
Authors’ last names / RSS2022, Athens, Greece, June 08-10, 2022 

Identification of evasive action in traffic interactions and conflicts 
 

Carl Johnsson, Aliaksei Laureshyn 1 

 
Dept. of Technology & Society, Faculty of Engineering, LTH, Lund University, Sweden 

 

 

Abstract 

The study presents a simple and easy to implement method for detection of the evasive action start in traffic 

interactions. The method is based on comparison of the studied trajectory with a reference set of ‘unhindered’ 

trajectories, interpreting the start of evasive action as the moment when no more similarities can be found. The 

suggested algorithm performs well for primary interactions when road users arrive in an unhindered state. It fails, 

however, in case of secondary interaction. Traffic conflicts occur more frequently in secondary interactions, 

probably, due to higher cognitive load of the involved road users. Despite the limitations, the method can be used 

both for the safety studies based on traffic conflicts and for more general quantification and visualisation of the 

road user behaviour. 
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1 Introduction 

Surrogate measures of safety (SMoS) are meant to be an alternative/complement to crash-data in traffic safety 

analysis (Saunier & Laureshyn, 2021; Chang et al., 2017; Tarko et al., 2009). The main idea behind SMoS is that 

near-crash events in traffic can be used as surrogates for real crashes and by studying these events it is possible to 

learn about safety of a specific traffic system. The advantage of using SMoS is that near-crashes occur much more 

frequently compared to crashes which makes it possible to directly observe these events in traffic and to perform 

safety studies during a relatively short period of time. 

Following this idea, many different indicators have been developed that attempt identify these near-crash events 

(or conflicts) in traffic. Some of these indicators are based on observations from human observers while others are 

specifically designed to be calculated from trajectory data gathered from either video analysis or simulations. 

The most frequently used SMoS indicator is Time-to-Collision, TTC (Laureshyn et al., 2016), which is the time 

remaining before the two road users collide given they continue travelling as intended. Obviously, TTC is a 

continuous indicator and it provides a value as long as the road users are on a collision course. The concept of 

TTC was introduced by Hayward (1971) who also argued for using the lowest TTC value during the entire 

interaction (TTCmin) since it represents the moment of the maximal proximity to a collision. 

Alternatively, Hydén (1977) suggested to use the TTC value at the moment of the onset of an evasive action taken 

by one of the road users, calling it Time-to-Accident, TA. Together with Conflicting Speed (road user speed at the 

start of the evasive action), TA forms the basis of the Swedish Traffic Conflict Technique (Laureshyn & Varhelyi, 

2020; Hydén, 1987). 

Since more and more SMoS studies utilise trajectory data from either video analysis tools or microscopic 

simulations, the use of TTCmin has become more or less exclusive compared to TA (Johnsson et al., 2018). The 

reasons for that, however, are purely pragmatic—while it is quite straightforward to choose the lowest value in a 

sequence of numbers, identification of the moment of evasive action requires understanding of the interaction 

development process and its operationalisation is not trivial. 

From the theoretical perspective, however, there are many arguments that favour TA in front of TTCmin. Güttinger 

(1982) introduced the two models of reasoning when defining a traffic conflict, also showing how the choice of 

the conflict-defining indicators has a direct impact on which track will be followed (see Figure 1). In the first 

model (Figure 1a), a conflict is defined as a set of initial conditions that depending on the presence and 

effectiveness of an evasive action either result in a collision or resolve the situation without further consequences. 

Defined in this way, conflicts and collisions are steps within the same causal chain, conflict being a situation that 
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might, but not necessarily will, develop into a collision. This model is expandable, for example one can further 

construct mathematical framework that quantify the probability of a given conflict to become a crash. The 

beginning of an evasive action (the moment for which TA is measured) is a good candidate to define the start of a 

conflict since it represents the qualitative change in the situation development from unawareness of the danger to 

active actions to avert it. 

