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Abstract 
 
Current trends in semi-autonomous driving and Advanced Driver Assistance Systems (ADAS) place the driver’s 
state in a spotlight, giving rise to the field of Advanced Driver Monitoring Assistance Systems (ADMAS). Most 
implemented systems rely on vehicle parameters such as lane position, lateral acceleration, and steering wheel 
behavior, addressing situations created by specific states (e.g., inattentiveness or extreme drowsiness).  However, 
they are not typically able to predict events in advance. As a preventive feature, analysis of physiological signals, 
such as Heart Rate Variability (HRV), can provide the insight needed. On the other hand, standard methods to 
acquire such signals are too invasive for a comfortable driving environment, as they normally require the use of 
chest straps.  
This work investigates the feasibility of using Peripheral Cardiac Signals as sources of inter-beat intervals (IBIs) 
for HRV analysis. Specifically, it explores both wrist-based Photoplethysmography (PPG) and off-the-person 
Electrocardiography (ECG) as non-invasive cardiac sensing methods, as well as the interchangeability of these 
systems with gold standard chest straps, to create a flexible framework for drowsiness detection. 
A driving simulator was prepared to record sessions on a highway setup. Three different types of sensors were 
used simultaneously: a chest band (Movesense, ECG with sampling frequency of 512Hz), a wristband (PulseOn, 
PPG at 25Hz), and a steering wheel with conductive surface (Cardiowheel, ECG at 1000Hz). Simulation sessions 
involved 8 volunteers, each participating in two half-hour drives.  
Using the collected data, similarity of HRV features across Peripheral Cardiac Signals was calculated to evaluate 
their equivalency and potential use of such acquisition devices. 
A positive outcome was obtained, as most features showed acceptable levels of similarity (>0.6) and low levels of 
error (<0.1), and the poorly performing features reflect the effects that time uncertainty and temporary signal loss 
have in very short-term time domain features. 
 
Keywords: Driver State Monitoring; Advanced Driver Assistance Systems (ADAS); Heart Rate Variability 
(HRV); Peripheral Cardiac Signals.
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1 Introduction 
 
Current trends in semi-autonomous driving and Advanced Driver Assistance Systems (ADAS) place the driver’s 
state in a spotlight, which allows for the adjustment of vehicle performance and behavior, giving rise to the field 
of Advanced Driver Monitoring Assistance Systems (ADMAS) [1]. Given their easy implementation, and the fact 
that most necessary sensors are already included in modern vehicles, most systems designed to give insight on 
driver’s state rely on features such as lane position, lateral acceleration, and steering wheel behavior. However, 
these features only show significant deviations from baseline when driver states like distraction and fatigue have 
already set in. This limits the benefits that such systems can have, as they can only be used to manage a potentially 
dangerous driver state instead of preventing it. 
 
Physiological signals, on the other hand, reflect the internal state of the individual and can provide information on 
changes in their alertness/drowsiness states before external manifestations occur. This difference allows biosignal-
based solutions to work on prevention rather than management of potentially dangerous driver situations. Various 
signals have been proved to carry such information, namely the Electroencephalogram (EEG) and Heart Rate 
Variability (HRV) [2] [3]. 
 
EEG is the signal obtained by measuring the electrical fields produced by action potentials generated by neurons 
in the brain. Gold-standard devices to acquire it involve a matrix of several electrodes distributed throughout the 
scalp. Although this signal is strongly correlated with cognitive load, alertness and drowsiness onsets, the apparatus 
needed to perform an EEG acquisition is too complex and intrusive, besides requiring specialized technical 
knowledge to properly place the sensors. 
 
HRV is a set of indicators derived from the analysis of the time intervals between heart beats, called Inter-Beat 
Intervals (IBI)s [3]. These intervals are modulated by the balance between sympathetic and parasympathetic 
system contributions, and so its variability reflects the dynamics of that same balance [4]. IBIs are commonly 
obtained by detecting R peaks in an Electrocardiogram (ECG) and measuring the time difference between each 
consecutive pair. From the sequence of IBIs, different features can be derived, which can be divided into three 
main categories: time domain, frequency domain, and non-linear domain. This categorization determines the 
process used to calculate each set of features: statistical description of the interval values, analysis of its frequency 
components, or chaos related metrics, i.e., self-similarity and complexity of the time series of intervals, 
respectively. 
 
