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Abstract 
Autonomous Vehicles (AVs) are an emerging and highly impactful technology on today's roads. When assessing 
the performance of AVs, it is useful to study their improvement relative to common metrics such as fuel 
economy/emissions, safety, and congestion. But metrics of the vehicle's performance alone may not be complete; 
an AV that is affecting and reacting to a smart traffic light, for example, may improve its own performance, but 
may cause the same intersection to degrade the performance of other vehicles around the AV. Similar concerns 
arise in nearly all AV topics: platooning, light pre-emption, lane tracking, etc. Thus, the assessment of the vehicle's 
impacts on surrounding traffic is important, possibly even more important than the improvements enabled on the 
AV alone. But what boundary, or factors, define the vehicles, equipment, etc. “surrounding” an AV? 
 
The goal of this work is to characterize the boundary of vehicles “surrounding” an AV, referred to as Region of 
Influence, or ROI. Specifically, this work focuses on the problem that considering a perturbation is exerted into a 
traffic system, how far in time and space the perturbation from an AV’s decision can influence the surrounding 
system’s behavior. To achieve the goal, we utilized AIMSUN, a microscopic traffic simulator, to perform baseline 
and perturbed simulations. The ROI was evaluated by comparing trajectories of traffic surrounding the ego vehicle 
using different metrics, including difference in trajectories, Euclidian distance, rate of change of Euclidian 
distance, total number of lane changes over the whole simulation space versus time and total number of lane 
changes over the whole simulation time versus distance to ego vehicle. The results show that the ROI can be 
viewed from different perspectives using these metrics, and it is dependent on speed variance of the traffic.  
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1. Introduction 

Motivated by the availability of high bandwidth communication between vehicle-to-vehicle (V2V), vehicle-to-
infrastructure (V2I), or vehicle-to-cloud (V2C) systems, Autonomous Vehicles (AVs) were proposed as a potential 
solution to make a better transportation network. Ultimately, this may improve driving safety, reduce air pollution, 
increase energy efficiency and decrease commuting time [1]. 
 
Some standard criteria, such as fuel economy/emissions, driving safety and traffic congestion, are commonly used 
to evaluate AVs’ performance [2]–[4]. However, it might be not sufficient if we only measure the vehicle’s 
performance alone. For example, an AV that affects and reacts to a smart traffic signal may increase its own 
performance while harming the performance of other vehicles in the same junction. Almost all AV applications 
raise similar issues: platooning, light pre-emption, lane tracking, and so forth. As a result, assessing the vehicle's 
influence on surrounding traffic is critical, potentially even more so than the advances enabled by the AV alone, 
which naturally leads to a question: what boundary or factors determine the vehicles “surrounding” an AV? Or 
more particularly, how far around an AV’s operational area should one simulate to assess impacts on surrounding 
traffic? 
 
This question turns out to be critical but remains unanswered, which motivates this study. To illustrate the question 
more clearly and intuitively, the results of two simulations are useful: one is a baseline, and one is a perturbed 
situation. The simulation is shown for the traffic network in State College, Pennsylvania, where in baseline 
simulation there is no user control on the vehicle trajectories. However, in the perturbed simulation, one vehicle is 
selected to be an ego vehicle and is forced to pause in its lane at College Avenue, one of the busiest roads in State 
College. The vehicle trajectories surrounding the ego vehicle are then compared. At each time point, if the resulting 
positions are different between baseline and perturbed simulated vehicles, they are considered as influenced by 
the “parked” ego vehicle; otherwise, the vehicles are considered as not influenced.   
 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

Figure 1 (a): No vehicle is influenced; (b): Boundary for vehicles influenced is small; (c): Boundary for vehicles influenced 
is big; (d): Critical boundary, beyond which we are losing information of the vehicles influenced. 

 



Bai, Maddipatla, Pelletier, Gao and Brennan/ RSS2022, Athens, Greece, June 08-10, 2022 

3 
 

 
Figure 1 shows the motivational simulation. Subplot (a) shows the start of simulation where no vehicle is 
influenced, thus the boundary capturing the influenced vehicles is 0 meters in width. Subplot (b) shows that after 
a short period of time, a few vehicles are influenced thus forming a small ellipse of boundary. Subplot (c) shows 
the boundary grows larger as the simulation evolves and subplot (d) shows the critical boundary, beyond which 
influenced vehicles start to exit the simulation; at this point, the simulation would no longer correctly capture the 
influence of the parked vehicle and thus assessment of the impact of that vehicle may be thereafter invalid. This 
simulation provides some intuitive understanding of ROI; however, there remain many theoretical questions such 
as: what are the factors deciding ROI? What are the metrics to evaluate ROI? Does the ROI affect all vehicle 
factors (not just position) equally? Etc. 
 