The alternative model (Figure 1b) defines the conflict as the outcome of the evasive actions. This track is followed 

if conflict is defined on the basis of TTCmin, but also many other outcome-based indicators, such as Post-

Encroachment Time, PET (Allen et al., 1978), as well as indicators describing the evasive action itself (Tageldin 

& Sayed, 2016; Bagdadi, 2013; Gettman et al., 2008; af Wåhlberg, 2004). Being defined this way, conflicts land 

on a parallel track with collisions since by the moment the conflict is identified we can be sure that the collision 

has already been avoided (knowing that the lowest TTC value is TTCmin, we also know that it cannot go down to 

zero to become a crash). Thus the theoretical foundation for using conflicts belonging to one chain of events as a 

predictor for frequency of crashes belonging a parallel chain of events appears to be quite shaky. 

      

a)                                                                                               b) 

Figure 1. Two models of relation between traffic conflicts and crashes—adopted from 

Güttinger (1982): a) conflict precedes a collision; b) conflict is mutually exclusive with 

a collision 

Another theoretical challenge is related to the motion prediction necessary for calculation of TTC. The classical 

definition of TTC suggested by Hayward (1971) assumed that both road users will keep the same speed and 

heading. It has been repeatedly shown that this assumption does not hold, particularly in situations when the road 

geometry, the nature of the manoeuvre performed or interaction with the traffic light actually require adjustments 

of both speed and travelling path (Laureshyn et al., 2017; Lefèvre et al., 2014; Mohamed & Saunier, 2013; 

van der Horst, 1990). The simplistic kinematic-based methods for addressing the issue, such adding constant 

acceleration or angular speed assumptions, rather make the predictions more unrealistic than solve the problem 

(van der Horst, 1990). 

Context-based motion prediction which utilises the historical trajectories of other road users performing the same 

manoeuvres shows better performance (Lefèvre et al., 2014; St-Aubin et al., 2014; Mohamed & Saunier, 2013). It 

is reasonable to assume that in case of no conflict, the road users would continue travelling just as many others did 

before them. However, as soon as they realise the danger and initiate an evasive action, using the historical data 

becomes irrelevant, since it comes from the situations without a conflict. Lefèvre et al. (2014) theorise that in this 

occasion, special interaction-aware motion models should be used. To our knowledge, however, there are hardly 

any models available that can describe the functional road user behaviour in a safety-critical situation. Practically, 

this means that while TTC calculation until the start of evasive action (moment of TA) are relatively reliable with 

the context-based motion predictions, any calculations after that, including the moment of TTCmin, involve 

simplistic/unrealistic assumptions and cannot be trusted.  

Finally, an additional argument in favour of TA can be drawn from the studies on the human perception of the 

traffic conflicts. Even though human judgements are often questioned for their subjectivity, there is also a solid 

bulk of evidence showing that humans generally agree both in identifying the traffic conflicts and in ranking the 

conflicts by their severity (Yastremska-Kravchenko et al., 2022; Madsen, 2018; Kruysse & Wijlhuizen, 1992; 

Kruysse, 1991; Hydén, 1987; Grayson, 1984; Lightburn & Howarth, 1979). Traffic conflict validation studies in 

which observer’s judgements were the main conflict definition tool or at least had potentially significant influence 

on how the conflicts were coded through the objective measures, show much better correlations with crash counts 

compared to what is found in more recent studies utilising automated methods for conflict detection (van der Horst 

et al., 2017; Svensson, 1992; Hydén, 1987; Migletz et al., 1985). These results point in the direction of that while 

we cannot fully rely on human judgements as the absolute ground truth, they may provide valuable insights in 
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what traffic conflict ‘ingredients’ are important, including which moments are the most relevant, in the holistic 

perception of a traffic situation dangerousness by a human observer. 

In the study of Kruysse (1991), the observers were shown videos containing traffic conflicts, interrupted in the 

beginning, culmination and the final resolution stages of the conflict. The results showed, both for traffic 

professionals and observers with no traffic background, that the initial phase of a conflict contained sufficient 

information to predict the final severity score of the situation, while the later stages (culmination and resolution) 

hardly contributed to the opinion already formed at the beginning. The recent study of Yastremska-Kravchenko et 

al. (2022) attempted to mimic human ranking of traffic situation dangerousness using objective indicators 

calculated, similarly to approach used in Kruysse (1991), for the start of an evasive action (‘beginning’), moments 

of indicators reaching their extremes (‘culmination’) and the latest moment of the road users still being on a 

crossing path (‘resolution’). Both the fact of presence of an evasive action and the indicator values calculated for 

these moments came as the strongest explanatory variables in the built decision machine (for the situations with 

no evasive action, the ’culmination’ variables came out as significant).  