While traditional methods to obtain ECG are also intrusive and complex, with several electrodes placed across the 
chest, more user-friendly alternatives can be found, such as chest bands and even off-the-person ECG sensors, of 
which the Cardiowheel is an example [5]. Additionally, cardiac rhythm can also be obtained from 
Photoplethysmography (PPG) [6], which uses the optical properties of hemoglobulin to detect the passage of blood 
on arteries and is increasingly present in consumer electronics products such as smartwatches and fitness 
wristbands. This enlarges the set of options from which to measure cardiac rhythm using non-intrusive sensors. 
This set, off-the-person ECG [7] and PPG, is hereinafter referred to as Peripheral Cardiac Signals. 
 
Having a diverse set of devices capable of providing cardiac rhythm information, and thus derive HRV, accelerates 
the implementation of biosignal-based systems for driver state monitoring, as it provides car manufacturers and 
drivers with the choice of what better suits their product or their utilization of the vehicle. Furthermore, if all 
sensors are proven equivalent, development of solutions to interpret these signals can be made to be agnostic to 
the specific sensor used in each case, and thus be universally distributed. 
 
This work focuses on this last point, addressing the question whether IBIs obtained from different sensors provide 
equivalent information. To test this, a driving simulator was used to collect data from drivers, performing 
simultaneous acquisition with three different sensors: a chest strap, an off-the person sensor (both recording ECG) 
and a wristband (measuring PPG). From these signals, IBI sequences were obtained and HRV features were 
derived in windows of two minutes. At last, the resulting features were compared to investigate their similarity 
across devices. 
 
The pursuit of these questions was prompt by the participation on a large-scale naturalistic driving project, the i-
DREAMS [8], where the ability to measure driver’s state through HRV is a necessity to build its coping capacity 
dimension, i.e., the modelling of how well a driver can adapt to the task at hands. 
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2 Methodology 
2.1 Experimental Setup 

For this work, the experimental sessions were conducted on a driving simulator developed by CardioID under the 
scope of the AUTOMOTIVE project [9]. This simulator, intended to showcase the company’s technology and 
provide an environment for data collection and further development, consists of two urban scenarios and one 
highway connecting them, where drivers manipulate a vehicle through a steering wheel and a set of pedals 
(accelerator and brake). The simulated vehicle had an automatic gear shift so that participants did not have to 
control that variable and could keep both hands on the steering wheel for the duration of the driving session.  

By having the highway being parametrized and procedurally generated, it was possible to customize travelled 
distance and road geometry complexity for this set of measurements. Specifically, the highway was set to have 
30km, with very simple road geometry, i.e., curves demanding a maximum of 5 degrees of wheel turn, and cars 
coexisting in the same road only during the first 5 kilometers, with a speed set to 50km/h. This design was chosen 
to set an alertness incentive at the beginning of the experiment and, after the first five kilometers, to promote 
drowsiness through cognitive underload. By asking subjects to maintain a constant speed of 60km/h throughout 
the session, it was guaranteed that they had initial interactions with the other vehicles and had to overtake them to 
continue their trip. 

Throughout the sessions, subjects were instrumented with three different devices to measure their heart rate and 
subsequently derive HRV features: the Cardiowheel, installed in the simulator’s steering wheel, which directly 
outputted IBI values; the Movesense, a chest band that measures lead I ECG directly in the chest with a sampling 
frequency of 512Hz; and the PulseOn OHR, a wristband with a PPG sensor, measuring this signal at 25Hz. Figure 
1 shows the three devices and their placement on the test subjects. 

 

Figure 1 Placement of sensors: Cardiowheel (left), Movesense (center), PulseOn (right). 

