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1. Introduction 
Safety Performance Functions (SPFs) are the preferred safety analysis for Kentucky’s network 

screening process. When developing state-specific SPFs, there is a tradeoff between the quality of the 

SPFs and the coverage of the roadway network. The quality of the model can be evaluated by a variety 

of goodness-of-fit measures. Coverage of the roadway network is important since any portion of the 

network not used in model development will likely require Adjustment Factors (AF). Unfortunately, 

AFs, are not available for all roadway and intersection configurations. 

This paper explores the tradeoffs between model quality and network coverage. A variety of model 

forms are tested and compared to two extreme conditions: 1) a generic model with 100% network 

coverage and, 2) a specific model based on homogeneous base conditions (lane width, shoulder width, 

curvature) producing the best quality model. Models were developed using ranges of roadway 

geometrics to increase the roadway coverage from the specific model. For example, instead of specifying 

9-feet lanes, the model may include segments with 9-to-13-feet lanes. Additionally, roadway geometrics 

were added to the model form as variables to increase network coverage. Instead of specifying as a base 

condition, lane width can be added to the model as an additional term so that all values of lane widths 

can be represented in the model. The idea here is that narrower lanes are likely to be correlated to more 

crashes in contrast to the generic model where lane width does not affect the model.  
 

2. Methodology 

2.1 Data Preparation 
The Kentucky Transportation Cabinet (KYTC) maintains the roadway data for all state-maintained 

roads in the roadway centerline network and Highway Information System (HIS). For this study, the 

dataset for rural two-lane roads with several attributes including traffic volume, lane width, shoulder 

width, and horizontal curves was extracted. The roadways were segmented into homogenous sections 

where traffic volume and other geometric attributes remain constant.  

For this study, five years (2013-2017) of crash data has been used that was collected from the 

Kentucky State Police (KSP) maintained database. The crashes (classified by severity using the KABCO 

scale2 ) were assigned to corresponding segments. Crashes of all severities were summarized into total 

crashes and had been linked to the homogenous segments of rural two-lane roads.  

 

2.2 Development of Safety Performance Functions 
SPFs are crash prediction models based on statistical regression modeling of historical crash data 

and they correlate crashes to segment length and traffic volume (See Equation 1). The methodology 

outlined by the Highway Safety Manual (HSM) recommends specifying “base conditions” for each SPF 

and may include roadway features like lane width, shoulder width, horizontal curves, etc (5). Crash 
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Modification Factors (CMF) are used to account for any difference between the base condition and any 

segment’s geometric attribute and adjust the crash prediction. In Kentucky, CMFs are referred to as 

Adjustment Factors (AF) when used for this purpose (1). The study used an open-source automation 

tool named “SPF-R3”, a script written in Rstudio developed by the Kentucky Transportation Center to 

develop SPFs.  

              𝑆𝑃𝐹 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑟𝑎𝑠ℎ𝑒𝑠 =  𝑒𝑎 ∗ 𝐿 ∗ 𝐴𝐴𝐷𝑇𝑏 ∗ 𝐴𝐹1 ∗ 𝐴𝐹2 ∗ … . (1) 

 

Where, L= Length of a segment (miles); AADT = Average Annual Daily Traffic; a = Regression 

parameter for intercept; b = Regression parameter for AADT; AF = Adjustment Factors. 

2.2.1 Generic SPF 
The “generic” SPF included segments with all the roadway features of interest (lane width, 

shoulder width, and horizontal curve classes) without specifying any base conditions. However, the 

generic model could show omitted variable bias as influential explanatory variables might have been 

excluded from the model. There are two ways to address omitted variable bias: filtering the database by 

specifying base conditions and/or including additional independent variable(s) in the model. 

Nonetheless, each method comes with its limitations. Although the application of filters is a convenient 

way, it requires adjustment factors to adjust crash prediction for the segments that may be different from 

the base conditions. Therefore, the unavailability of adjustment factors can limit the application of the 

SPF. On the other hand, including too many parameters in the regression model might lead to overfitting 

of SPFs and it may not be possible to include all the relevant explanatory variables that could have 

potential impacts on safety (6). 

2.2.2 SPFs with Specific Base Conditions 
SPFs are preferably developed using specified base conditions. In this study, multiple iterations 

were performed with various sets of base conditions, and the most reliable SPF was chosen based on 

goodness-of-fit measures i.e. CURE plots, modified R2, CURE deviation percentage (CDP), maximum 

absolute CURE deviation (MACD), and inverse overdispersion4. This model will be referred to as the 

“specific” model. The base conditions used for this model are : Lane Width = 9 feet; Shoulder Width = 

3 feet; Curve Class = A. 