It can be concluded that the moment of evasive action initiation appears to have a special meaning within the 

SMoS discourse both from the theoretical perspective and supported by empirical evidence. This paper suggests 

and tests an automated method to identify the start of an evasive action from trajectory data, as well as provide 

some insights related to the differences and challenges in detection of evasive actions in normal and safety-critical 

situations. 

2 Method 

This section will present a general method for identifying the start of an evasive action from any road user based 

on trajectory data and how a simple manoeuvre-based motion model can then be used to make motion prediction 

from the moment before an evasive action is detected. 

 

Figure 2. Trajectories from one interacting motor vehicle and bicycle (top) and a set 

of 5 unhindered motor vehicle and bicycle trajectories (bottom). The colour bar shows 

speed in m/s. 

The method relies on comparing the trajectory under examination to a reference set of trajectories from unhindered 

road users and calculating its similarity to that set. The top two images in Figure 2 show the trajectory of a motor 

vehicle and a bicycle captured during their interaction. These two trajectories are then compared each with a set 

of trajectories from unhindered road users performing the same manoeuvre (bottom of Figure 2). If a trajectory is 

significantly different from the unhindered set at any point in time, this indicates that it has stopped being 

‘unhindered’ and is therefore in an interaction (evasive action has begun). 

Starting with unhindered traffic, the term refers to road users performing a certain manoeuvre without interacting 

with any other road user. The unhindered trajectories are meant to capture travel patterns at the studied location 

when the road users only negotiate the infrastructure geometry and interact with the traffic light.  
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The proposed method relies on two main definitions: i) what an unhindered motion is and ii) what is a proper 

measure of similarity between two different trajectories. 

As for the similarity between trajectories, this paper proposes a simple method that relies on the average distance 

between two trajectories. The calculation of ‘similarity’ at a specific position (and time instance) of the trajectory 

under examination is made in two steps. First, the point in the unhindered trajectory closest the current position is 

identified. Second, using the closest point as a starting point for the unhindered trajectory, the distances between 

the points (∆𝑠𝑖, see Figure 3) in the two trajectories can be calculated (of course, this assumes that the trajectory 

points in both trajectories have the same temporal resolution). The final ‘similarity’ at the timestep 𝑡 is the average 

distance calculated from the current position and 𝑛 steps backwards in time as shown in Equation (1): 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑡 =
∑ ∆𝑠𝑖
𝑛
1

𝑛
. 

(1) 

By calculating the number of similar trajectories for each time step it becomes possible to determine at what time 

step the evasive action starts. Figure 4 illustrates how the number of similar trajectories decreases over time during 

an interaction between a motor vehicle and a cyclist. Assuming that the evasive action starts when there are no 

more similar unhindered trajectories (i.e. no one would travel like that in an unhindered situation), it can be 

concluded that the motor vehicle starts interacting at the time step 49 and the cyclist at the time step 47 (see Figure 

4). 

 

Figure 3. The calculation process for the similarity between two trajectories at a 

specific point in time 

 

Figure 4. The number of similar trajectories for each time-step between two 

interacting trajectories and a set of unhindered trajectories (54 unhindered motor 

vehicles and 60 unhindered cyclists). The evasive action starts when there are no more 

similar trajectories left. 
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Besides the identification of an evasive action, the presented similarity concept can be used for motion prediction 

assuming that the studied road user would continue to travel in the same way as the trajectories found to be similar. 

As long as there is more than one similar trajectory, several potential future paths are possible. Figure 5 shows an 

example of what the predications would look for both the cyclist and the motor vehicle at a given time instance. 

However, this prediction is only possible while there are similar trajectories, meaning that the prediction cannot 

be made once an evasive action has been identified. The latest prediction can be done just one time step before the 

start of evasive action. 

