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Abstract 

 
Real-time crash prediction is a heavily studied area given their potential applications in proactive traffic safety 

management. However, one of the fundamental issues relating to the application of these models is spatio-temporal 

transferability. The present paper attempts to address this gap of knowledge by combining Generative Adversarial 

Network (GAN) and transfer learning to examine the transferability of real-time crash prediction models under an 

extremely imbalanced data setting. Initially, a baseline model was developed using Deep Neural Network (DNN) 

with crash and microscopic traffic data collected from M1 Motorway in the UK in 2017. The dataset utilized in 

the baseline model is naturally imbalanced with 257 crash cases and 16,359,163 non-crash cases. To overcome 

data imbalance issue, Wasserstein GAN was utilized to generate synthetic crash data. Non-crash data were 

randomly under-sampled due to computational limitations. The calibrated model was then applied to predict traffic 

crashes for five other datasets obtained from M1 (2018), M4 (2017 & 2018 separately) and M6 Motorway (2017 

& 2018 separately) by using transfer learning. Model transferability was compared with standalone models and 

direct transfer from the baseline model. The study revealed that direct transfer is not feasible. However, models 

become transferable temporally, spatially, and spatio-temporally if transfer learning is applied. The predictability 

of the transferred models outperformed existing studies by achieving high Area Under Curve (AUC) values 

ranging between 0.69 to 0.95. The best transferred model can predict nearly 95% crashes with only a 5% false 

alarm rate by tuning thresholds. Furthermore, the performances of transferred models are on par with or better than 

the standalone model.  The findings of this study proves that transfer learning can improve model transferability 

under extremely imbalanced settings which helps traffic engineers in developing highly transferable models in 

future.   
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1. Introduction 

Traffic crashes have significant implications to society with 1.35 million lives lost annually worldwide [1]. Current 

Intelligent Transport Systems (ITS) focused on a proactive safety paradigm which aims to anticipate crash 

occurrence in real-time to prevent crash from happening rather than reducing the impacts of crashes [2], [3]. 

Development of real-time crash prediction models made feasible with disaggregated traffic data available in real 

time [4]. Real-time crash prediction studies became popular amongst researchers with various statistical [5] and 

machine learning techniques [6], [7] were used to classify “crash case” from “non-crash case”. Relatively 

satisfactory goodness-of-fit were attained with the use of full dataset classification and deep neural networks in 

recent studies data [8], [9]. However, transferability of real-time crash prediction models remained an area yet to 

be fully explored. Transferability in real-time crash prediction models is particularly important as a transferable 

model can save time and efforts in building new models and associated data collection for every setting [10]. 

Moreover, a transferable model would aid traffic managers to easily apply trained models to other settings with 

minimal adjustments required.  

 

International literature indicates that past relevant studies used matched-case control sampling for transferability 

assessment, which might not be compatible with current Big Data driven approach in real-time crash prediction 

[11]–[13]. Limited transferability was recorded in the real-time crash prediction models. Such findings indicate 

that multiple models are needed to predict crashes at different segments in different periods. Moreover, using 

matched-case control is sensitive to sampling bias and thus not being able to capture the rare and stochastic nature 

of crash event. Models that are not generalisable to different temporal and spatial settings would prove to be costly 

in terms of data collection, pre-processing, training, evaluation and imposes practical challenges in assessing real-

time traffic safety. Therefore, this study aimed to resolve the inadequacy of transferability assessment in current 

literature by employing full dataset classification whilst ensuring a good model transferability when apply the real-

time crash prediction model in another temporal/spatial settings.  

 

Implementation challenges arise in employing full dataset classification. Since crash is a rare event, the resulting 

dataset becomes highly ‘imbalanced’ with a multitude of non-crash cases for every crash case. Classifying an 

extremely imbalanced dataset might lead to undesirable high overall accuracy, but low sensitivity phenomenon 

(i.e., not correctly identifying crash cases), since a machine learning model might treat the minority class (also 

known as a class of interest) as noise [14].  

