of Transport Economics TØI, 2004, Oslo
- 2. Cameron, M.H. and Elvik, R. Nilsson's Power Model connecting speed and road traumata: Applicability by road type and alternative models for urban roads. Accident Analysis and Prevention, 2010, 42, 6, 1908-1915, ISSN 0001-4575, https://doi.org/10.1016/j.aap.2010.05.012.
- 3. LEVITATE Project Homepage, https://levitate-project.eu/, 2021
- 4. Glasz, A. and Juhasz, J. Car-pedestrian and car-cyclist accidents in Hungary, Transportation Research Procedia, 2017, 24, 474–481, doi: 10.1016/j.trpro.2017.05.085
- 5. Statistik Austria, Accident Numbers for Vienna 2016, http://www.statistik-austria.com/
- 6. Salon, D. and McIntyre, A. Determinants of pedestrian and bicyclist severity by party at fault in San Francisco, CA., Accident Analysis and Prevention, 2018, 110, 149-160, doi: 0.1016/j.aap.2017.11.007
- 7. Kim, K., Brunner, M. and Yamashita, E. Modeling fault among accident-Involved pedestrians and motorists in Hawaii, Accident Analysis and Prevention, 2008, 40, 2043–2049, doi:10.1016/j.aap.2008.08.021
- 8. Ulfarsson, G.F., Kim, S. and Booth, K.M. Analyzing fault in pedestrian-motor vehicle crashes in North Carolina, Accident Analysis and Prevention, 2010, 42 (6), 1805-1813, doi: 10.1016/j.aap.2010.05.001
- 9. Gitelman, V., Balasha, D., Carmel, R., Hendel, L. and Pesahov, F. Characterization of pedestrian accidents and an examination of infrastructure measures to improve pedestrian safety in Israel. Accident Analysis and Prevention, 2012, 44(1), 63-73. doi:https://doi.org/10.1016/j.aap.2010.11.017

