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1. Introduction 

In New York City (NYC), a new default speed limit law took effect on November 7th, 2014, which changed the 
speed limit on all NYC road segments without a posted speed limit from 30 mph to 25 mph. As Tefft [1] indicated, 
reducing impact speed from 30 mph to 25 mph would approximately reduce fatal risk by half. However, the 
previous literature has understudied the safety effectiveness of citywide speed limit reduction in an urban setting, 
such as NYC. In the context of a high-density urban road network in NYC, safety treatment implemented on one 
site could have a significant spatial spillover effect on its neighboring sites. For instance, lower operating speed in 
a treated road segment could allow more time for drivers or pedestrians from crossing streets to properly respond 
to unexpected events. The existence of the spatial spillover effect would violate the stable unit treatment value 
assumption (SUTVA) of the causal framework proposed by Rubin [2] and lead to biased estimates of the safety 
effectiveness [3]. Moreover, potential confounding variables (e.g., traffic volume, geometric design) that vary in 
treatment and control sites should be accounted for via an appropriate matching process due to the potential 
violation of the proposed ignorability assumption [4]. A simple linear function, commonly used in literature [5-7], 
may not be enough to depict the complex relationship between covariates and the treatment indicator. Thus, the 
matching process should also explore the nonlinear relationship. Further, there also exists a time trend in crash 
observations caused by unobserved factors such as enforcement and driving behavior changes. For instance, along 
with the speed limit reduction, more vigorous enforcement on dangerous driving behaviors was imposed, leading 
to fewer crashes in the post-treatment period (a downward trend). A potential time trend should be considered to 
get a reliable estimate of the effect of speed limit reduction on crash safety performance.     
 
Because previous research that has jointly addressed the three issues mentioned above is relatively limited, this 
study aims to estimate the safety effectiveness of speed limit reduction in NYC by developing an integrated causal 
inference approach that can jointly account for spatial spillover effect, confounding bias, and time trend. The 
propensity score matching (PSM) is used to balance potential confounding variables between treatment and control 
sites. A logistic generalized additive model (GAM) in the matching process is used to capture the nonlinear 
relationship between potential confounding variables and the treatment indicator. The spatial difference-in-
differences (SDID) approach could decompose the safety effectiveness into the direct treatment effect and spatial 
spillover treatment effect. The SDID approach could also capture the time trend of the safety effectiveness using 
the extended difference-in-differences (DID) structure. The safety effectiveness of the speed limit reduction in this 
paper is measured by frequency changes in fatal crashes, injury crashes, and property-damage-only (PDO) crashes.  
 

2. Methodology 

Under the Rubin causal framework proposed by Rosenbaum and Rubin [4], this paper uses a binary treatment 
indicator { }0,1itD ∈ , where 1itD = , if the site i  receives the treatment in the period t , and 0 otherwise (

1,2,..., ; 0,1i n t= = ). In particular, n is the number of treatment and control sites in NYC, and only two periods t  
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are included as the pre-treatment ( 0t = ) and post-treatment ( 1t = ) periods. In addition, a binary time indicator 
{0,1}itT ∈  is also involved, denoting the pre-treatment period if 0itT =  and the post-treatment period 1itT = . 

Thus, let itY  denote the observed crash frequency of one specific crash type (i.e., fatal crashes, injury crashes, or 
PDO crashes) for the road segment i at the period t  , defining as the equation (1): 

( ) (1 ) ( )it it it it it it itY D Y D D Y D= + −  (1) 
where ( )it itY D  means the potential outcomes of crash frequency. (1)itY denotes that crash frequency for the site i
at the period t  would be if exposed to the speed limit reduction and (0)itY denotes that crash frequency for the site 
i at the period t  would be if not exposed to the treatment.  
 
The PSM process is applied to tackle confounding bias when evaluating the safety effectiveness of the speed limit 
reduction. Because the pre-treatment confounding variables are common causes for the treatment indicator 0iD  
and the pre-treatment potential outcomes 0 0( )i iY D . We have to block the relationship between the pre-treatment 
covariates 0iX  and the treatment indicator 0iD  via the PSM process. The estimated propensity score 0( )i ie X  is 
the predicted probability of receiving the treatment ( 0 1iD = ) given pre-treatment covariates 0iX  for the site i . 
The logistic GAM was proposed to capture the nonlinear relationship with flexible additive functions and calculate 
the estimated propensity score 0( )i ie X . The logistic GAM would significantly improve balance performance and 
tackle confounding bias, as Woo et al. (2008) indicated. The logistic GAM is denoted as the equation (2): 
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where 0 1 2 1( , , ,... )pβ β β β −  are the coefficients of covariates 1, 0 2, 0 1, 0 0( , ,... )i i p i iX X X − ∈X , such as borough area, one-
way street, and number of intersections. Moreover, , 0( )p p if X is a nonparametric smooth function that describes 
the nonlinear relationship between , 0 0p i iX ∈X  and the treatment indicator 0iD . In the matching process, , 0p iX  
only denotes the natural logarithm of VMT.  
 