 

To overcome the class imbalance issue, three common approaches can be applied. These include: 

(i)           resampling  

(ii) cost-sensitive learning  

(iii)        ensemble methods  

 

To improve temporal and spatial transferability of real-time crash prediction models, transfer learning is adopted 

in this study. Transfer learning is a machine learning approach commonly used in classification which the ML 

model is trained from the data in one domain and then applied to a different but a related domain [15]. This method 

is known to reduce training time and improve generalisability of the models [16].  

 

Therefore, this study aims to contribute to current knowledge by assessing the temporal and spatial transferability 

of real-time crash prediction models, by applying transfer learning. In this paper, a Deep Neural Network (DNN) 

is trained with data collected from M1 Motorway, UK for 2017, by using a sample of 500,000 non-crash data as 

the baseline model. To the best of our knowledge, this study is the first to combine two state-of-art machine 

learning techniques, namely GAN and transfer learning, to boost real-time crash model predictability in addressing 

data imbalance and model transferability.  

 

Given the dataset was still extremely imbalanced, Wasserstein Generative Adversarial Network (WGAN) was 

deployed to oversample crash cases. Subsequently, the model developed from M1 2017 is directly transferred to 

M1 2018 for temporal transferability, M4 and M6 2017 for spatial transferability and M4 and M6 2018 for spatio-

temporal transferability. In the meantime, transfer learning is applied on these datasets by fitting the trained 

baseline model to the test datasets. Model prediction results are compared, and thresholds are also tuned for the 

transferred models for the best trade-off between sensitivity and specificity.  
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2. Methodology 

2.1. Research Framework  

In this study, there are three main steps to conduct the transferability assessment. They are: (i) oversampling crash 

cases through WGAN, (ii) developing DNN models and (iii) applying transfer learning on different datasets. To 

commence the study, datasets for all sites at different years (i.e., M1 2017, 2018; M4 2017; 2018, M6 2017 and 

2018 are prepared. M1 2017 dataset was selected for developing a deep neural network model as the baseline 

model. Datasets for M1 were collected along Junction 1 to 30 with a total length of 239km. For M4 Motorway 

data were collected between Junction 2 to Junction 21 with a stretch of 220km. For M6 Motorway, it varies from 

3 to 4 lanes with data collected from Junction 1 to Junction 32, distance between the segments is 220 km as well. 

Traffic parameters such as traffic flow (count), occupancy (in %), speed (kph), headway (deci-seconds) was 

collected for each lane every minute throughout the year. Data quality was assessed, and any erroneous data were 

deleted, for instance data containing missing values, negative values or conditions where speed > 0 whilst flow = 

0 etc. Each crash is matched with the nearest upstream loop detector for the respective travelling direction using 

British Grid Coordinates between crash sites and loop detector locations. The nearest upstream loop detector is 

denoted as the crash segment (C). To capture pre-crash conditions, data for one upstream (U) and one downstream 

(D) segments were collected wiht minute-level traffic data aggregated in five-minutes intervals into six time slices 

30 minutes before crash. Non-crash data can be defined as all traffic data where no crashes had occurred. Yet, 

traffic data period of 30 minutes after a crash are discarded to avoid the disruptive impacts of crash on normal 

traffic. From the data aggregation, various traffic parameters are calculated from flow, speed, occupancy and 

headway. Parameters calculated include the average of speed, occupancy and headway; standard deviations of 

flow, speed, occupancy and headway. Aggregated flow is also calcualted. For speed, the the coefficient of variation 

of speed and within lane, and between lanes standard deviation of speed were calculated. A total of 234 (i.e. 13 

parameters × 3 segments × 6 time slices) variables were derived. 

 

 

From the dataset, all data belongs to time slices 1 are not selected and the non-crash data are randomly 

undersampled to 500,000 entries due to computational limitations with HPC facility Lovelace provided by 

Loughborough. Data is hence standardised for better model convergence because models might be prone to 

erroneous predictions with different scales [7]. Next, the dataset is split into training and test sets in a 70/30 ratio. 

