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Abstract 
 

This paper revisits methods of estimating the Lomax distribution for predicting crashes from observed traffic 

conflicts. After a short introduction of the current method of traffic conflicts caused by a perception error of a 

driver or machine, the paper presents the ML-based estimation of the Lomax distribution shape parameter hen the 

scale parameter is assumed. The derived formula accounts of right-sides censored data that represent observed 

crashes. Then, the paper compares the OLS method proposed in another publication with the ML estimation 

method based on numerical simulation of cases with various scale parameter assumed. The results indicate that 

both the methods are comparable and the assumption of distinct scale parameters affected the results to the limited 

extent that deems to be acceptable until a better method of estimating both the two parameters is available. The 

awaited estimation method of two parameters has been a subject of a number of published papers but no practical 

solution seems to exist yet. Limited simulation experiments presented in the paper to evaluate a recently published 

paper based on reparameterization of the Lomax distribution brought mixed results. Further research on the subject 

is needed.   
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1. Introduction 

Quick estimation of safety and safety effects is becoming necessity with the growing rate at which road safety 

changes during the current period of emerging technological advancements in both automated driving and safety 

improvement solutions. For this reason, the fundamental matters of how traffic conflicts are connected to crashes 

and how to estimate this connection from traffic conflict data is an active subject of research and refinements. 

There are still open questions though about traffic events that can be analytically extrapolated to related crashes, 

and how to efficiently estimate the probability of crash associated with such events to enable conversion of 

observed events to the corresponding expected number of crashes. There are two important uses of any working 

estimation method: (1) rapid assessment of safety at specific roads locations and evaluation of countermeasures 

by safety engineers, (2) modeling of safety effects by analysts based on relatively short observations at multiple 

locations or at limited number of locations but during extended periods. This paper focuses on first use of traffic 

conflicts the rapid assessment of safety by proposing a ML method of estimating the expected number of crashes 

and by comparing it to the proposed recently OLS-based estimation [1]. There is a two-fold motivation of the 

analysis: (1) The potential concern with using the OLS method rather than the ML method, and (2) Reported in 

the past difficulties with estimating the Lomax distribution involved in the process.  

 

This paper starts with a brief introduction of the current state of the art in the matter and then proposes the ML 

estimator. Next, the single-parameter estimation of the Lomax distribution parameters is scrutinize and, 

specifically, the effect of assuming an incorrect scale parameter on the results. Finally, the results of the analysis 

and summarized with a conclusion of the usability of the ML-based single-parameter method and promising further 

direction of research.  

 

Pairs of interacting vehicles are tracked to estimate the shortest time to collision 𝜏 reached during an interaction. 

Observed τ value shorter than sufficiently short threshold 𝜏𝑐 associated with an uncharacteristically strong 

deceleration and jerk indicates a failure-cased traffic conflict. An observed reduction of time to collision below 

the threshold  𝑥 = 𝜏𝑐 − 𝜏 is called response delay. According to the counterfactual analysis, these delays follow a 

certain distribution with a long or even infinite tail estimable with observed delay values. The probability of a 

delay longer than the time left to a hypothetical collision is the probability of crash conditioned on the observed 

conflict. More details can be found in [2].  
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Under two rather weak assumptions, Lomax distribution [3] seems to be adequate to describe the variability of 

response delays X to a hazard (road edge, obstruction, another moving, etc.) in heterogeneous conditions: 
 

𝑓(𝑥) = 𝑘𝜃(1 + 𝜃𝑥)−𝑘−1 (1) 
 

𝐹(𝑥) = 1 − (1 + 𝜃𝑥)−𝑘 (2) 

 

where: 𝑓(𝑥) and 𝐹(𝑥) are probability density and its cumulative value for response time 𝑋, while 𝜃 and 𝑘 are the 

distribution parameters.  
 