 

Figure 5. A visualisation of a predication made one second before the first evasive 

action was detected. The green trajectory shows the historic path of the road user, and 

the red trajectory shows the actual future path of the road user. The other trajectories 

ranging from blue to yellow show the predicted motion patterns from unhindered 

traffic with their corresponding speeds shown by the colour (m/s). 

Multiple possible future paths for both the motor vehicle and the cyclists results in several possible combinations, 

some with a collision course and a corresponding TTC value, and some without. The probability of a collision 

course (PCC) can be calculated then as the share of the trajectory pairs with a collision course in the total number 

of trajectory combinations. As for the TTC, Saunier et al. (2010) provide the calculation procedure for a 

‘probabilistic TTC’ that aggregates the individual values into one indicator: 

𝑇𝑇𝐶 =
∑ (𝑝𝑖 ∙ 𝑇𝑇𝐶𝑖)
𝑛
𝑖=1

∑ 𝑝𝑖
𝑛
𝑖=1

, 

(2) 

where 𝑝𝑖  is the probability of the road users to collide at collision point i and TTCi is the predicted time at which 

they will reach it. 

The ‘probabilistic TA’, accordingly, equals the TTC value at the moment of onset of the evasive action. 

For the following experiments, all trajectories were produced using the T-Analyst software (T-Analyst, 2020). The 

software allows a human to browse the video frame by frame, marking positions of the road user and thus 

producing their trajectories (in world-co-ordinate system) and speed profiles. The screenshot of the program is 

shown in Figure 6. 

The code for detection of evasive action, the presence of a collision course as well for calculating collision course 

probability was implemented in the MATLAB software (MathWorks, 2022). The collision was defined as the 
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proximity of the two trajectory points below 0.8 meter (the trajectory point represent the middle of the road user 

ground projection). The trajectory data had a time resolution of 15 frames per second. 

 

Figure 6. Screenshot of T-Analyst software 

3 Dataset 

3.1 Data origins 

To test the proposed method, this study uses trajectories from 7 signalized intersections in Spain (1), the 

Netherlands (3) and Denmark (3). The data was originally gathered in the Horizon 2020 project InDeV, ‘In-depth 

Understanding of accident causation for Vulnerable road users’ (InDeV, 2015-2018). 

 

Figure 7. The camera view at the seven intersections and the studied interaction (note 

that a thermal camera was used in Denmark and the Netherlands) 
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More specifically, the dataset includes trajectories from interactions between right-turning motor vehicles 

approaching from the intersection leg closest to the camera and straight-moving cyclists arriving from the same 

direction (both have green at the same time). Figure 7 shows the camera views at the seven sites. 

3.2 Calibration and validation dataset 

The calibration/validation dataset contained two types of data: 

• A set of unhindered trajectories for both motor vehicles and cyclists. A human observer selected 50 

trajectories of each road user type based the reasoning presented in the Method section (free passage 

with no interactions involved; presence of other road users on non-conflicting course was allowed). 

Since the speed profiles are highly affected by the traffic light, the instruction was to include both road 

users arriving during the green or the red traffic light phases in approximately equal proportion. The 

procedure was then repeated for each of the studied locations.  

• A set of events with an observable evasive action. 48 interactions were manually selected based on 

the criteria that there must be a clearly observable evasive action present. 29 of these interactions come 

from the Spanish site and the remaining 19 were uniformly spread among the other locations. Four 

human observers with significant experience in traffic conflict analysis were then asked to produce the 

ground truth by identifying the moment of the evasive action onset in each situation. The observers had 

an opportunity to re-watch and examine the videos frame-by-frame if needed. The videos had a 

resolution of 15 frames per second (66.7ms per frame). 

3.3 Exploration dataset 

The calibrated algorithm was then applied on a large set of interactions coming from the Spanish site. This 

included: 

• All encounters between a motor vehicle and a cyclist within a 24-hour period. The encounters 

(n=417) were manually selected using the following definition—two road users must be heading 

towards the common conflict area in a way that: i) both road users are in motion, and the latest one 

should have crossed the stop line before the first one leaves the conflict area (i.e. a collision at least 

hypothetically should be possible); ii) if the encounter involved queueing motor vehicles or/and a 

group of cyclists, trajectories were only made for the pair of cyclist/motor vehicle that were closest to 

each other (the elaborated reasoning behind this definition can be found in Johnsson et al. (2020)). 