From the training set, WGAN is then initialized to oversample the crash data using Keras package from Python 

3.6 [17]. Hyperparameters of WGAN are then tuned. The weights for the step which the classification accuracy 

between synthetic crashes and real crashes is closest to 0.5 using a separate classifier with the same 

hyperparameters as the critic network would be selected to generate synthetic crashes. The training dataset is then 

balanced with the synthetic data. The same procedure is also repeated for other dataset in preparation for transfer 

learning. With the training dataset for the baseline model balanced, Deep Neural Network (DNN) is therefore 

trained. Hyperparameters were empirically tuned to find the optimal model. With the best model tuned for based 

on AUC values, this model predictability is directly tested on datasets in different spatio-temporal settings. In the 

meantime, transfer learning is applied which weights for the best baseline model (i.e. M1 2017 model) is saved 

and fitted to other datasets (i.e. M1 2018, M4 2017, M4 2018, M6 2017 and M6 2018). The weights are fine-tuned 

empirically by customising the layers to be frozen from the source model during training. The model performance 

of the transferred model using transfer learning is compared with direct transfer under the imbalanced test set as 

well as the standalone models from each dataset. The threshold is tuned using a sensitivity-specificity curve from 

the best model. Experimental framework for the model transferability is displayed in Figure 1. The subsequent 

subsections would describe the methodology of WGAN, DNN and Transfer Learning.  
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Figure 1: Schematic Diagram for the Experiment for Model Transferability 

 

2.2.Wasserstein Generative Adversarial Network (WGAN) 
WGAN is a variant of Generative Adversarial Network. Generative Adversarial Network consisted of two 

networks, Generative Network (𝑮) and Discriminative Network (𝑫). These two networks compete in a zero-sum 

game manner where the Generative Network (𝑮) keeps on generating synthetic data from the noise sample (𝒛). 

The Discriminative Network (𝑫) thus classifies whether the synthetic sample is real or fake against the original 

data (𝒖). A unique solution of Nash-equilibrium is achieved where the discriminator cannot distinguish whether 

the data is real or synthetic with the posterior probabilities as 0.5 in every data [18]. To formalise GAN in a 

minimax game setting, Equation 1 explained the objective function of GAN: 

𝒎𝒊𝒏𝑮𝐦𝐚𝐱𝑫𝑪 (𝑮, 𝑫)  =  𝑬𝒙~𝒑𝒅𝒂𝒕𝒂
[𝐥𝐨𝐠 (𝑫(𝒙)] + 𝑬𝒛~𝒑𝒛

[(𝟏 − 𝐥𝐨𝐠 (𝑫(𝑮(𝒛)))] (1) 

 

However, Generative Adversarial Network has long been criticized for its instability in training [19]. Therefore, 

Wasserstein GAN was proposed [20] for a better training ability. The architecture of WGAN is similar to GAN 

but the Discriminator Network (𝑫) is replaced by a Critic Network (𝑪) with a linear activation instead of a 

sigmoid one. Another significant difference is that WGAN adopted the Wasserstein distance than Jensen-Shannon 

distance metric from GAN to train the Generator Network. Wasserstein distance is a better distance metric than JS 

distance as the latter is proven to be too strong to converge under low dimension manifolds. Comparatively, 

Wasserstein distance can converge and provide a differentiable model. Therefore, WGAN training is more stable 

than GAN. 

  

To formalize the Wasserstein distance, Consider probability distributions of 𝑷𝑮  and 𝑷𝒓 , Wasserstein metric 

measured the cost of transporting probability from one probability distribution to another rather than point distance 

[21]. Equation 2 denoted the Earth Mover distance (also known as Wasserstein-1): 

𝑾(𝑷𝒓, 𝑷𝑮) =  𝐢𝐧𝐟
𝛄∈𝚷(𝑷𝒓,𝑷𝑮)

𝑬(𝒙,𝒚)~𝛄[||𝒙 − 𝒚||] (2) 

 

From Equation 2, Wasserstein distance aimed to find the infimum plan to transport mass from 𝒙 to 𝒚 in order to 

transform probability distribution from 𝑷𝒓 to 𝑷𝑮, which is denoted by 𝜸(𝒙, 𝒚). 𝜫(𝑷𝒓, 𝑷𝑮) is the set of all joint 

distribution for 𝜸(𝒙, 𝒚) whose marginals are 𝑷𝒓 and 𝑷𝑮 respectively [20]. 