Then, we develop the SDID model with the matched data to assess the safety effectiveness of the speed limit 
reduction, which could jointly identify the spatial spillover effect, tackle confounding bias, and capture the time 
trend of the safety effectiveness. Assuming itY  follows a Poisson distribution with the mean itλ , the probability 
of ity  crashes in the site i  at the period t  can be given by the equation (3):  
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To specify the Poisson mean itλ , { },, , ,it it it s itD T WX  are incorporated into the model in the equation (4): 
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where 4, 4ρα ρα= , ρ is a spatial autoregressive parameter. The spatial weight sW  is a ( 2 2n n× ) block-diagonal 
row-standardized spatial contiguity matrix as indicated by Delgado and Florax [8], which denotes the local spatial 
interaction in treatment responses; , [0,1]s it ∈W  is defined as the proportion of treated neighboring sites for the site 
during the period t . Besides, exp( )itε  is assumed to be gamma-distributed with mean one and variance η  to 
address the over-dispersion issue for the negative binomial model [9]. It should be noticed that the equation (4) 
would revert to the standard DID structure if 0ρ = , indicating no spatial spillover effect. 
 

3. Findings 

The matched dataset was used to develop the SDID models for fatal, injury, and PDO crash frequencies. Table 1 
presents the estimation results of our proposed approach. All variables selected are statistically significant at the 
0.10 level. One unit increase in the number of intersections is associated with a 2.02% increase in fatal crashes and 
a 3.04% increase in injury or PDO crashes. This positive association between the number of intersections and 
crash frequencies has also been found at El-Basyouny and Sayed [10]. Intuitively, road users would have more 
interactions and conflicts at intersections than road segments. In addition, more intersections in a road network are 
associated with shorter spacings between intersections for safer lane change behaviors, consistent with findings in 
Xie, Wang [9]. Every percent increase in VMT is associated with a 0.58% increase for fatal crashes, a 0.54% 
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increase for injury crashes, a 0.50% increase for PDO crashes. As a commonly used exposure indicator, a larger 
VMT is accompanied by more opportunities to be involved in crashes [11]. Borough area indicators are also 
significant and can capture the effects of unobserved risk factors at the borough level. Further, one-way streets are 
expected to have 3.92% fewer injury crashes than two-way ones, consistent with findings in Xie, Wang [12]. One-
way streets can significantly reduce conflict points at intersections [13]. Thus, it could improve traffic safety in 
high-density road networks by converting some two-way streets into one-way streets. Arterials are associated with 
an 8.33% higher PDO crashes than others, consistent with the findings at Alarifi, Abdel-Aty [14]. One potential 
reason could be that the higher operating speed in arterials gives drivers less time to react to unexpected events.  

 
Table 1: Modeling Results of the Integrated PSM and SDID Approach (PSM+SDID) 

 Fatal crashes Injury crashes PDO crashes 
  Coeff. Std. Err Coeff. Std. Err Coeff. Std. Err 

Intercept -9.39*** 0.64 -2.46*** 0.09 -1.07*** 0.09 
Borough 
areas (base: 
Brooklyn & 
Bronx) 

Manhattan -0.33* 0.13 - - 0.55*** 0.03 
Queens -0.40*** 0.12 -0.46*** 0.03 -0.29*** 0.03 
Staten Island -1.50*** 0.33 -1.18*** 0.05 -0.83*** 0.05 

One-way street - - -0.04' 0.02 0.07** 0.02 
Arterial street - - - - 0.08*** 0.02 
Number of intersections 0.02*** <0.01 0.03*** <0.01 0.03*** <0.01 
Log (VMT) 0.58*** 0.05 0.54*** 0.01 0.50*** 0.01 

itT  0.79 0.58 -0.14 0.07 0.06 0.08 
itD  1.84*** 0.49 0.06 0.05 0.08 0.06 
it itD T  -0.01 0.73 0.24 0.14 0.22 0.14 

,s it it itW D T  -1.10* 0.52 -0.19 0.12 -0.19 0.12 
η  1.81* 0.78 1.32*** 0.03 1.00*** 0.02 
AIC 3232.25 46841.11 69132.50 
Pseudo R-Squared 0.16 0.52 0.51 

Significance codes: ' p<0.10, * p<0.05, ** p<0.01, *** p<0.001 
 
For the comparison purpose, except for our proposed approach, other five commonly used causal inference 
approaches, such as comparison group (CG), PSM, DID, SDID, and PSM+DID, were also developed to estimate 
the safety effectiveness of the speed limit reduction. Please refer to the National Research Council [11] for more 
estimation details about the CG approach. Results of the safety effectiveness estimates are presented in Table 2. 
This study disentangled the average treated effect for the treated (ATT) into the average direct treatment effect for 
the treated (ADTT) and average spatial spillover effect (AITT).  
 