• A dataset of safety critical events (conflicts). The conflicts (n=142) were manually detected from ca 

6 weeks of continuous video recording. The definition of a conflict used was somewhat loose and 

formulated as any breakdown in otherwise smooth traffic flowing that might indicate that the safety 

margins were compromised. Despite the inclusiveness of this definition, the dataset has a relatively 

high share of serious conflicts and even actual collisions (collisions were excluded from the tests in this 

paper). 

4 Results 

4.1 Calibration 

The proposed method relies on two parameters to identify similarity between the trajectories: i) a threshold for the 

average distance between the trajectories—the similarity value in Equation (2), and ii) a limit on how far into the 

past the calculation should be made— n in the same equation. 

The aim of the calibration test is to find a set of parameters that provide the best agreement with the ground truth 

produced by the human observers. The Intraclass Correlation Coefficient (ICC) can be used to measure the 

reliability among several observers (or raters) (Fisher, 1932). The ICC produces a reliability index between 0 and 

1 when comparing the result from different raters. Values less than 0.5, between 0.5 and 0.75, between 0.75 and 

0.9, and greater than 0.9 are indicative of poor, moderate, good, and excellent reliability respectively (Koo & Li, 

2016). There are many different forms of the ICC index. Following the guideline by Koo & Li (2016), a Two-Way 

Mixed-Effects Model focused on absolute agreement was chosen for the following test.  

The ICC value represents the inter-rater reliability among the raters. The optimisation problem then is to find the 

parameter values which produces the highest ICC value between the algorithm result with human observations. 

For the calibration, this comparison was made using the 19 events selected from the Danish and Dutch sites. The 
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tested combinations included distance values from 0.05 to 5 meters (0.05m step) and the time parameter from 1/15s 

to 4s (1/15s step). 

 

Figure 8. Time into an event when the human observers (H1–4, green) and the 

algorithm (CP, red) detected an evasive action. 

The best result was found using an average distance value of 0.75m and a time parameter of 1.67s (25 frames). 

Figure 8 shows the results of the human observers and the algorithm using these parameters. The Y-axis shows at 

what time from the start of an event the human observers (green) and the algorithm (red) have detected an evasive 

action. The ICC value shows an excellent reliability between the human and the algorithm results with all values 

above 0.99. 

While the ICC values indicates that the proposed approach shows an excellent reliability with the human observers, 

it is still a bit difficult to discern what this means in practice. Looking at the difference between the individual 

raters and the mean result reveal some further information (Table 1). Compared with the mean result, the result 

from the algorithm is generally somewhat early and there also seems to be a higher variation in the computer result 

when compared to the result from the human observers. 

Table 1. The difference between the individual and the mean result from observers 

and the algorithm (all values in seconds) 

 
Mean 

errors 

Standard deviation 

of error 

Earliest detection 

compared to mean 

Latest detection 

compared to mean 

P1 0.1 0.3 -0.3 0.8 

P2 -0.2 0.3 -1.1 0.6 

P3 0.0 0.4 -0.7 0.8 

P4 0.1 0.3 -0.4 1.2 

CP -0.3 1.0 -3.0 0.9 

4.2 Validation 

The aim of the validation is to test whether the proposed parameter values are suitable at another location with 

different design (in our case, whether the parameters calibrated on Danish and Dutch sites will still work at the 

Spanish site). The same algorithm parameters were applied on the remaining 29 interactions from the Spanish 

intersection. Figure 9 shows the algorithm results compared to the human observers. The ICC value indicate an 

excellent reliability between with the lowest value being 0.95. 
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Figure 9.  Time into an event when the humans (H1–4, green) and the algorithm (red) 

detected an evasive action. 

 

Table 2 shows the difference between the mean human result and the individual raters. Similarly, to in the 

calibration, the computer result shows a larger standard deviation when compared to the humans and the computer 

is once again a bit early in its detections. 

Table 2. The difference between the individual result and the mean result from the 

observers and the best computer result (all values in seconds). 