Related work has been conducted by prior researchers to assess vehicle performance or AVs in a local traffic 
community surrounding an ego vehicle and/or a global traffic network. For example, Assia Belbachir, et al. used 
simulators to examine the algorithm of control and path planning, which was then connected to other tools for 
vehicle components and road conditions simulation [5]. Marc Ren´e Zofka, et al. evaluated trajectory planning or 
vehicle prediction performance, which are high-level automated driving components, via vehicle mechanics and 
sensor modeling and traffic flow simulation [6]. Linhui, et al. investigated the implementation of vehicle 
coordination and validated the work by simulation with remarkable improvement of total travel time as well as 
fuel consumption [1]. In addition, Simone Baldi, et al. proposed an adaptive optimization approach for the traffic 
network in urban scenario and the overall performance was assessed via AIMSUN simulator [7]. 

 
These studies above assess the behaviors in AVs surrounding the ego-vehicle, but the boundary defining 
“surrounding” an AV or defining “global traffic network” is still unclear within a formal definition. The selection 
of simulation domain is mostly based on experience and clear expertise. For example, Michal selected a fragment 
of a road network of Grunwald to compare microscopic traffic flow simulations among TRANSIMS, SUMO and 
VISSIM [8]. Christoph et al. picked Erlangen to analyze the bidirectional coupling of network simulation and road 
traffic microsimulation for the purpose of evaluation of Inter-Vehicle Communication protocols [9]. Luise et al. 
selected the traffic network of Boston, invested scenarios of free flow, traffic jams and network collapse to 
investigate the vulnerability of the urban traffic system [10]. 

 
Some preliminary consideration was given to the questions such as “how big domain is needed to simulate”. Qiong 
et al. selected a district in Budapest Hungary to conduct traffic simulations evaluating the impact of autonomous 
vehicles on urban traffic network. In the work of Qiong, special attention was paid to the domain of simulation. 
Instead of selecting the exact domain, a wider test area was selected to avoid the neglect of traffic dynamics in the 
perimeter of the interested district. But even that, a formal definition of the “wider test area” was not given in a 
manner that can be clearly reused in other simulations [11].  

 
A concern in studying AVs is that a small perturbation in driving behavior, particularly when repeated over many 
nearly identical vehicle implementations, may cause a large change in the traffic system [12]. The key contribution 
of this paper is a new concept, Region of Influence, or ROI, indicating the region over which a perturbation into 
the traffic as an input can influence the whole traffic system in time and space.  
 
The remainder of this paper is organized as follows. Section 2 details the methodology to perform traffic 
simulations and proposes several metrics to evaluate ROI. Section 3 describes the ROI evaluation results. Finally, 
conclusions are discussed in Section 4. 
 

2. Methodology 

2.1 Traffic simulation settings 

Advanced Interactive Microscopic Simulator for Urban and non-urban Networks (AIMSUN) is a widely used 
commercial traffic modeling and traffic network simulation tool which can simulate the behavior of an individual 
vehicle in a traffic network as well as the response of the network accordingly [13]. AIMSUN was chosen because 
it is highly customizable and extensible with various available Application Programming Interface (API) and 
development kits. Based on its unique characteristics and flexibility, many applications have been developed, for 
example, Baldi, et al. employed AIMSUN to evaluate their traffic-responsive strategy in urban scenarios [7]. Due 
to these advantages mentioned, this work leverages AIMSUN for traffic simulations. 
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A key output of this work is to verify the analysis flow and the metrics for ROI evaluation, thus relatively short 
roadways and relatively large perturbations are chosen, and traffic variations are kept simple. Taking this into 
consideration, the simulations settings are shown in Table 1: the simulation road is a 10-km virtual double lane 
straight road. The mean velocity is 60 mph. The baseline is a traffic simulation where there is no artificial control 
of the ego vehicle trajectory, while the perturbed is a traffic simulation where a perturbation of speed change is 
added to the ego vehicle for the first 1 km of simulation and the other settings are identical to the baseline, as 
shown in Figure 2. A high flow rate of 1800 veh/hr is selected to make the perturbation more impactful on 
surrounding traffic. In addition, since accident rates increase as speed deviates from the traffic average speed [14], 
we investigate two traffic “temperature” modes in the preliminary analysis: "frozen" and "warm" modes. Other 
traffic parameter variations, such as vehicle mix, micro-mobility, flow rate variation by time period and weather 
condition variation are overlooked in this study for the purpose of simplification.  
 

Table 1 Traffic simulation settings. 

