

CONTENTS

RISK QUANTIFICATION FOR AUTOMATED DRIVING SYSTEMS

- 01. INTRODUCTION
- 02. RISK QUANTIFICATION
- 03. LINK WITH ISO 26262 AND ISO 21448
- 04. CASE STUDY
- 05. DISCUSSION
- 06. CONCLUSIONS

This presentation is based on the following publication:

De Gelder, E., Elrofai, H., Khabbaz Saberi, A., Paardekooper, J.-P., Op den Camp, O., and De Schutter, B., "Risk quantification for automated driving systems in real-world driving scenarios", IEEE Access 9, 168953 (2021),

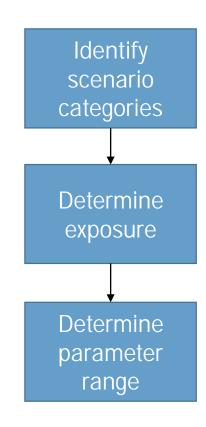
https://doi.org/10.1109/ACCESS.2021.3136585

INTRODUCTION

NEW REGULATIONS FOR AUTOMATED DRIVING SYSTEMS

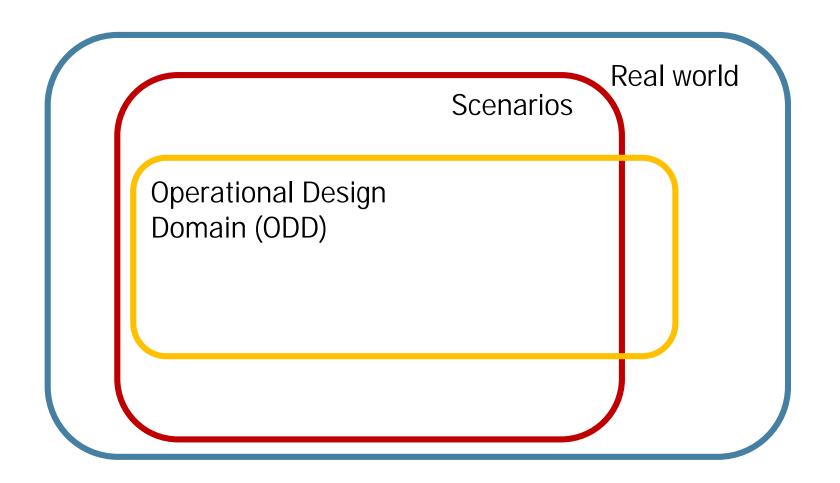
- Automated driving systems (ADSs) with a higher level of automation (SAE level 3 or higher) will be ready to be introduced!
- Vienna convention on road traffic from 1968 (!) is still applicable:
 - Human driver must be in charge of driving.
 - Clearly, this convention does not consider higher levels of ADS!
- New regulations are drafted by the World Forum for Harmonization of Vehicle Regulations:
- "Proposal for a new UN Regulation on uniform provisions concerning the approval of vehicles with regards to automated lane keeping systems"
- From this proposal:

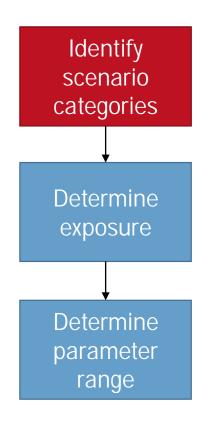
"The activated system shall not cause any collisions that are reasonably foreseeable and preventable."


INTRODUCTION

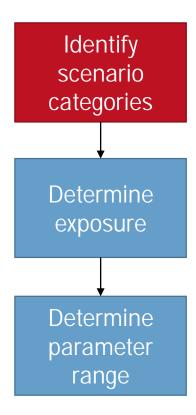
NEW REGULATIONS FOR AUTOMATED DRIVING SYSTEMS

-) This proposed requirement leaves room for interpretation.
- **)** Hence, this presentation addresses the following research questions:
- > Research question 1: How to determine what are reasonable foreseeable scenarios?
- Research question 2: How to determine to which extent collisions are preventable?

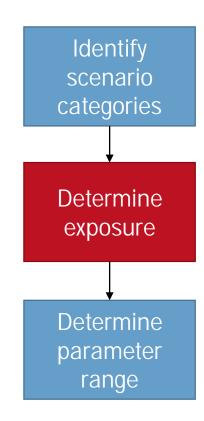

"The activated system shall not cause any collisions that are reasonably foreseeable and preventable."