 Mean 

error 

Standard deviation 

of error 

Earliest detection 

compared to mean 

Latest detection 

compared to mean 

P1 0.0 0.3 -0.8 0.8 

P2 -0.1 0.2 -0.4 0.3 

P3 0.1 0.3 -0.5 1.1 

P4 -0.1 0.2 -0.6 0.4 

CP -0.1 0.8 -2.3 1.2 

4.3 Exploration 

The previous section established that the best parameter values is an average distance 0.75 meters as a similarity 

threshold while looking 25 frames (1.67s) into the past. Using these values 417 encounters and 142 conflicts 

(exploration dataset) between right-turning motor vehicles and cyclists observed at the Spanish intersection were 

analysed. 

Following the structure of the proposed method, each interaction can be classified into four main categories: 

1. events with no detected evasive action,  

2. events with a detected evasive action with zero probability of collision course (PCC), 

3. events with a detected evasive action and a non-zero PCC, 

4. Abnormal and secondary events. 

The first three categories follow from the method description in the method section; however, the fourth type of 

events were identified when analysing the explorstion dataset. These abnormal events are immediately detected as 

evasive actions the moment a road user enters the scene. In these cases, the algorithm is unable to make any motion 
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predictions since no similar trajectories were ever detected. Looking at these situations in more detail, they can be 

further divided into two main types: 

• Type A. In these events one or both road users show uncommon behaviour which is too different from 

the behaviour of the unhindered trajectories that are used by the algorithm. Some examples of such 

behaviours include motor vehicles turning right from the wrong lane and cyclists entering the 

intersection from irregular locations. 

• Type B. The second type of abnormal events are secondary interactions in which one of the road users 

have already interacted with another road user before the second road user have entered the scene. The 

algorithm correctly identifies that an evasive action has occurred the moment in which the second road 

user enters the camera view but cannot make any motion predictions from that point. 

Table 3 shows how the events from both exploration datasets are split between the four categories. As expected, 

the traffic conflicts contain significantly fewer events without any evasive actions and also contain a higher 

percentage of events with a non-zero PCC. There is also a higher percentage of abnormal events within the safety 

critical dataset. 

Table 3. The result from the two datasets divided into four separate categories 

showing the number of events with no detectable evasive action, how many events 

with a zero and non-zero probability of collision course and the number of abnormal 

events. 

Category Encounter Events Conflict Events 

1. No evasive action 26 (6%) 3 (2%) 

2. Evasive action detected, PCC=0 286 (69%) 68 (48%) 

3. Evasive action detected, PCC>0 62 (15%) 48 (34%) 

4. Evasive action detected immediately 

(abnormal/secondary events) 
43 (10%) 23 (16%) 

Total 417 (100%) 142 (100%) 

For the events with a detected evasive action and a non-zero PCC, it is possible to further investigate the 

distribution of both the PCC values and the estimated probabilistic TA. The cumulative frequency distributions 

are shown in Figure 10. The results show a clear difference between the encounters and conflicts in both probability 

of a collision course and in the TA-values. This suggests that when the algorithm is able to proceed and produces 

the indicators values, the results are consistent with what human observers would consider to be more severe 

events. 

 

Figure 10. The cumulative frequency distribution of the probability of collision course 

(PCC) and the probabilistic TA average time to accident the Category 3 events. 

It has been pointed out already that the share of abnormal/secondary events (category 4) is higher in the conflict 

dataset compared to the encounters. Further visual examination of these events indicates that out of the 43 ‘normal’ 

encounters 24 (56%) are caused by abnormal situations, like motor vehicles arriving from the wrong lane or the 

bicyclist coming from the wrong direction. In the conflict dataset, however, only 3 (13%) of events are explained 

by such abnormalities, the rest being multi-step interactions. 
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Such situation is illustrated in Figure 11. The studied interaction is between the car and the bicycle marked red and 

green respectively. However, at the moment shown in the left image, the car start braking for the cyclist ahead of 

the ‘green’ one, an evasive action being correctly detected. However, from that moment on, the car I no longer 

‘unhindered, which makes it impossible to detect the second evasive action that takes place at the moment shown 

in the right image, now for the studied ‘green’ bicycle. 