 

2.3. Deep Neural Network (DNNs)  
To perform real-time crash prediction the training data is binary classification between crash and non-crash cases. 

The training data is defined in Equation 3.   
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(𝐱𝟏, 𝐲𝟏), (𝐱𝟐, 𝐲𝟐), … , (𝐱𝐤, 𝐲𝐤),            𝐲𝐤 ∈ {𝟎, 𝟏} (3) 

𝒚𝒌 refers to the class label with outcome as either 0 (non-crash) or 1 (crash) to the 𝐱𝐤 as the matrix of the traffic 

parameters. DNNs is a neural network with more than 3 layers accumulated [22]. In a DNN, neurons receive input 

from the previous layer with some simple computation done in the current layer and passed to the next layer by 

activation functions [22]. The activation functions nonlinearly transformed the aggregated outcome from the 

hidden layer. Two activation functions (tanh and ReLu) were considered. Hyperbolic tangent (tanh) function is 

known for faster convergence with its symmetry at 0. Hyperbolic tangent (tanh) activation function is defined as 

𝐭𝐚𝐧𝐡(𝐱) =
𝟐

𝟏+𝐞−𝟐𝒙 − 𝟏. Rectified linear unit (ReLu) is the other activation function considered. It is a half-wave 

rectifier and less computationally intensive. This function is defined as 𝐑𝐞𝐋𝐔(𝐱) = 𝐦𝐚𝐱 (𝐳, 𝟎). At the output 

layer, a sigmoid activation function 𝐲𝐤𝐩
=

𝟏

𝟏+𝒆−𝒁 is deployed so that the class is predicted with a range between 0 

to 1.  

 

2.4.Transfer Learning (TL) 
Homogeneous transfer learning is suitable for current study given the feature spaces and labels amongst source 

and target dataset are the same. To formalize homogeneous transfer learning, it can be explained as follows:  

       

Consider a domain 𝑫, it is composed with feature space 𝑿 and marginal probability distribution 𝑷(𝑿), where 𝑿 =
 {𝒙𝟏 , . . . , 𝒙𝒏}  ∈  𝑿. From which, 𝒙𝒏 would be the nth feature vector in 𝑿, it would be 195 variables in this study. 

For domain 𝑫, the task 𝑻 is the goal for the domain (i.e.  predicting crash in real-time with data in M1 2017) given 

the label space 𝒀𝒊 with the predictive function 𝒇(∙) to learn the from feature vector and label pairs {𝒙𝒊, 𝒚𝒊 } where 

𝒙𝒊  ∈  𝑿 𝒂𝒏𝒅 𝒚𝒊 ∈  𝒀 . Therefore, the source knowledge (M1 2017) can be defined as 𝑫𝑺 =
{( 𝒙𝑺𝟏 , ). . . , , )} , 𝒘𝒉𝒆𝒓𝒆 𝒙𝑺𝒊 ∈  𝑿𝑺  is the ith data instance of 𝑫𝑺 and 𝒚𝑺𝒊 ∈ 𝒀𝑺 is the corresponding class label for 

𝒙𝑺𝒊. Similarly, for the target domain, it can be defined as 𝑫𝑻  =  {(𝒙𝑻𝟏, 𝒚𝑻𝟏), . . . , (, 𝒚𝑻𝒏)} where 𝒙𝑻𝒊 ∈ 𝑿𝑻 is the ith 

data instance of 𝑫𝑻 and 𝒚𝑻𝒊 ∈  𝒀𝑻 is the corresponding class label for 𝒙𝑻𝒊. Correspondingly, the source domain 

would be 𝑫𝒔  with task 𝑻𝒔  and predictive function 𝒇𝒔  and the target domain would be 𝑫𝑻  with task 𝑻𝑻  and 

predictive function 𝒇𝒕. The aim of transfer learning is to improve 𝒇𝒕 with the related information from 𝑫𝒔 and 𝑻𝒔. 

for homogeneous transfer, the condition where 𝑿𝒔 =  𝑿𝑻 depicted the homogeneous transfer and 𝑿𝒔  ≠  𝑿𝑻 would 

indicate a heterogeneous transfer [23]. 

