
Simulation of individual injury risks with an agent-based transport 

model 
Qin Zhang1, Carlos Llorca Ph.D.1, Mehmet Baran Ulak Ph.D.2,  

Rolf Moeckel Ph.D.1, James Woodcock Ph.D.3 

 

1TUM School of Engineering and Design, Technical University of Munich, Germany 
2Department of Civil Engineering, University of Twente, the Netherlands 

3Centre for Diet and Activity Research, University of Cambridge, United Kingdom 

 

Introduction 

Road safety is one of the critical aspects of transportation in terms of impact on public health. In Germany, 
12% of the accident-related deaths are due to traffic crashes, and this number is even higher for the early 

and middle age group (age from 15 to 35) (1). Although there is abundant literature on Crash Prediction 

Models (CPM) and aggregated analysis of traffic safety (2–15), very few studies focused on modeling the 

injury risk based on individual trips. Moreover, the effect of the characteristics of travelers (such as their 
place of residence and/or their travel behavior) is generally disregarded in traditional safety studies and 

analyses are usually rely on aggregated traffic exposure variables, such as the Average Annual Daily Traffic 

(AADT). As a result, the majority of previous works have to be carried only on a subset of roads, rather 
than the entire road network due to lack of comprehensive traffic volume data. To overcome these issues, 

we developed a model that integrates CPMs with an agent-based transport model (MATSim) (16) to assess 

the crash injury risk based on individual trips. The model in MATSim provides the individual paths of a set 
of agents, defined agent by agent. These can be treated as traffic volumes (aggregated) but also as individual 

trips (disaggregated). The integrated model is applied in the Munich Metropolitan area to demonstrate its 

capabilities, using the already generated agent-based multimodal travel demand (17) 

 

Methodology 
Firstly, we specify CPMs that predict the average number of crashes for different road users including car 

occupants, cyclists, and pedestrians, using the modeled traffic volume data combined with some roadway 
characteristics. At this point, the transport demand data is used as an aggregated variable (in users per day) 

The number of KSI (killed or seriously injured) crashes and the number of light injury crashes is estimated 

separately for each link.  

 
The incorporation of CPMs and MATSim is not straightforward. The outcomes of CPMs (equation 1) are 

the average number of accidents occurring on each road segment 𝑙 over a certain period (e.g. a year) 𝐶𝑟𝑎𝑠ℎ𝑙. 

CPMs can be estimated by each transport mode independently (car, bicycle and pedestrian).  
 

𝐶𝑟𝑎𝑠ℎ𝑙 = 𝑓(𝑉𝑜𝑙𝑢𝑚𝑒𝑙 , 𝑥𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 , 𝑥𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 … ) (1) 

 

where Crashl is the number of crashes per year in the link l, 𝑉𝑜𝑙𝑢𝑚𝑒l is the average daily traffic volume of 

link l, xgeometry,l and xenvironment,l are other variables that describe the geometry or the environment at link l. 

We cannot use it directly to measure the injury risk of each road user. In this study, injury risk 𝑅𝑖 is defined 

as the probability of being injured of a certain agent 𝑖 over a typical traveling day. Further steps are needed 

here to calculate the agent injury risk 𝑅𝑖. 

 

First, the average number of accidents 𝐶𝑟𝑎𝑠ℎ𝑙 is disaggregated to the average number of accidents over a 

certain time of day period 𝐶𝑟𝑎𝑠ℎ𝑙,ℎ. With the benefit from agent-based simulation, MATSim provides 

information on the exact time at which each agent passes through a specified link. This makes it possible 
to capture different levels of risks varying with time of day. The annual crash frequency is converted into 

a daily average crash frequency. Then the number of accidents on link 𝑙 at time ℎ is calculated by multiply 
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the daily average crash frequency by the weight of time ℎ, as seen in equation 2. The weights here are 

generated from the crash distribution over time of day based on the German accident data from 2016 to 
2018. 

 

𝐶𝑟𝑎𝑠ℎ𝑙,ℎ =
𝐶𝑟𝑎𝑠ℎ𝑙

365 
∗ 𝑊𝑒𝑖𝑔ℎ𝑡ℎ (2) 

 

The consequence of an accident can be more than one casualty, involving different road users and varying 

in severity. To measure the risk of being injured or killed per road user passing through the link, the 
estimated number of accidents needs to be converted into the number of casualties for different travel modes 

𝑚 by severity levels 𝑠, as defined in equation 3.  