2.2.3 SPFs with Ranges of Base Conditions 
Though SPFs can be improved by specifying base conditions, in absence of appropriate AFs, 

they cannot be used in the subsequent steps. In this study, a series of models have been developed using 

a range of values for the attribute. For each variable, the ranges were expanded around the particular 

value used for the “specific” model development. This ensures the inclusion of more segments used in 

the SPF and fewer segments requiring AFs. Similar to the “specific” model, several goodness-of-fit 

measures were used to evaluate the models. Table 1 summarizes the base conditions for the best five 

SPFs.  
Table 1: Base conditions (ranges) used to develop SPFs 

Models 
Base Conditions 

Lane Width Shoulder Width Curve 

R1 9 0-3 A, B 

R2 9 3-6 A, B 

R3 9-13 3 A, B 

R4 8-10 3 A, B 

R5 9-12 3 A 

2.2.4 SPFs with Additional Explanatory Variables 
Another way of mitigating omitted variable bias is to include additional variables along with 

segment length and traffic volume in the model. For example, instead of filtering the dataset with a lane 

width of 9 feet, lane width could be included in the model as an explanatory variable. Therefore, AFs 

are no longer required for lane width and the sample size of the dataset is increased for model 

development. Table 2 summarizes the models developed including a variety of configurations of the 

 
3
 http://github.com/irkgreen/SPF-R 

4 For modified R2 and inverse overdispersion, higher values are preferred. For CDP and MACD lower values are preferred.  
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variables where LW, SW and CUDEG are lane width, shoulder width, and degree of vertical curvature 

respectively.  
Table 2: Additional variables and model forms of SPFs 

Model Variable added Model form 

V1 LW 𝑌 = 𝐿 ∗ 𝑒𝑎𝐴𝐴𝐷𝑇𝑏1 ∗  𝑒𝐿𝑊∗𝑏2 

V2 SW 𝑌 = 𝐿 ∗ 𝑒𝑎𝐴𝐴𝐷𝑇𝑏1 ∗  𝑒𝑆𝑊∗𝑏2 

V3 Roadway Width 

(LW+SW) 
𝑌 = 𝐿 ∗ 𝑒𝑎𝐴𝐴𝐷𝑇𝑏1 ∗  𝑒(𝐿𝑊+𝑆𝑊)∗𝑏2 

V4 LW, SW 𝑌 = 𝐿 ∗ 𝑒𝑎𝐴𝐴𝐷𝑇𝑏1 ∗  𝑒𝐿𝑊∗𝑏2 ∗ 𝑒𝑆𝑊∗𝑏3 

V5 LW, SW, 

LW*SW 

(Interaction term) 
𝑌 = 𝐿 ∗ 𝑒𝑎𝐴𝐴𝐷𝑇𝑏1 ∗  𝑒𝐿𝑊∗𝑏2 ∗ 𝑒𝑆𝑊∗𝑏3 ∗  𝑒𝐿𝑊∗𝑆𝑊∗𝑏4 

V6 
CUDEG 𝑌 = 𝐿 ∗ 𝑒𝑎 ∗ 𝐴𝐴𝐷𝑇𝑏1 ∗ (2 ∗ 𝐶𝑈𝐷𝐸𝐺)𝑏2 ∗ (

𝐶𝑈𝐷𝐸𝐺

5730 ∗ 𝐿
)𝑏3 

V7 
LW, SW, 

CUDEG 

𝑌 = 𝐿 ∗ 𝑒𝑎 ∗ 𝐴𝐴𝐷𝑇𝑏1 ∗  𝑒𝐿𝑊∗𝑏2 ∗ 𝑒𝑆𝑊∗𝑏3 ∗  (2 ∗ 𝐶𝑈𝐷𝐸𝐺)𝑏4 ∗

(
𝐶𝑈𝐷𝐸𝐺

5730∗𝐿
)𝑏5  

  

2.3 Empirical Bayes Estimate  
The Empirical Bayes (EB) method estimates the expected crashes using a mathematical 

combination of the observed and predicted crash frequencies. For each segment, Equations 2 and 3 were 

used to calculate the EB estimates for each model where  𝜭 (Theta) is the inverse overdispersion 

parameter. 

𝐄𝐁 𝐄𝐱𝐩𝐞𝐜𝐭𝐞𝐝 𝐂𝐫𝐚𝐬𝐡𝐞𝐬 = 

𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑆𝑃𝐹 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 + (1 − 𝑤𝑒𝑖𝑔ℎ𝑡) ∗ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 (2) 

  

𝒘𝒆𝒊𝒈𝒉𝒕 =  
1

1 +
(

𝑆𝑃𝐹 𝐶𝑟𝑎𝑠ℎ𝑒𝑠
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝐿𝑒𝑛𝑔𝑡ℎ

)

𝜃

(3)
 

 

2.4 Cross-Validation 
This study used the train-test split method for cross validation by splitting the dataset into two parts: 

the training set and the testing set. 75 percent of data was assigned to the training set using a random 

number generating function, and the rest was used as the testing set. The training dataset was used to 

develop the “generic”, “specific”, and two best models (based on goodness of fit measures) from Table 

1 and Table 2. Root mean square error (RMSE) is chosen as the validation metric and was calculated 

for the testing dataset in two ways: 

• RMSE1: RMSE1 calculates the errors by comparing the predicted crashes to the observed 

crashes. However, the randomness of crash data and its regression-to-the-mean bias might affect 

the RMSE. 