Road type Double lane, straight 
Road length 10 km 
Perturbation A speed change of -20 mph on the ego vehicle for 1 km 
Mean velocity  60 mph 
Traffic temperature mode 
Flow rate 

“Frozen”: speed std = 0 mph; “warm”: speed std = 5 mph  
1800 veh/hr 

 

 
Figure 2 Velocity settings of ego vehicle in baseline and perturbed simulations. 

2.2 Perturbation analysis process 

The analysis flow is shown in Figure 3. Firstly, the authors ran the baseline and perturbed simulations separately, 
then compared the trajectories of traffic surrounding the ego vehicle. The differences of the trajectories were 
evaluated using several metrics. 
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Figure 3 Analysis flow of ROI of ego vehicle on surrounding traffic. 

 
The purpose of evaluating ROI using different metrics is to demonstrate that the ROI can be viewed from different 
perspectives and the results might not necessarily be the same with different metrics. The following metrics have 
been investigated: 
 

• Difference in trajectories: this metric evaluates the difference of trajectories of traffic surrounding the ego 
vehicle. 

• Euclidian distance: this metric computes the Euclidian distance of one vehicle's trajectories in baseline 
and perturbed simulations, where 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 is Euclidian distance, 𝑆𝑆𝑏𝑏𝑏𝑏 is station of baseline, 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝 is station of 
perturbed, xbl and ybl  are coordinates in baseline and  xper and yper  are coordinates in perturbed 
simulations. 
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• Rate of change (ROC) of Euclidian distance: this metric computes the rate of change of Euclidian 

distance. ROC = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, where ROC is rate of change of Euclidian distance. 
• Total number of lane changes over the whole simulation space versus time: this metric computes the total 

number of lane changes over the whole simulation versus time. The lane change over a period of time 
can be computed using the equations below, where 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the lane changes indicator for one 
vehicle, Δt is a period of time, i is vehicle ID, 𝑁𝑁 is the maximum vehicle ID during the period of time and 
𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the total number of lane changes over a period of time. 
 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(Δt)𝑖𝑖 = �1,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
0,𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   

 

𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(Δ𝑡𝑡) = �𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(Δ𝑡𝑡)𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

• Total number of lane changes over the whole simulation versus distance to ego vehicle: this metric 
computes the total number of lane changes over whole simulation versus distance to ego vehicle that can 
be computed using the equations below, where 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 is a range of distance of surrounding traffic to ego 
vehicle. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(ΔDego)𝑖𝑖 = �1,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
0,𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   

 

𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(Δ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) = �𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛(Δ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)𝑖𝑖

𝑁𝑁

𝑖𝑖=1
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3. Analysis and Results 

 

(a) 

 

(b) 

Figure 4 (a): Station versus time: “frozen” mode; (b): Station versus time: “warm” mode. 

Figure 4  shows the time-space diagram comparing the baseline and perturbed simulations in “frozen” and “warm” 
modes. This figure works for assessing ROI using the first metric specified in section 2.2, which is difference in 
vehicle trajectories. The trajectories that are the same between the baseline and the perturbed simulations are shown 
in gray. They indicate that these vehicles are not influenced by the perturbation, which is a speed change of -20 
mph on the ego vehicle for 1 km happening at the beginning of the perturbed simulation.  The trajectories that are 
different between the baseline and the perturbed simulations are shown in red, which on the contrary, indicate that 
these vehicles are influenced by the perturbation.  As shown in subplot (a), in “frozen” mode, the ROI by difference 
of vehicle trajectories is confined by the trajectories of ego-vehicle itself from baseline and perturbed simulations. 
In other words, surrounding vehicles in front of the trajectory of ego-vehicle from baseline, and behind the 
trajectory of ego-vehicle from perturbed simulation, are not influenced by the perturbation. By contrast, subplot 
(b) shows in “warm” mode, surrounding vehicles in front of the trajectory of ego-vehicle from baseline, and behind 
the trajectory of ego-vehicle from perturbed simulation, are influenced by the perturbation. Figure 4 demonstrates 
that “warm” mode traffic, which has a larger speed variance, has a larger ROI by difference of vehicle trajectories.  

 
(a) 

 
(b) 

Figure 5 (a): Euclidian distance: “frozen” mode; (b): Euclidian distance: “warm” mode. 