The probability of crash implied with a counterfactual analysis of conflicts is the probability of response delay X 

that exceeds the threshold time to collision  𝑥𝑐 = 𝜏𝑐, 
 

𝐹̅(𝑥𝑐) = 1 − 𝐹(𝑥𝑐) = (1 + 𝜃𝑥)−𝑘 (3) 

and the expected number of crashes is: 
 

𝑄𝑐 = 𝑛 · 𝐹̅(𝑥𝑐) = 𝑛 · (1 + 𝜃𝑥𝑐)−𝑘 (4) 
 

where θ and k are the scale and shape parameters of Lomax distribution to be estimated with data. The existing 

literature reports difficulties in obtaining ML estimates of the scale parameter θ and the shape parameters k. Some 

authors proposed non-ML methods based on moments, quantiles, or Bayesian estimators [4-8]. These studies 

yielded estimates burdened with large variance. The source of this problem is more fundamental than the lack of 

a ML-based closed analytical solution often mentioned in the literature. The matter will be further discussed in 

this paper.  

 

To avoid the mentioned estimation issue, a single-parameter estimation (SPE) method was proposed in [2] by 

setting the scale parameter θ at 1/𝑥𝑐 and calculating the shape parameter k as follows: 

 

𝑘 =
− ∑ log(1 − (𝑖 − 0.5)/𝑛) log(1 + 𝑥𝑖/𝑥𝑐)𝑛

𝑖=1

∑ [log(1 + 𝑥𝑖/𝑥𝑐)]2𝑛
𝑖=1

 (5) 

 

In spite of the indications of the SPE method’ usefulness, the selection of scale parameter 𝜃 = 1/𝜏𝑐 is arbitrary 

and the use of OLS instead of ML method may also raise concerns. Some may argue that used θ parameters may 

be quite distant from the unknown true value. First, an ML estimator of k parameter with known scale parameter 

θ will be presented. The estimator accounts for the right-side truncation of response delays 𝑋 at 𝑥𝑐 = 𝜏𝑐 to properly 

include crashes that occur when observing conflicts. The OLS and ML estimators are re-applied to the SHRP2 

data and the results are compared. Then, the effect of θ selection on the most important result – the expected 

number of crashes 𝑄𝑐 – is demonstrated by applying the 𝑘 OLS and ML estimators to assumed values of θ. The 

effect of θ selection is discussed and alternative remedies discussed. Next, an alternative parametrization of Lomax 

distribution is proposed and the distribution’s usefulness for estimating both the distribution parameters briefly 

discussed. Conclusions and further research needs finalize the paper.  

2. ML Estimator of k Parameter for Right-Censored Data  

Response delay is Lomax-distributed; its distribution has an infinite tail. Obviously, counterfactual response delays 

longer than 𝑥𝑐 are not observable and observed x values must be treated as right-censored at 𝑥𝑐. Let assume that n 

traffic events: c crashes and (𝑛 − 𝑐) traffic conflicts, are observed in the observation period under the 𝑥𝑐 threshold 

(𝑥𝑐 = 𝜏𝑐). With the distribution density of X according to equation (1) and the probability of observing crash 

according to equation (3), the log-likelihood 𝐿𝐿 of a sample with observed (n-c) response delays 𝑥 and observed 

𝑐 crashes (𝑋 > 𝑥𝑐) is: 
 

𝐿𝐿 = 𝑘𝜃 ∑ ln(1 + 𝜃𝑥𝑖)
−𝑘−1

𝑛−𝑐

𝑖=1
+ 𝑐 ln(1 +  𝜃𝑥𝑐)−𝑘 (6) 

 

Setting 𝜕𝐿𝐿/𝜕𝑘 at zero and solving for k yields:  
 

𝑘 =
𝑛 − 𝑐

∑ ln(1 + 𝜃𝑥𝑖  ) + 𝑐 ln(1 + 𝜃𝑥𝑐)𝑛−𝑐
𝑖=1

 (7) 

 

Setting parameter θ at 1/𝑥𝑐 produces: 
 

𝑘 =
𝑛 − 𝑐

∑ ln(1 + 𝑥𝑖/𝑥𝑐  ) + 𝑐 ln(2)𝑛
𝑖=1

 (8) 
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3. Comparison of the ML and OLS Methods Applied to SHRP2 Data 

The SHRP2 rear-end conflicts data [9] were re-used to estimate the rear-end crash rates with the proposed ML 

formula. The results are compared to the OLS-based estimates. The first conclusion is that the 𝑥𝑐 thresholds 

obtained with the two estimation methods are the same in each of the considered driver cases. On the other hand, 

the ML method tends to produce slightly lower estimates of the parameter k which leads to lower bot the crash 

probabilities and the expected number of crashes when compared to the OLS results. Additional studies are needed 

if one wants to confirm if these observations indicate a systematic trend or it is just a coincident. Nevertheless, the 

differences between the results produced with the two different estimation methods are rather limited.  