• RMSE2: RMSE2 estimates the errors by comparing the predicted crashes to the EB estimate 

which is a function of the observed crashes and accounts for the regression-to-the-mean bias by 

pulling the crash counts to the mean (14).  

 

3 Results and Discussions 

 

3.1 Comparison of Goodness-of-Fit Measures 
In this study, the CURE plots were used to visually evaluate the model fit and detect omitted 

variable bias. From visual inspection, the CURE plot from model R2 seemed to be the most significant 

among the models developed using ranges of base conditions (R1-R5). Although the CURE plot from 

model V7 had shown significant areas outside the bounds of the plot, it is the best among the seven 

models developed by adding model parameters (V1-V7).  Figure 1 shows the CURE plots for the 
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“Generic” model, “Specific model”, models R2 and V7. Other GOF measures including modified R2, 

CDP, MACD, and Theta are summarized in Table 3. 

 

  
  

(i) (ii) (iii) (iv) 

 
Figure 1: CURE plots of  (i)“Generic” model; (ii) “Specific” model; (iii) Model R2; (iv) Model V7 

 
Table 3: Goodness-of-fit compared for all SPFs 

Models 
Modified 

R2 
CDP MACD Theta 

Generic 0.26 86.0 5582.9 1.163 

Specific 0.65 0.6 101.0 2.230 

R1 0.59 4.5 112.9 1.950 

R2 0.60 2.0 141.9 2.094 

R3 0.35 6.0 635.8 1.607 

R4 0.55 12.0 254.7 1.873 

R5 0.52 37.8 297.1 1.800 

V1 0.30 76.6 4583.8 1.206 

V2 0.35 64.7 3148.8 1.279 

V3 0.35 65.1 3177.5 1.278 

V4 0.35 64.9 3136.5 1.281 

V5 0.35 65.6 3128.4 1.284 

V6 0.29 90.0 3687.5 1.239 

V7 0.37 63.4 1628.1 1.358 

 

The CURE plot resulting from the “generic” SPF (Figure 1 (i)) shows that 86% of the data have 

breached the bands. The model also has a low modified R2 value and theta and high MACD (see Table 

3) indicating an unreliable model. On the other hand, the CURE plot of the “Specific” model has the 

best CURE plot (see Figure 1) and the model possesses the highest values of modified R2 and theta and 

the lowest values of CDP and MACD among all 14 models.  

 From Table 3 it is seen models R1-R5 also have significant GOF measures indicating the reliability 

of the models. Among them, model R2 developed performed the best. However, no improvement is 

observed when ranged base conditions were used compared to the “Specific” model and this is consistent 

with the CURE plots. Based on the GOFs, model V7 is better than the other six (V1-V6). This model 

appeared to portray an improvement in model predictions over the “Generic” model.  

 

3.2 Cross Validation 
The resulting RMSE values are presented in Table 4. Among the four models, the “specific” model 

has the best predictive ability and this is consistent with the results from the previous section. 

Nonetheless, the unavailability of AFs leads to the use of a “Generic” model. However, Table 4 shows 

that model V7 has better predictive ability compared to the “Generic” model.  
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Table 4: Cross Validation using RMSE 
 

Models RMSE1 RMSE2 

Generic 1.27 1.13 

Specific 0.94 0.62 

R2 1.1 0.96 

V7 1.15 1.00 

 

4 Conclusions 
This paper aimed to evaluate a tradeoff between the quality of the SPFs and the coverage of the 

roadway network. According to the HSM and current practices of several agencies, specifying base 

conditions for model development ensures the quality of the SPF. However, while maintaining the 

quality of SPF is the top priority, coverage of the roadway network is important too since any portion 

of the network not used in model development will likely require to be adjusted. Unfortunately, 

adjustment factors are not available for all roadway characteristics. This can limit the application of 

even a high-quality SPF and lead to the implementation of a generic SPF. Although a generic model 

covers the entire network, the quality has to be highly compromised.  

This research demonstrates two approaches to model SPFs that tried to balance the quality of the 

model and roadway network coverage to achieve the maximum benefit. One approach recommended 

is to broaden the range of base conditions to incorporate as much network as possible. Another method 

suggested integrating independent variables into the model. Although the SPFs with base conditions 

(specific or ranges) show very prominent predictive power and model quality, they are still dependent 

on the availability of adjustment factors. On the other hand, the model with explanatory variables (lane 

width, shoulder width, and curvature) has stood out by portraying improvement in model fit and 

predictions compared to the generic model and is independent of any need for adjustments. However, 

the models described in the paper are developed using crashes of all severities indiscriminately. The 

next step of this research will integrate crash severity into the model development. Additionally, future 

research can be employed by exploring some other variables including vertical curve, speed limit, etc. 
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