Figure 5 shows the Euclidian distance comparing vehicle trajectories of the baseline and perturbed simulations in 
“frozen” and “warm” modes, following the second metric specified in section 2.2. Subplot (a) shows that the after 
end of perturbation, in “frozen” mode, Euclidian distance of vehicle trajectories between baseline and perturbed 
simulations is close to zero. While subplot (b) shows that after end of perturbation, in “warm” mode, Euclidian 
distance of vehicle trajectories between baseline and perturbed simulations grows bigger. The 99th percentile 
boundaries go up to around +/- 200 meters. Similar to Figure 4, Figure 5 describes that “warm” mode traffic has a 
larger ROI by Euclidian distance.   
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(a) 

 
(b) 

Figure 6 (a): Euclidian distance rate of change: “frozen” mode; (b): Euclidian distance rate of change: “warm” mode. 

Figure 6 describes rate of change of Euclidian distance comparing vehicle trajectories of the baseline and perturbed 
simulations in “frozen” and “warm” modes, following the third metric specified in section 2.2. Figure 6 gives 
similar information as Figure 5 but from another perspective. Subplot (a) shows that the rate of change of Euclidian 
distance is zero in “frozen” mode after the end of perturbation. While subplot (b) shows in “warm” mode, it 
continues to grow after the end of perturbation. It is shown in Figure 6 that “warm” mode traffic has a larger ROI 
by rate of change of Euclidian distance.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7 (a): Total number of lane changes over the whole simulation space versus time: “frozen” mode; (b): Total number 
of lane changes over the whole simulation space versus time: “warm” mode; (c): Difference of total number of lane changes 
over the whole simulation space versus time: “frozen” mode; (d): Difference of total number of lane changes over the whole 
simulation space versus time: “warm” mode. 

Following the fourth metric, Figure 7 examines total number of lane changes over the whole simulation space 
versus time comparing vehicle trajectories of the baseline and perturbed simulations in “frozen” and “warm” 
modes. Subplot (a) shows that in “frozen” mode, ROI by this metric disappears after end of perturbation, while it 
persists in “warm” mode, as shown in subplot (b). To convey the information more clearly, subplot (c) and (d) 
show the difference of total number of lane changes over the whole simulation space versus time between baseline 
and perturbed simulations. It is confirmed in subplot (c) that there is no difference of total number of lane changes 
after the end of perturbation in “frozen” mode, but there is, in “warm” mode. In addition, subplot (d) shows that 
the perturbation does not necessarily cause more lane changes in the traffic at a temporal view.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8 (a): Total number of lane changes over the whole simulation time versus distance to ego vehicle: “frozen” mode; 
(b) Total number of lane changes over the whole simulation time versus distance to ego vehicle: “warm” mode; (c) 
Difference of total number of lane changes over the whole simulation time versus distance to ego vehicle: “frozen” mode; (d) 
Difference of total number of lane changes over the whole simulation time versus distance to ego vehicle: “warm” mode. 

Based on the fifth metric, Figure 8 shows total number of lane changes over the whole simulation time versus 
distance to ego vehicle comparing baseline and perturbed simulations in “frozen” and “warm” modes. While 
Figure 7 demonstrates the ROI in a temporal view, Figure 8 demonstrates it in a spatial view. Specifically, subplot 
(a) shows that in “frozen” mode, the ROI by this metric appears very close to the ego-vehicle, while subplot (b) 
shows that in “warm” mode, the ROI can go up to more than 1000 meters from the ego-vehicle. Similar to Figure 
7,  subplot (c) and (d) show the difference of total number of lane changes over the whole simulation time versus 
distance to ego vehicle between baseline and perturbed simulations. Moreover, subplot (d) describes that the 
perturbation does not necessarily cause more lane changes in the traffic at a spatial view. It is noted that in subplot 
(b) and (d), there is a small difference between baseline and perturbed simulations near 10000 meters from the 
ego-vehicle. This might be caused by the accumulation of numerical errors of the simulations. Further statistical 
analysis will be needed to verify it.  

4. Conclusions 

This work presented a new concept, Region of Influence, or ROI, indicating the region over which a perturbation 
into the traffic as an input can influence the whole traffic system in time and space. This work introduced as well 
a method to characterize the ROI of one vehicle on the surrounding traffic. The method used a macroscopic traffic 
simulator to perform baseline and perturbed simulations, and evaluated how the perturbation, which was a change 
of velocity of ego vehicle in this work, could influence the surrounding traffic and how big the ROI was. The 
results show that overall, speed variance has a strong influence on ROI. The results also show that ROI can have 
different values when using different metrics. The findings in this study may enlighten the selection of domain 
when doing traffic simulation, in particular when speed variance is considered as a key factor.  
 
To prototype the method and verify the analysis flow and metrics for ROI evaluation, this work selected relatively 
short roadways, relatively large perturbations and simple traffic parameters, which may not be representative of 
realistic driving scenarios. Further statistical analysis will be needed to determine ROI in different driving 
scenarios.  
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