 

When applying transfer learning, one of the common approaches is to fine tune the weights trained from the source 

model to the target model by freezing different amounts of layers for the level of details to be adopted from the 

source knowledge to the transferred model. The idea of freezing layers indicated that the frozen layer is excluded 

from backpropagation calculation. Therefore, the gradients from the frozen layer are not updated during the model 

fitting process whereas unfrozen layers are subjected to backpropagation and weights updating process [24]. Yet, 

this approach is not compatible in current study as the pre-trained models are not dedicated for crash prediction 

purpose. Figure 2 showed the transfer learning process for this study.  

 

  
Figure 2: Transfer Learning Process 

Referring to Figure 2, it clearly displayed that the hidden layers 1, 2 and 3 of the model from source knowledge 

(M1 2017) can be frozen during when fitted to the datasets of the target knowledge datasets. In this study, fine 

tuning on freezing hidden layer 1, l&2 and 1&2&3 would be tested. 
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2.5. Evaluation Criteria of the Classifiers and Transfer Learning Models 
To tune and evaluate the performances real-time crash prediction models and transfer learning models, a confusion 

matrix is populated each time to display the classification performances of the test data according to a default 

threshold of 0.5 from sigmoid function.  A confusion matrix provides four values:  

 

True Positive (TP) – the number of crash cases correctly predicted as crash 

False Positive (FP) – the number of crash cases incorrectly predicted as crash 

True Negative (TN) – the number of non-crash cases correctly predicted as non-crash  

False Negative (FN) – the number of non-crash cases incorrectly predicted as non-crash.  

 

On the basis of these four values, the following metrics can be calculated: accuracy (rate of both crash and non-

crash correctly predicted), sensitivity (rate of crash correctly predicted as crash) and specificity (rate of non-crash 

predicted as non-crash). In this paper, optimised precision is also used as metric to measure the probability of a 

correct crash predicted. Under an imbalanced test dataset, using precision metric is likely to produce skewed results 

because the prediction of one class dominates the test set. For example, if the non-crash data dominates the test 

set, the precision would be pushed to a low value even specificity of the classifier is high. Optimised precision 

accounts for the proportion of both classes in the test set as well as using ‘Relationship Index’ (RI) which measured 

the deviance between sensitivity and specificity. Equation 4 presented the calculation of Optimised Precision.  

 

𝑂𝑝𝑡𝑖𝑚𝑖𝑠𝑒𝑑 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  P − RI = 𝑆𝑒𝑛𝑁𝑝 + 𝑆𝑝𝑒𝑁𝑛  −  
|𝑆𝑝𝑒 − 𝑆𝑒𝑛|

𝑆𝑝𝑒 + 𝑆𝑒𝑛
  (4) 

Where 𝑆𝑒𝑛 is sensitivity, 𝑆𝑝𝑒 is specificity, 𝑁𝑝 proportion of the positive case in test set, 𝑁n proportion of the 

negative case in test set. 

 

To combine the false positives and true positives into a composite index with all thresholds considered, the metric 

considered would be the AUC value. This value is the area under Receiver Operating Characteristic (ROC) Curve 

by plotting the false positive and true positive rates at all thresholds. AUC value ranges between 0 to 1 and the 

value closer to 1 indicates better predictability of the classifiers. The best real-time crash prediction models and 

transferred models are determined based on the AUC values.  

 

Regarding threshold tuning, Sensitivity-Specificity Curve is used to identify the best threshold. This curve plots 

the sensitivities and specificities across all thresholds using the probabilities from the testing set. The intersection 

points between the two curves indicate the threshold where the sensitivity equals to specificity. This method is 

deployed in similar crash prediction studies [25]. 