Each driving sessions consisted of 30-minute drives through the highway connecting the two cities in the 
simulation. Participants were asked to perform two sessions, one in the morning and another later in the day to 
promote different baseline alertness/drowsiness states. For all sessions, subjects were informed that they should 
not drink coffee, energetic drinks or consume any type of alcohol. They were also briefed before their first session 
about the experiment objectives and the data being collected, signing an informed consent form. Finally, they were 
instructed to drive at a constant speed of 60km/h, keep both hands on the wheel, follow the rightmost lane every 
time it was possible and follow normal driving rules, i.e., not crossing to the other side of the highway, collide 
with other vehicles, etc. 
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2.2 Data Processing and HRV Derivation 

While Cardiowheel provided the IBI values, both Movesense and PulseOn returned a signal that needed processing 
before those values were obtained. The ECG coming from Movesense was already filtered, thus IBI values were 
obtained by detecting the R-peaks using the Pan-Tompkins method and calculating the time difference between 
successive peaks. PPG signal obtained with PulseOn was firstly filtered using the filter described in [10] and its 
systolic peaks detected using the adaptive threshold method described in [10]. By computing the difference 
between those peaks, this third set of IBI values is obtained. 

Table 1 HRV features evaluated. 

Domain Feature Description 

Time 

mHR Mean of instantaneous heart rates. 

sdNN Standard deviation of normal beats (heart rates 
between 30 and 180bpms). 

sdSD Standard deviation of successive time differences. 

RMSSD Root mean square of successive time differences. 

NN50 Number of successive beats that differ more than 
50ms. 

pNN50 Proportion of successive beats that differ more 
than 50ms. 

NN20 Number of successive beats that differ more than 
20ms. 

pNN20 Proportion of successive beats that differ more 
than 50ms. 

Frequency 

HF High frequency component (0.15 – 0.4Hz). 

TF Total spectral power. 

nuHF Normalized high frequency component (0.15 – 
0.4Hz). 

nuLF Normalized low frequency component (0.015 – 
0.15Hz). 

L2HF Ratio between Low and High frequency 
components. 

Non-
Linear 

SD2 Second component of Pointcaré plot covariance. 

DFAalpha1 α1 component of Detrended Fluctuation Analysis. 
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To mitigate the effects of faulty peaks, the three sequences of IBIs were corrected using the method described in 
[10],  a conservative approach to IBI correction, which, by assuming a limited range of variation between 
successive IBIs, can detect and correct both missed peak detections (abnormally long IBIs) and false peak 
detections (abnormally short IBIs). 

Having the sets of corrected IBIs for each session, HRV features were calculated for each 2-minute window with 
50% overlapping. Table 1 describes the features evaluated. Based on [10], only the features that showed relevant 
performance to detect drowsiness within the time frame of 2 minutes were tested in this work. 

2.3 Comparison of HRV Features 

For each feature, three different pairs of comparison were defined: Movesense–Cardiowheel, Movesense–PulseOn 
and Cardiowheel–PulseOn. Each pair was evaluated using a set of similarity or error metrics, namely: 

Cosine Similarity 

𝑺(𝒇𝟏, 𝒇𝟐) = 	
〈𝒇𝟏, 𝒇𝟐〉

‖𝒇𝟏‖ × ‖𝒇𝟐‖
(𝟏) 

Root Mean Squared Error 

𝑬(𝒇𝟏, 𝒇𝟐) = /∑ (𝒇𝟏𝒊 −	𝒇𝟐𝒊)𝟐𝒏
𝒊$𝟏

𝒏 	 (𝟐) 

Normalized Root Mean Squared Error 

𝑬(𝒇𝟏, 𝒇𝟐) = 	
3∑ (𝒇𝟏𝒊 −	𝒇𝟐𝒊)𝟐𝒏

𝒊$𝟏
𝒏 	

𝐦𝐚𝐱(𝒇𝟏) −𝐦𝐢𝐧	(𝒇𝟏)
(𝟑) 

Root Mean Square Similarity 

𝑺(𝒇𝟏, 𝒇𝟐) = 	:
∑ ;𝟏 −	 |𝒇𝟏𝒊 −	𝒇𝟐𝒊||𝒇𝟏𝒊| +	 |𝒇𝟐𝒊|

>𝒏
𝒊$𝟏

𝒏
(𝟒)

 

Equations (1-4) define the metrics used, where S and E relate to metrics of Similarity and Error respectively, f1 
and f2 correspond to the feature vectors being compared, and their subscripted version corresponds to the i-th entry 
of that vector. 