  

Figure 11. A secondary interaction in which the car (marked red) first brakes for one 

bicyclist (marked with an arrow) and then again brakes for the second bicyclist 

(marked green) 

Visual examination of the entire dataset reveals that encounters contain 81% of primary events (only one 

interaction involved) while only 60% primary events are found among the conflicts. 

5 Discussion 

The calibration and validation of the proposed algorithm showed a good to excellent reliability between the human 

observers and the results from the algorithm. Here, some caution should be taken in interpreting the results, since 

the situations used both for training and validation were ‘exemplary’ and contained very clear and easily 

identifiable evasive actions. Have the evasive actions been less pronounced, a higher degree of disagreement 

between the human observers as well as between the observers and the algorithm could be expected. 

The method performs well for primary interactions, i.e. in situations when the road users arrive from an unhindered 

state. It fails, however, in case a several interactions follow each other since, after the first adjustment, the road 

user is no longer unhindered and thus there is no data available to suggest what would be a ‘normal’ course of 

action from such starting conditions. Another problem discovered is that the evasive action is sometimes 

erroneously assigned to the studied interaction even though it actually belongs to an earlier interaction (as 

illustrated in Figure 11). This might lead to the situation being scored lower on the dangerousness scale, since the 

algorithm interprets it as having an early evasive action while the real evasive action is still to come later. Visual 

examination of the studied situations might help to identify and filter out such erroneous decisions. 

The choice of the studied manoeuvre favours the algorithm performance since the right-turning vehicle and the 

cyclist come directly in contact with each other. This is not the case, for example, for the left-turning vehicles 

interacting with the same cycle flow, since before reaching the cyclists they must first negotiate the on-coming 

traffic. 

The abnormal situations (like turning from a wrong lane) contributed to more frequent algorithm failures. 

However, this issue can probably be addressed by increasing the reference set of the unhindered passages so that 

even such unusual manoeuvres get represented. Otherwise, detection of odd situations, particularly if they are 

relatively frequent, might also provide valuable insights in the functioning of the studied location and what 

additional safety problems to anticipate that, otherwise, might not be easily identifiable without seeing the actual—

not simply assumed based on the drawing or the rules—behaviour. 

It has been found that secondary interactions are much more common in the traffic conflicts dataset. This finding 

makes sense, since one could expect that it is easier to make a mistake leading to a conflict or potentially a crash 

in a complex situation involving several road users to be negotiated simultaneously or closely one after another. It 

is thus quite unfortunate that the method is least fit for situations which have the most relevance for traffic safety. 

On the other hand, the majority of the conflicts in the dataset are still primary interactions for which the method 

can be applied. Also, at least for some crash scenarios, it is also more common for ‘free vehicles’ to be involved 

in severe crashes compared to those moving in platoons or hindered in some other way (Pasanen, 1993). 

This study utilised PCC and TA as two measures describing a situation severity. However, one can imagine many 

other additional indicators to be introduced, for example those reflecting the potential consequences in case the 
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conflict develops into a crash, such as speed, kinetic energy, or Delta-V (Yastremska-Kravchenko et al., 2022). 

Alternatively, more general analysis of the road user behaviour can be performed, for example by counting the 

frequencies of evasive actions being necessary or by mapping the locations of the evasive action initiations. Such 

data might provide insights into how well the current infrastructure design functions and whether it encourages 

smooth and early adjustments rather than last-minute emergency reactions. 

6 Conclusions 

The paper suggests a relatively simple and easy to implement method for detection of the first evasive action in a 

traffic interaction, as well as for quantifying its dangerousness through the probability of collision course (PCC) 

and Time-to-Accident (TA) measures. The following conclusions can be drawn: 

• The method works well for primary interactions, but frequently fails in case of secondary interactions. 

• Secondary interactions are more common in traffic conflict situations, which limits applicability of the 

method 

• The method could be used both for studying traffic conflict situations (using PCC, TA and other 

indictors), but also for quantifying and visualising the general behaviour at the studied locations. 

• Expanding the reference dataset may help the algorithm performance, but will not solve some problems 

of the more fundamental nature. 
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