All causal approaches consistently suggested a significant negative impact of speed limit reduction on fatal crashes. 
The average proportion of neighboring treatment sites, ,s it iW D , equals 0.85 before matching and 0.87 after 
matching due to dropping the unmatched sites in the matching process. The ATT estimate of the PSM+SDID is -
0.97, indicating a 62.09% decrease in fatal crashes after the speed limit reduction. The spatial spillover effect of 
the treatment was found to be significant in our proposed approach. Similarly, CG, PSM, DID, SDID, and 
PSM+SDID suggested a decrease in fatal crashes of 44.97%, 46.74%, 45.12%, 39.35%, and 65.35%, respectively. 
By comparing PSM+SDID with PSM+DID, we found that the omission of the spatial spillover effect would 
overestimate the impact of the speed limit reduction on fatal crashes. By comparing PSM+SDID with PSM, we 
found that the ignorance of the time trend underestimated the impact of speed limit reduction on fatal crashes. By 
comparing PSM+SDID with SDID, we found that the ignorance of confounding bias would also underrate the 
impact of speed limit reduction on fatal crashes. In addition, we found a similar conclusion on fatal crashes between 
CG and DID approaches due to similar parallel trend assumptions and covariates. Our proposed approach is more 
likely to precisely estimate the treatment effect by jointly considering the spatial spillover effect, confounding bias, 
and the time trend.  
 
However, the PSM+SDID approach did not imply a significant impact of speed limit reduction on injury and PDO 
crashes. Among alternative approaches, only PSM indicated a significant positive treatment effect on injury (a 
19.72% increase) and PDO (24.61%) crashes, likely due to the ignorance of the time trend. Moreover, the 
estimation results by the CG approach were slightly different from those by the DID approach, which might 
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attribute to the fact that some insignificant covariates were not included in the DID modeling process. In contrast, 
the CG approach involved all covariates suggested in this paper. 
 

Table 2: Safety Effectiveness of the Speed Limit Reduction 

Safety effectiveness Causal 
approach 

ADTT AITT ATT 

Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error 

Fatal crash frequency 

CG - - -0.60 - 
PSM - - -0.63*  0.31 
DID - - -0.60*  0.33 
SDID 0.30 0.60 -0.68*  0.33 -0.50***  0.12 
PSM+DID - - -1.06*  0.47 
PSM+SDID -0.01  0.73 -0.96* 0.39 -0.97*  0.48 

Injury crash frequency 

CG - - 0.05 - 
PSM - - 0.18*** 0.06 
DID - - 0.11 0.07 
SDID 0.16  0.14 -0.04  0.07 0.11 0.07 
PSM+DID - - 0.06 0.08 
PSM+SDID 0.24 0.14 -0.17 0.09 0.07 0.10 

PDO crash frequency 

CG - - 0.05 - 
PSM - - 0.22***  0.06 
DID - - 0.11 0.07 
SDID 0.18  0.14 -0.05 0.07 0.12  0.08 
PSM+DID - - 0.04  0.08 
PSM+SDID 0.22 0.14 -0.17  0.09 0.05 0.08 

Significance codes: * p<0.05, ** p<0.01, *** p<0.001 
 

4. Conclusions 

This study adds to the literature a robust causal inference approach (PSM+SDID) that can jointly account for 
spatial spillovers, tackle confounding bias, and capture the time trend to evaluate the effectiveness of safety 
treatments. A critical issue with causal analyses of the safety effectiveness in a dense urban setting like NYC 
concerns addressing the spatial spillover effect. In this study, the speed limit reduction on one treated site has a 
significant spatial spillover effect on fatal crashes in its neighboring road segments. Lower vehicle operating speed 
from crossing streets would allow more time for drivers and pedestrians to respond to unexpected events and thus 
reduce crashes. To be more specific, the AITT is vital in explaining the safety effectiveness of the treatment of 
fatal crashes. Secondly, a critical approach to tackling confounding bias is balancing covariates between treatment 
and control sites (road segments). The logistic GAM is used to identify the nonlinear relationship between 
covariates and the treatment indicator, blocking relationships between potential confounding variables and the 
treatment indicator. Thirdly, the time trend identified by the extended DID structure (SDID) could help capture 
the impacts of unobserved temporal factors such as police enforcement and driving behavior changes.  
 
The proposed causal approach (PSM+SDID) suggests that the NYC speed limit reduction would significantly 
decrease fatal crashes by 62.09%. Interestingly, as Tefft (2013) indicated, the impact speed reduction from 30 mph 
to 25 mph would reduce fatal risk by 50%, close to the safety effectiveness estimated in this study. Alternative 
causal approaches present a range of fatal crash reductions from 39.35% (SDID) to 65.35% (PSM+DID). 
Moreover, the spatial spillover effect on fatal crashes is found to be statistically significant, likely due to the high-
density road network in NYC. However, according to the proposed approach, the speed limit reduction has 
insignificant impacts on either injury crashes or PDO crashes. Based on findings, we would recommend cities 
implement speed limit reduction if there is a high risk of fatal crashes. In project appraisal, decision-makers should 
properly estimate the safety benefits of speed limit reduction by considering not only its direct effect but also the 
spillover effect. Traffic calming measures, education, and enforcement programs should also be considered along 
with speed limit reduction to raise the awareness and conformity of drivers.  
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