3 Analysis and Results  
In this experiment, 16 sessions were recorded, two for each of 8 subjects (7 males and 1 female). This population 
was characterized by ages 33.42 +/- 10.90, each participant with more than 4 years of driving experience. 

The results of computing the descripted metrics for all features are presented in Tables Table 2, Table 3, and Table 
4, which aggregate features from each of the three domains: time, frequency, and non-linear respectively. 

Time domain features, Table 2, present overall very high similarity between all sources, except for sdNN, sdSD 
and RMSSD, which have low cosine similarities and higher normalized RMSE. It is also noteworthy that in these 
cases, the pairs that perform particularly poorly are the ones involving Cardiowheel, with the normalized RMSE 
being highest when comparing the Cardiowheel with PulseOn, the two non-intrusive sensors. 
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Regarding frequency domain features, Table 3, normalized high and low frequency components, as well as the 
ratio between the two, present RMSS very close to 1.0 and normalized RMSE bellow 0.1 across all pairs. This 
suggests high levels of proximity between the features produced by different source signals. In these features, 
cosine similarity also points to some degree of equivalence across signals, however, while the Movesense–PulseOn 
pair presents values very close to 1.0, the pairs involving Cardiowheel see that metric reduced to around 0.5 in the 
normalized low frequency component and L2HF. High frequency and total spectrum power have lower similarities 
and higher error than the other frequency domain features. In particular, the Cardiowheel–PulseOn pair has a 
cosine similarity close to 0.2 in both features, suggesting no relevant similarity, and the pair Movesense–
Cardiowheel has a normalized RMSE above 0.5, also indicating a significative difference between these features 
when obtained from different sources. 

Table 2 Results for time domain features. 