3. Analysis and Results 
For all the dataset, given that crash cases are the minority case, they are all oversampled with WGAN. Even though 

when the baseline model was trained using balanced dataset, it is important to fit the dataset to be transferred under 

a balanced dataset. The reason of fitting a balanced transferred dataset is to avoid the weights of the trained model 

learning more from the non-crash case and hence overlooking the class of interest which is the crash case. 

 

Only crash cases in the training set are selected for training WGAN. Using M1 2017 as an example, 180 out of 

257 (70% of total) crash cases were selected in WGAN training. Regarding the hyperparameters of Wasserstein 

Generative and Discriminative networks, three layers of hidden layer is set. In each hidden layer the number of 

nodes is tested by the multiples of 64. To prevent overfitting, a dropout layer of 0.2 following each hidden layer 

is applied. Such setting is capable to strike a balance between extracting complex nonlinear information and avoid 

overfitting [26]. In each layer, the chosen activation function is rectified linear units (ReLu) to prevent model from 

suffering vanishing gradient problem [27] and the learning rate is fixed at 0.0002 with satisfactory results in other 

GAN training studies [28]. In terms of batch size, it was tested by multiples of 32 but the maximum batch size is 

subjected to the number of training data available. The optimal hyperparameters are selected via grid search with 

classification performances between real and synthetic data from the separated classifier were recorded every 100 

steps of the training with total 50,000 steps trained. Optimal step was found when the classifier produces 

classification accuracy closest to 0.5 (Nash-equilibrium).  

 

With the synthetic samples generated from WGAN, the baseline model for the source knowledge (M1 2017) needs 

to be firstly trained to enable transfer learning. The training of the model began with the dataset from M1 2017 

split into training and testing sets. The training set is balanced with WGAN synthetic data whereas non-crash data 

is undersampled to 500,000 cases due to computational limitations. Afterwards, hyperparameters for the deep 

neural network are empirically tuned. Optimal hyperparameters were chosen for 3 hidden layers, 3000 nodes in 

each layer. Tanh is deployed as activation function with 0.2 set as dropout, regularization L2 parameter was set as 
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0.01 avoid overfitting [26] . Model is trained with 20 epochs at learning rate of 0.001 with a batch size of 20,000. 

The summary of model performance from direct testing from the baseline model and transferred models with 

layers being fine-tuned are presented at Figure 3a to 3e for 5 respective datasets. Standalone models of respective 

dataset to be transferred are developed as a benchmark to compare with the transferred results. Summary of 

comparison between standalone models (benchmark) and transferred results are shown in Figure 4.  

 

 
                      (a)    M1 2018 (b) M4 2017       (c) M4 2018 

 

 
                            (d) M6 2017  (e) M6 2018 

Figure 3: Transferability Results: (a) M1 2018; (b) M4 2017; (c) M4 2018; (d) M6 2017; (e) M6 2018 

 

Figure 3a to 3e presents the results of the transferability tests. Comparing results between directly testing the data 

from other period or motorways with transfer learning, it is apparent that transfer learning achieves much better 

results than testing the data directly from the model developed using M1 2017 data. All models recorded at least 

20% increase in terms of AUC values. The results reflected that direct transfer is not possible with AUCs of merely 

around 0.5, indicating the model have almost no ability to transfer. On the contrary, under transfer learning, models 

with AUCs over 0.7 showed promise to predict in other temporal or spatial settings, irrespective of layers to be 

fine-tuned during transfer. Similar to AUCs, the direct transfer also reflected a relatively low optimised precision 

when comparing with performances under transfer learning.  
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Referring to the case of temporal transferability, the sensitivity increased to over 0.9 and the accuracy and 

specificity increased by about 10%. Similar results were observed in spatial transferability test when fitting data 

to M4 2017, where the sensitivity improved from 0.14 to 0.44. Improvements were also recorded when the model 

was fitted on another location (M6), yet the sensitivity was lower than direct model testing. However, given the 

AUC from the transfer learning results were much higher, it indicated that threshold tuning would improve the 

sensitivity of the model by trading off accuracy and specificity. 