 

Both the methods require assuming scale parameter θ. The effect of this assumption on the results needs to be 

evaluated. After all, it is possible that a poorly selected θ parameter may considerably skew the results. Thus, the 

assumption of an acceptable effect of the θ selection on the results must be checked by evaluating the potential 

bias that may be present in the estimates. It must be emphasized that the primary interest of the presented here 

analysis is on exceedances that are equivalent to collision occurrence. This prompts that the focus of a Lomax 

distribution estimation should be less on the accuracy of the parameter estimates and more on the exceedance 

probability 𝐹̅(𝑥𝑐) and the resulted expected number of crashes. The next section investigates these two effects 

when k parameter is estimated with the OLS and ML methods while the θ parameter is assumed.  
 

Obviously, fair evaluation requires also consideration of methods that estimate both the parameters. Thus, the 

availability of such comprehensive methods will be discussed together with the sources of difficulties faced.  

4. Simulation Experiments with ML and OLS Estimates 

The case of young male drivers studied with SHRP2 data [9] is approximated numerically by simulating the Lomax 

distribution with the parameters similar to the ones reported in the mentioned publication. Specifically, 100 conflict 

observations were numerically generated by drawing them randomly from the Lomax distribution. Samples were 

drawn 200 times to allow statistical analysis of the results for each case. Parameter k was then estimated with the 

OLS and ML methods repeatedly for assumed eleven θ parameters. 
 

The results revealed that under the assumed scale parameters θ, the 90% confidence interval of k estimate does not 

include the true k value (k=7.82) for seven out of 11 θ values tried. On the other hand, all the 90% confidence 

intervals of the expected crashes estimate 𝑄𝑐 include the true value (𝑄𝑐=0.441). This funding applies to both the 

ML and OLS estimation methods. The length of the 90% confidence interval of k estimate normalized with the 

average value is at or below 2 in all the studied cases.  
 

Three sources of the variability in 𝑄𝑐 estimates were analyzed: different values of scale parameter θ, randomness, 

and differences between drivers. Variability among 𝑄𝑐 estimates caused by assumed parameter θ should be limited 

be able to claim that the SPE method is practical. To investigate this variability, samples of 100 Lomax-distributed 

response delays were drawn 200 times from the same population and the θ parameter was estimated 200 times. 

The average estimate has the randomness effect reduced to the level that may be ignored. This procedure was 

applied to several values of θ parameters ranging from 0.38 to 1.15. The differences between the maximum and 

minimum average 𝑄𝑐 estimates for the OLS and ML methods were compared to the values obtained for other 

sources of 𝑄𝑐 variability and the results are discussed in the last paragraph of this section. 
 

The second source of variability is randomness. The spread of the estimate values is measured with the length of 

the 90% confidence interval. Again, samples of 100 response delays were drawn 200 times from the Lomax 

distribution with the assumed true parameter θ =.77 and the k parameter estimated with the OLS and ML methods. 

The results indicate that the spread of the estimates is much higher than in the previous case and it is slightly worse 

for the ML method.  
 

Finally, the 𝑄𝑐 values obtained for the two investigated types of drivers: young males and mature females are 

compared. Tarko and Lizarazo [11/9] reported the estimated rear-end crash rates for young male drivers and mature 

female drivers responsively: 1086 and 137 crashes per 100 million miles of car following. The conducted here 

simulation experiments for young drivers used the Lomax parameters estimated in that study. Thus, the estimated 

𝑄𝑐 for mature female drivers under the same exposure may be assessed as: 0.494·137/1086 = 0.0623 (ML method) 

and 0.527·137/1086=0.0665 (OLS method). The corresponding differences between the two types of drivers are: 

0.432 and 0.460. 

 

The results indicate a strong randomness of crash estimates. This result should not be a surprise since a similar 

uncertainty is present in crash counts during much longer period of data collection.  On the other hand, assuming 
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a scale parameter from a relatively large range of values has a weaker effect on the results than the randomness. 

Nevertheless, this added variability makes obtaining conclusive results more challenging. This observation would 

prompt for trying to include the scale parameter among estimated ones. The published by other authors research 

on estimating both the Lomax parameters based on the ML-like methods indicates a large variance of the estimates 

in such attempts. 