 

𝐶𝑎𝑠𝑢𝑎𝑙𝑡𝑦𝑙,ℎ,𝑠,𝑚 = 𝐶𝑟𝑎𝑠ℎ𝑙,ℎ ∗ 𝐶𝑎𝑠𝑢𝑎𝑙𝑡𝑦 𝑅𝑎𝑡𝑖𝑜𝑠,𝑚 (3) 

 

where 𝑚 is the travel mode including car occupant, cyclist, and pedestrian; 𝑠 is the casualty severity 
including light injury and KSI. Casualty ratio refers to the average number of person got injured/killed in 

an accident. The casualty information is not provided in the German accident open dataset. Therefore, we 

draw these ratios on the accident and casualty records from the UK STATS19 police database.  
 

Subsequently, the injury risk of link 𝑙 at time ℎ is calculated by dividing the number of casualties 

𝐶𝑎𝑠𝑢𝑎𝑙𝑡𝑦𝑙,ℎ,𝑠,𝑚 by the measure of exposure, as expressed in equation 4. The exposure is calculated as the 

product of the traffic volumes and the length of the road, generally expressed as person-kilometer traveled. 

Traffic volumes of private cars, cyclists, and pedestrians are extracted from MATSim. 

 

𝑅𝑙,ℎ,𝑠,𝑚 =
𝐶𝑎𝑠𝑢𝑎𝑙𝑡𝑦𝑙,ℎ,𝑠,𝑚

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑙,ℎ,𝑚  
=  

𝐶𝑎𝑠𝑢𝑎𝑙𝑡𝑦𝑙,ℎ,𝑠,𝑚

𝑉𝑜𝑙𝑢𝑚𝑒𝑙,ℎ,𝑚 ∗ 𝐿𝑒𝑛𝑔𝑡ℎ𝑙
 (4) 

 

Injury risks 𝑅𝑙,ℎ,𝑠,𝑚  are calculated for all links on the network. The specified links where each agent traveled 

is simulated in the agent-based transport model. Hence, the injury risk/likelihood of each road user 𝑅𝑖 can 

be calculated by cumulating the risk of all traveled links, as defined in equation 5. 𝑃𝑙,ℎ is a dummy variable 

for whether agent 𝑖 traveled on link 𝑙 during time ℎ. 
 

𝑅𝑖 =  ∑

𝑙𝑖𝑛𝑘𝑠

𝑙=1

∑

24

ℎ=0

𝑅𝑙,ℎ,𝑠,𝑚 ∗ 𝑃𝑙,ℎ (5) 

 

Results 
The integrated model is applied to the Munich Metropolitan area to demonstrate its ability to assess the 

injury risks of each road user. A total of 8 million trips are simulated across all trip purposes. Figure 1 

shows the distribution of killed or injury risk of all simulated trips. Risk is normalized by trip distances 
(kilometer) for comparison among transport modes. In general, car-occupants have the lowest risk of getting 

killed or injured while pedestrians and cyclists are more vulnerable to exposure to injured risk, which is 

logical, as it is measured in risk by distance. Pedestrians are always considered as the most vulnerable road 
user. Figure 1 gives us an indication that cyclists have a higher risk of being slightly injured while 

pedestrians are more dangerous to being killed or severely injured.  
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Figure 1 Distribution of modeled Light injury and KSI risk per kilometer of each synthetic trips by 
transport mode 

With the benefits of the agent-based transport model, the home location of each agent is known. This helps 
us to explore the equity in road safety in terms of where the agents live. Figure 2 (left) shows the distribution 

of the KSI risk of all simulated agents. It tells us that people living in rural areas experience a higher risk 

of being killed or severely injured than those living in urban areas. Marshall and Ferenchak (18) found the 

same evidence in the US. Since people living in rural areas might need to travel more kilometers for 
commuting or other daily activities, the higher risk might result from the higher vehicle kilometers traveled. 

 

 
Figure 2 Distribution of KSI risk of each agent (left) and distribution of KSI per kilometer (right) by the 

area type of home location 

Conclusion 

Traditional road safety studies are capable of finding out where the crash occurs, and which road facility or 
neighborhood is riskier. That allows very detailed crash prediction models, that include usually many 

relevant factors that influence the risk at the analyzed infrastructure. However, such traditional crash 

prediction models cannot be scaled for large-scale analyses that include every road and every crash.  The 

proposed model analyzes risk at a large scale, thus every road, every trip and every crash can be considered. 
The method is depending strongly on the fidelity of the transport model, since the errors of the transport 

model might be propagated to the errors in the location of risk. Despite this limitation, the proposed model 

allows us to consider road safety from a transport planning perspective. At the same time, thanks to the 
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microscopic nature of the used transport model, we are able to explore the individual risks of using the 

roads, to understand, for instance, who is exposed to higher risks or the purposes of the trips that are more 
dangerous. Last, and more importantly, thanks to the use of transport models instead of traffic observations, 

it is possible to make forecasts into the future, considering potential changes of mode choice decisions or 

of distance travelled by users.  
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