 

In terms of spatio-temporal transferability, the model indicated that direct transfer is proven to be infeasible with 

unsatisfactory results for both datasets with AUC values lower than 0.6 and the optimised precision were as low 

as 0.06 for M6 2018. Under transfer learning, its model predictability improved to a more satisfactory level. Yet, 

the model predictability is still below par with a modest AUC for M4 2018 (0.69) and M6 2018 (0.73). The reason 

for attributing to the fluctuating results might be due to significant differences in traffic dynamics or road geometry 

in M4 and M6 2018 compared to M1 2017. Therefore, when the weights from the model trained on M1 2017 is 

fitted to the M4 and M6 2018 dataset, its model predictability may not be optimal.  

 

Different layers of fine-tuning were tested in transfer learning as well. Between different fine-tuned layers, it is 

observed that the transferred results were slightly better when the model froze more than one hidden layer. Yet, 

the differences in AUCs are not significant. Between the standalone models and the transferred models, most of 

the transferred models have similar model performances with the standalone models. In addition, 4 Out of 5 

transferred datasets slightly outperformed the standalone models (Figure 4). 

 
Figure 4: Standalone Model Performances for Each Transferred Dataset 

 

Based on the results from the transfer learning, threshold tuning is applied to trade-off between sensitivity and 

specificity from the best transferred model in each dataset. From the sensitivity-specificity graphs, the thresholds 

were the intersection point between the sensitivity curve and the specificity curve at different thresholds between 

0 and 1. The thresholds tuned were low. This is because most of the posterior probabilities were close to 0 under 

the imbalanced test set with the dominance of non-crash data. With the tuned thresholds, Table 1 displayed their 

relative accuracy, sensitivity, and specificity for the transferred model for the test set.  

 

Table 1: Model Performances for the Test Set after Threshold Tuning 

Data Transfer Threshold Sensitivity Specificity 
Optimised 

Precision 

M1 2018 Temporal 0.12 0.95 0.95 0.95 

M4 2017 Spatial 0.028 0.697 0.719 0.703 

M4 2018 Temporal and Spatial 0.02 0.66 0.69 0.668 

M6 2017 Spatial 0.065 0.64 0.653 0.642 

M6 2018 Temporal and Spatial 0.11 0.682 0.681 0.680 

 

4. Discussion 
Transferability of real-time crash prediction models is an important area to study. A transferable model could save 

time and effort to build separate models through collecting data extensively. The applicability of transferring the 
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model temporally, spatially, or spatio-temporally is investigated in this study as studies focused on the model 

transferability has been limited. To the best of our knowledge, the present study is the first to use transfer learning 

to improve transferability of a real-time crash prediction model.   

 

More specifically, a total of six different datasets were utilized with the data collected between 2017 to 2018 along 

M1 Junction 1 to 30, M4 Junction 2 to 21, and M6 Junction 1 to 32. Afterwards, Wasserstein Generative 

Adversarial Network is used to oversample crash cases from the naturally imbalanced dataset with a sample of 

500,000 non-crash data. A three-layered feedforward deep neural network was developed to predict M1 2017 data 

as the source knowledge. Transferability assessments are conducted on 5 other datasets through: (i.) Direct testing 

from the baseline model, (ii.) Models fitted with transfer learning through fine-tuning layers and (iii.) standalone 

models of the datasets. Metrics such as AUC, accuracy, sensitivity, specificity and optimised precision were used 

to assess model performance. The last step was threshold tuning for the transferred models using sensitivity-

specificity curve to balance the sensitivity and specificity. In general, the transferability tests using transfer learning 

have shown promising results. Compared to testing direct testing from the baseline model, the AUC value for 

transfer learning greatly improved by at least 0.20 on average (from around 0.50 to 0.70). Optimised precision was 

also increased by at least 0.10. Such result indicated that direct transfer is not viable, something that was also 

suggested by [29]. Another possible explanation could be that the study areas were much larger than other studies. 