5. Reparametrized Lomax Distribution 

Although the analytical analysis of the sample LL(θ, k) surface indicated that it was strictly concave [10], the 

crosscut of the sample LL surface along ML estimates of k values along the assumed 𝜃 values was almost invariant 

in the discussed here case. This indicates that there are infinite number of pairs of θ and k that correspond to sample 

LL values indistinguishable due to the observation errors and the limited accuracy of numerical optimization. As 

the result, multiple attempts to numerically maximize sample LL for various initial 𝜃 and 𝑘 parameter values 

yielded solutions with the  𝜃 value unchanged from the initial one. More importantly, the exceedance probabilities 

at 𝑥𝑐 (crash probability) were considerably different from estimation to estimation.  

 

Furthermore, the OLS-based optimization (minimizing SS) produced a trivial solution at θ=0 in all the attempts. 

Figure 6 provides a clear explanation. In the light of the above findings, the Bayesian estimation method applied 

to the Lomax with 𝜃 and 𝑘 parameters must be reevaluated from the point of view discussed here. It is critical to 

confirm that obtained solutions are independent of the starting point.  

 

The problems with estimating the scale and shape parameters of Lomax probability function might motivated 

Altun [11] to reparametrize the Lomax probability function by replacing scale parameter θ with a location 

parameter  (mean x) whose connection with the other parameters is:    

 

𝜃 =
1

(𝑘 − 1)
. 

 

(9) 

The sample LL obtained with the reparametrized distribution turned out to be much more sensitive to the shape 

and location parameters. Limited numerical experiments with the reparametrized LL function, not presented here 

in detail due to the space limitation, indicated a potential of efficient estimating the two Lomax parameters: 

location and shape parameters.  

 

Another potential avenue to explore is applying a more flexible distribution than negative exponential with 

unobserved Gamma heterogeneity. One option tis to replace the negative exponential distribution with the Weibull 

distribution [12]. The Weibull distribution includes an additional parameter that relaxes the assumption of a fixed 

response rate enforced by the negative binomial distribution.   

6. Conclusions 

ML estimates of k parameter are consistent if the assumed θ parameter is correct, while OLS estimates tend to be 

slightly overestimated. On the other hand, ML estimates exhibits larger bias in estimating k parameters than OLS 

if assumed k is incorrect. It should be noted that estimates of the conditional probability of crash are more important 

than correctly estimated distribution parameters. Also, estimation efficiency is more important than consistency. 

In most current applications, samples used to estimate the crash probability are limited while the estimation error 

should be limits to make the results useable.  

 

The above comments are particularly adequate when the reparametrized distribution with location and shape 

parameters is considered. Although the location parameter is closely approximated, the shape parameter estimates 

exhibit strong estimation error. And yet, the estimated probability of crash (exceedance probability) is estimated 

with reasonable accuracy that makes the results applicable. Also, the OLS estimates seem to be more practical 

than ML when the scale parameter must be assumed. Although there is an estimation limited inconsistency even 

when the scale parameter is correct, the estimation accuracy is higher them ML estimator when the scale parameter 

is incorrect.  

 

These comments are applicable to the early phase of safety analysis when traffic conflicts are expected to available 

at lower numbers. With time and development of the safety estimation methods and proliferation of machine-

learning algorithms for traffic perception, the massive data available for safety estimation and its modeling will 

increase the importance of estimation consistency.  
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The presented here research focused on estimation of the distribution parameters without reaching for regression 

analysis. Incorporating regression variables and alternative methods of models’ estimation is a growing and needed 

area of surrogate measures of safety. It must be stressed that use traffic events that are indeed safety relevant has 

fundamental importance for the results validity. This element of research should also continue.   

 

It was demonstrated that neither of the two discussed estimation methods, ML and OLS, can deliver estimates of 

the two Lomax parameters. The sample LL function of the two parameters is practically flat while the minimizing 

the OLS function generates a trivial solution that is obviously incorrect. The past attempts of resolving the 

estimation issues did not delivered satisfactory results. Relatively recent work on correcting biased ML estimates 

of Lomax two parameters is worth of attention but it awaits scrutiny in the light of safety estimation with traffic 

conflicts.  
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