Feature 
Pair Cosine 

Similarity RMSE Normalized 
RMSE RMSSimilarity 

mHR 

Movesense – Cardiowheel 0,958387 1,066298 0,014459 0,945729 

Movesense – PulseOn 0,978380 0,773849 0,010493 0,960405 

Cardiowheel – PulseOn 0,939877 1,268887 0,018433 0,930115 

sdNN 

Movesense – Cardiowheel 0,203325 0,016876 0,2672329 0,726198 

Movesense – PulseOn 0,542674 0,009089 0,1439350 0,703759 

Cardiowheel – PulseOn 0,215653 0,016236 0,933386 0,649901 

sdSD 

Movesense – Cardiowheel 0,289917 0,015607 0,357587 0,675396 

Movesense – PulseOn 0,530272 0,008722 0,199838 0,67017 

Cardiowheel – PulseOn 0,233871 0,015815 1,477078 0,630129 

RMSSD 

Movesense – Cardiowheel 0,289713 0,015593 0,359581 0,675400 

Movesense – PulseOn 0,530272 0,008704 0,200714 0,670122 

Cardiowheel – PulseOn 0,233364 0,015800 1,552089 0,630512 

NN50 

Movesense – Cardiowheel 0,749212 1,417968 0,05082 0,63465 

Movesense – PulseOn 0,780969 1,540242 0,055202 0,699453 

Cardiowheel - PulseOn 0,916018 0,994277 0,026706 0,754901 

pNN50 

Movesense – Cardiowheel 0,467594 0,020196 0,107627 0,648427 

Movesense – PulseOn 0,637097 0,01678 0,089422 0,670803 

Cardiowheel – PulseOn 0,648511 0,018096 0,084206 0,751066 

NN20 

Movesense – Cardiowheel 0,837069 2,206398 0,03532 0,727669 

Movesense – PulseOn 0,935737 1,672681 0,026777 0,813197 

Cardiowheel – PulseOn 0,923399 1,677352 0,023067 0,828699 

pNN20 

Movesense – Cardiowheel 0,691023 0,02452 0,056349 0,756558 

Movesense – PulseOn 0,846615 0,018224 0,04188 0,793279 

Cardiowheel – PulseOn 0,802769 0,021226 0,043277 0,872096 
 
 
At last, referring to non-linear domain features, Table 4,  the 𝛼& component of Detrended Fluctuation Analysis 
presents values of cosine similarity and similarity close to one and low errors, while the SD2 component of 
Pointcaré plot has lower values of cosine similarity, with the pairs that include Cardiowheel reaching values around 
0.2 for this metric. In this feature, RMSE is also increased, however, the decrease in RMSS is not as evident as in 
other cases where cosine similarity and normalized RMSE suggested a significative difference. 
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Table 3 Results for frequency domain features. 

Feature 
Pair Cosine 

Similarity RMSE Normalized 
RMSE RMSSimilarity 

HF 

Movesense – Cardiowheel 0,40654 0,013265 0,527108 0,553828 

Movesense – PulseOn 0,612903 0,006506 0,258531 0,575903 

Cardiowheel – PulseOn 0,275265 0,013898 0,172965 0,48963 

TF 

Movesense – Cardiowheel 0,403181 0,013297 0,545524 0,554915 

Movesense – PulseOn 0,611312 0,00652 0,267489 0,572869 

Cardiowheel – PulseOn 0,273191 0,013915 0,175973 0,48979 

nuHF 

Movesense – Cardiowheel 0,81655 0,022791 0,033073 0,940106 

Movesense – PulseOn 0,952292 0,016596 0,016596 0,968696 

Cardiowheel – PulseOn 0,796512 0,039996 0,039996 0,935895 

nuLF 

Movesense – Cardiowheel 0,510887 0,017098 0,074342 0,897524 

Movesense – PulseOn 0,835513 0,008503 0,03697 0,926742 

Cardiowheel – PulseOn 0,437627 0,017811 0,120265 0,891558 

L2HF 

Movesense – Cardiowheel 0,587397 0,018956 0,058385 0,875981 

Movesense – PulseOn 0,87113 0,009712 0,029914 0,905664 

Cardiowheel – PulseOn 0,533638 0,019627 0,085455 0,869662 
 
 

Table 4 Results for non-linear domain features. 

Feature 
Pair Cosine 

Similarity RMSE Normalized 
RMSE RMSSimilarity 

SD2 

Movesense – Cardiowheel 0,172544 0,018242 0,208453 0,741036 

Movesense – PulseOn 0,53606 0,010226 0,116857 0,715625 

Cardiowheel – PulseOn 0,226707 0,01711 0,434034 0,658692 

DFAalpha1 

Movesense – Cardiowheel 0,783841 0,031933 0,035119 0,86737 

Movesense – PulseOn 0,94096 0,016776 0,01838 0,889121 

Cardiowheel – PulseOn 0,76454 0,030981 0,045591 0,863951 
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4 Discussion 
 
Out of the 15 analyzed features, 9 present similarity values that indicate the feasibility of using any of the three 
different sources to derive heart rate variability with equivalent results. However, the remaining 6 need further 
discussion, as the results indicate an obstacle to seamless interchange between sensor devices for a HRV based 
drowsiness detection system.   
 
For time domain features, the ones with lowest performance were sdNN, sdSD and RMSSD, all of them particularly 
sensitive to the precision of each measured IBI. This precision is the factor that is most affected when switching 
devices and we can identify two reasons for this. Firstly, by changing device, sampling frequency of the base 
physiological signal (ECG or PPG) is changed. This way, having devices with sampling frequencies 1kHz, 512Hz 
and 25Hz, the uncertainty associated with measuring a given IBI is, respectively 1ms, 2ms and 40ms. Furthermore, 
the fact that the ECG detected by the Cardiowheel depends on constant and symmetric contact of both hands on 
the steering wheel makes it the source most likely to have signal loss during sessions. When possible, detected 
segments with missed signal have IBIs interpolated to try to minimize the impacts of missing beats for such short-
term HRV analysis. This reconstruction introduces an error that, depending on the duration of signal loss moments, 
can greatly surpass the uncertainties described previously. 
 