REASONABLY FORESEEABLE IDENTIFY SCENARIO CATEGORIES

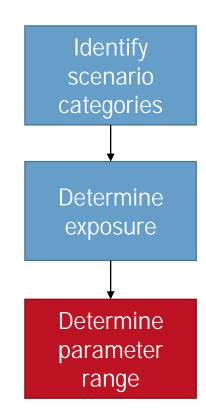


REASONABLY FORESEEABLE IDENTIFY SCENARIO CATEGORIES


- **)** A scenario category is a high-level description of a scenario.
- **)** For example:
 - Leading vehicle decelerating
 - Cut-in
 - Approaching slower vehicle

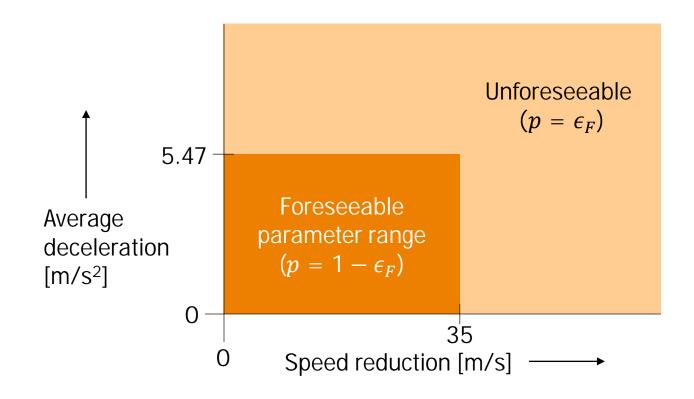
DETERMINE EXPOSURE

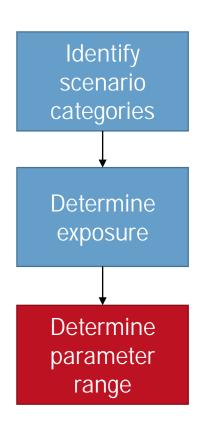
-) Given a scenario category, how likely is it that we see a scenario belonging to the scenario category?
- **)** We express this as an expectation of **number of scenarios per hour**.
- Instead of guessing, this number could be based on recorded data.
- **)** For example:
 -) We recorded **63** hours of data.
 - ▶ 1300 "leading vehicle decelerating scenarios" $\rightarrow \mathbb{E}[n_C] = 20.6$ per hour
 - > 297 "cut-in" scenarios → $\mathbb{E}[n_C]$ = **4.71 per hour**
 - ▶ 291 "approaching slower vehicle" scenarios $\rightarrow \mathbb{E}[n_C] = 4.62$ per hour



DETERMINE PARAMETER RANGE

-) Threshold for what is reasonably foreseeable: $\epsilon_{\rm F}$
-) If the probability of encountering a scenario from a given scenario category is lower than $\epsilon_{\rm F}$:
 -) It is not reasonably foreseeable.
-) Otherwise, we can look at the parameter range of the reasonably foreseeable scenarios.
 -) Determine the parameter vector x that describe the scenarios.
 -) Based on the data, estimate the probability density function of x.
 - **)** Determine a lower and upper bound, such that:


$$\mathbb{P}(L \le x \le U) \cdot \mathbb{E}[n_C] = 1 - \epsilon_{\mathrm{F}}$$



DETERMINE PARAMETER RANGE

) For example, for a scenario with a leading vehicle decelerating, the foreseeable parameter range is:

REASONABLY PREVENTABLE

-) We consider a collision reasonably preventable if a **skilled and attentive human** can avoid a collision.
-) Using a Monte Carlo simulation using the probability density function of the parameters, we can compute the probability of a collision.
- Probability of collision will be low, so the Monte Carlo simulation will take very long.
 - Therefore, we use nonparametric importance sampling to speed up the total simulation time.
 - The main idea is to sample from a different pdf that emphasizes "critical scenarios".

REASONABLY PREVENTABLE

EXAMPLE

-) We conducted simulations of the 3 scenario categories (leading vehicle decelerating, cut-in, approaching slower vehicle).
-) The driver is modelled using:
 - Intelligent Driver Model plus (Schakel et al., 2010)
 - With non-zero reaction time (lognormal, mean=0.92 s, std=0.29 s) (Green, 2000)
 - Maximum braking capacity of 6 m/s²
-) We conducted 10.000 simulation run using the Monte Carlo approach and another 10.000 simulation runs using nonparametric importance sample.
-) Probability that a human driver can avoid a collision:
 - Leading vehicle decelerating: $2.43 \cdot 10^{-4} \ (\pm 4.11 \cdot 10^{-5})$
 -) Cut-in: $3.19 \cdot 10^{-3} \ (\pm 1.78 \cdot 10^{-4})$
 - Approaching slower vehicle: $4.77 \cdot 10^{-8} \ (\pm 4.77 \cdot 10^{-8})$

DISCUSSION

-) The presented approach allows for quantifying whether a system does not cause any collisions that are reasonably foreseeable and preventable.
- **)** However, there is room for improvement:
 - We need data... Lots of data...
 -) What is the exact threshold for reasonably foreseeable? (i.e., ϵ_F)
 -) How to model a skilled and attentive human driver?

CONCLUSIONS

-) New regulations are needed to deploy higher levels of automated driving systems (ADS).
- **)** The recently proposed regulation is an important milestone.
- An ADS shall not cause any collisions that are reasonably foreseeable and preventable.
-) This research provides an approach to determine whether an ADS indeed does not cause reasonably foreseeable and preventable collisions.

THANK YOU FOR YOUR TIME