Hence, the traffic dynamics and road geometry of the locations vary more than transferring a model to nearby 

segments like the study by [12]. Thus, it was reasonable to conclude that some degree of direct transfer could not 

be observed in our study.  

 

Between the best transferred model and the standalone model, it was interesting to note that the performance of 

the best transferred model has negligible differences with the standalone model amongst all five datasets. More 

specifically, the AUCs of the best transferred model from 4 out of 5 datasets slightly outperformed the Standalone 

Model. The satisfactory performance from the best transferred model indicates that the baseline model for transfer 

learning is a good feature extractor and a weight initialization agent as the dataset to be transferred can fully benefit 

from the pre-trained model. High predictability has also been a proven benefit of transfer learning [15]. On the 

other hand, the standalone models might not learn the features of crashes and non-crashes fully given the number 

of samples for oversampling were limited. This promising result has not been observed in other studies comparing 

transferred models with standalone models. Yet, comparing the results of the original model and transferred model, 

the present study proved that transfer learning would not significantly deteriorate the model predictability, whereas 

about 10-20% reduction in predictability were recorded [13]. In addition, the sensitivity of the models under 

transfer learning outperformed other studies with 0.99 AUC, 0.80 sensitivity, 0.95 specificity and 0.89 optimised 

precision for temporal transferability. These results could be considered more promising than [11], [29] who 

applied both machine learning and statistical methods. Regarding spatial transferability, the best transferred model 

achieved an AUC of 0.77, sensitivity of 0.70 with 0.70 specificity for spatial transferability. The spatial 

transferability results for this study are slightly worse off compared to [30]. However, it is noted that the degree 

of spatial transfer for this study was much greater, whereas [30] the tested models were applied on different 

segments and travel directions within the same motorway. However, the results for both temporal and spatial 

transfer result in modest transferred results with AUCs at low 0.70.  

 

Despite a few study limitations such as a lack of crash data in testing and the undersampling of non-crash data, 

this study demonstrated that model transferability vastly improved when transfer learning is deployed. More 

importantly, transfer learning can overcome the limitation of traditional DNN models which cannot be directly 

transferred when tested on another dataset. Future research can focus on testing the minimum amount of data to 

be required to ensure transferability. Similarly, testing on transferability could be conducted if neural network 

models are applied with a combination of different dataset trained and tested in different temporal and spatial 

settings. 

5. Conclusions 
Transferability has yet to be fully explored in real-time crash prediction studies. The present study confirmed that 

transfer learning can improve the transferability of a real-time crash prediction model in either temporal, spatial or 

spatio-temporal setting. This study adds to current knowledge and could provide a solid basis to further investigate 

model transferability. Additionally, the present paper is the first to carry out a transferability assessment with 

models developed closest to full dataset classification setting, rather than a matched case-control sampling. To the 

best of our knowledge, this study is also the first to combine two state-of-art machine learning techniques, namely 

GAN and transfer learning, in order to boost real-time crash model predictability in addressing data imbalance and 

model transferability. More importantly, this study suggested that transferability could be improved by using 

transfer learning under extremely imbalanced setting. 
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This study revealed that direct transfer is not feasible as models become transferable temporally, spatially and 

spatio-temporally under transfer learning. With respect to temporal transferability, the use of transfer learning 

improves the AUC value significantly (i.e., from 0.51 to 0.98). The enhancement is less significant in spatial 

transferability, with the AUC value increasing from 0.45 to 0.78 for M4 2017 dataset and from 0.58 to 0.75 for 

M6 2018 dataset. This finding shows that transfer learning is able to improve transferability of real-time crash 

prediction models under extremely imbalanced settings apart from saving time and efforts in building multiple 

models for different sections of a motorway by time period. As for the practical implications, our approach could 

assist traffic engineers in developing highly transferable models in future. Lastly, results from this study could also 

help traffic managers to predict crashes in other temporal and spatial settings if a trained model has already been 

in place. Yet, data for the new temporal or spatial setting is still needed to be collected. 
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