The points described in the last paragraph also fit as an explanation for the poorer performance of features like 
high frequency component and SD2, that are affected by, respectively, very short-term fluctuations in IBI values, 
and differences between successive IBIs. 
 
Regarding the results of total spectrum energy, TF, it is important to acknowledge the resemblance between this 
feature’s results and the ones from HF. This similarity suggests that differences between TF estimations from 
different sources are mainly guided by changes in high frequency components, again adding evidence to the 
proposition that local uncertainty and reconstruction error are in the origin of this feature’s dissimilarity across 
devices. 
 
Finally, the fact that worst cases are pairs where Cardiowheel is involved leads to the claim that reconstruction 
error is more relevant than time resolution. This is especially relevant to establish that, even having an uncertainty 
of 40ms when estimating IBIs, devices measuring PPG at sampling frequencies as low as 25Hz are not to be 
discarded as alternatives to cardiac rhythm sensors for driver drowsiness detection applications. 

5 Conclusions 
 
This work aimed to make a first step into the research of HRV-based driver drowsiness detection systems capable 
of obtaining data from any source of cardiac rhythm information. To do so, three different devices were used in 
simulated driving sessions: a chest band and a steering wheel capable of measuring ECG, and a wristband 
measuring PPG. 
 
By measuring similarity and error between HRV features derived from these sources, a positive outcome was 
obtained, as most features showed acceptable levels of similarity (>0.6) and low levels of error (<0.1). However, 
some aspects must be taken into consideration when using this equivalency, namely that features related to very 
short-term variations, such as ones dealing with successive IBIs and high frequency components, are the most 
affected by imprecisions in IBI estimation and reconstruction in case of signal loss; and that signal loss is the most 
powerful source of dissimilarity. 
 
These results show that all three sensors are potentially usable in the context of drowsiness detection, presenting 
a trade-off between signal quality and convenience of use. While chest straps are without any doubt the sensor 
type that provides signal with better quality and robustness, it must be voluntarily worn by the drivers each day. 
As a middle ground, smart watches and wristbands provide a wearable with high population penetration. Yet, these 
wearables are considered a fashion choice, and some drivers might not adhere to it. The steering-wheel form factor 
of the CardioWheel guarantees the presence of the sensor in all drives and demands no alteration on drivers daily 
actions and fashion choices but needs to successfully identify segments of time where incorrect contact with the 
sensor is made. Overall, the authors see the results of this study as supporting a future where different drivers 
select the sensor type that better suits their habits, style and needs, but more importantly, where this trade-off 
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between signal quality and convenience of use does not compromise the implementation of drowsiness detection 
based on HRV analysis in any point of its range. 
 
To solidify the insight gained during this work, future work must be developed. Similar sessions must be conducted 
on a larger population, one that better equalizes gender distribution and covers a wider age range. Also, an analysis 
must be conducted to determine a threshold of missing signal proportion from which HRV analysis is blocked, to 
minimize the errors created by excessive reconstruction. Furthermore, collection of such data would allow the 
investigation of which HRV features are relevant for drowsiness detection. 
 
A future step that should also be taken is to evaluate the effect of changing the device on drowsiness detection 
coherence, i.e., to collect HRV data with different devices in driving sessions and have drowsiness levels 
annotated. 
Machine learning models could then be built using the reference data source, i.e., ECG measured directly in the 
chest, and the collected drowsiness state annotations. The agreement between this model’s predictions on reference 
device data and other devices’ data should be measured to determine whether a sensor agnostic drowsiness 
detection system can exist, and the impacts that the type of sensor has on its performance. 
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