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Abstract 

 
Geometric design consistency is the conformance of road geometry with driver’s expectation.  Studies have 

identified different consistency measures understanding the driver-vehicle-infrastructure interactions, and these 

are important surrogate measures for safety analysis. The most common among these is speed-based 

inconsistency. Though the micro-level impact of inconsistency on road safety is widely explored, the macro-level 

safety evaluation, this study considers the spatial spread of speed-based local inconsistency in a road network and 

evaluation using inconsistency as a factor is yet to be analysed. To better analyse the impact of the spread of 

inconsistency, a spatial unit is defined based on homogeneity of local inconsistency. The spread of local 

inconsistency quantified as speed variation at every curve-tangent and curve-curve transition in the network is 

spatially clustered to define the spatial unit of safety analysis. Two network-level inconsistency measures are then 

computed for these regions, and are used to model crash frequency in these regions. Network level inconsistency 

measure together with network structure present significant effect on macro-level road safety. Results indicate the 

applicability in inconsistency and network structure in identifying macro-level hotspots in road networks.  
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1. Introduction 

 

Driving involves the interaction of infrastructure with the driver. The disharmony in this interaction have been 

recently evaluated using geometric design inconsistency, which relates driver’s expectancy and road 

infrastructure.   The impact of different inconsistency measures has been reported in safety studies, among which 

the most commonly used is speed-based inconsistency [1,2,3,4,5,6,7] since speed is a collective representation of 

several factors on the road. Though inconsistency have been identified as a potential factor in crash analysis at 

local scale, its impact in terms of its spread at network scale has not been explored. This study evaluates the 

influence of network scale inconsistency measure on macro-level road safety.  

 

For macro-level safety analysis, an important issue of spatial model is the choice of certain level of spatial unit. 

Traditional macro-level safety analysis uses spatial units such as traffic analysis zones (TAZ) and census tract, 

which often fails the criteria of spatial homogeneity w.r.t variable and this aggregation level significantly affects 

the model performance.  Therefore, the decision of spatial unit should be done based on the scope of the study. 

For example, to analyze the significance of traffic in road safety, Wang et al. [8] developed a new spatial unit 

based on traffic density homogeneity. The results proved the inevitability of homogeneity of traffic characteristics 

in the spatial unit to capture the significance of traffic in crash occurrence. Thus, to reduce the error due to 

ecological fallacy and to get a reliable inconsistency measure at network scale, an appropriate spatial partitioning 

approach should be employed to define the spatial unit, such that the spatial homogeneity in inconsistency is 

ensured. This study presents two objectives of defining the spatial unit for macro-level safety analysis and 

analyzing the impact of network-level inconsistency in road safety. 
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2. Methodology 

Different spatial partitioning methods such as k-mean clustering, regionalization with dynamically constrained 

agglomerative partitioning, normalized cut minimization etc. [8,9,10] have been employed in road safety studies 

for the aggregation of spatial levels. Here, to divide the network into regions, spatially constrained hierarchical 

clustering (SCHC) with contiguity constraints is adopted. Two spatially contiguous entities with lowest 

dissimilarity are clustered, and the dissimilarity matrix and contiguity matrix are updated each time a new merge 

unit is formed. The dissimilarity matrix is defined using the inconsistency measure in the network. Operating 

speed-based inconsistency is a reliable indicator of crash occurrence and is commonly adopted in road safety 

studies. In the present study, the network is segmented based on curvature, and the local inconsistency at every 

tangent-curve and curve-curve transition quantified as maximum of variation of speed (∆V85) at transition in both 

direction of travel. 

As network-level inconsistency estimate, we propose two measures; a) average of inconsistency in the region (𝐼)̅ 

and b) inconsistency density in the region (ID10). Average inconsistency in the region is calculates as the average 

of all the inconsistency of the segments in the region, whereas, the inconsistency density is calculated as the 

density of speed variation greater than 10 kmph in the region.  

To account for the unobserved effect of macro-level factors such as demography, traffic operational features, road 

network structure, we propose the use of network centrality measure as a proxy. Several studies have reported the 

correlation of network centrality measure with that of land use, traffic and travel demands [11,12,13,14,15]. Edge 

betweenness centrality captures the importance of each road segment considering it being central and 

intermediatory. For the present study, a modified access weighted edge betweenness centrality (𝐶. 𝐴̅̅ ̅̅ ̅) is estimated 

to incorporate accessibility conditions in the network structure. 

3. Analysis and Results 

For the macro-level crash analysis using network level inconsistency, the road network consisting of major roads 

in Thiruvananthapuram district in Kerala state of India is considered. Based on the curvature criteria, the network 

is segmented into 1429 curves and 745 tangent segments using Road Curvature analyst, a GIS add-in tool 

developed by Bil et al. [16]. Due to unavailability of speed prediction data applicable at network scale, this study 

resorts to crowd-sourced speed from Google map. The geocoded crash data was provided by Road safety 

authority, which was further filtered to obtain crash data specific to major roads. Using SCHC, the network 

segments are clustered to form 64 network regions. A Moral I value of 0.66 with a p-value of 0.01 indicated that 

the data has been significantly and well clustered.  

Due to the overdispersion property of crash count data, the negative binomial is widely adopted for crash 

modeling. [17,18,19,20]. Here, a negative binomial model is used to predict crash frequency in the regions defined. 

As a preliminary analysis, the correlation trend of inconsistency measures with crash count was analyzed using 

scatter plot, which represented linear trend for average inconsistency and inverse relation with inconsistency 

density as depicted in Figure 1a and 1b respectively. The scatter plot suggests the presence of unobserved variable. 

Therefore, to account for this, network variable is considered along with each of the inconsistency measure. Two 

developed models namely model I and model II with significance of variables and model goodness of fit statistics 

are presented in Table 1. Goodness of fit of model was assessed using Pearson’s χ2 statistics, log-likelihood chi-

square, and Akaike’s Information Criteria (AIC). Both Pearson’s χ2 statistics, log-likelihood chi-square represent 

good fit and AIC value when compared suggest model with inconsistency density and weighted betweenness as 

more significant. 

4. Discussion 

The association of inconsistency with crash occurrence is evident from the signs and significance of coefficients 

of inconsistency measures in models I and II. The modified inconsistency with weighted betweenness measure 

indicates increase in crash count as both betweenness and inconsistency increase. This implies that, a region with 

driving instances of high-speed variation, high accessibility and highly central road are highly vulnerable to crash 

occurrence. Whereas, the model estimates with inconsistency density represents negative association of 

inconsistency with crash occurrence. This suggest that rare occurrence of high-speed variation affect driver 

expectancy. 

 



 

3 
 

 
Figure 1. Scatter plots of crashes in network regions against: (a) average inconsistency and  (b) 

inconsistency density  

 

 

Table 1: Crash frequency models with network-level inconsistency variables 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Conclusion 

The study presents a methodology for macro-level safety evaluation considering network-level design 

inconsistency measures. The macro-level empirical analysis indicates that all instances of high variation in speed 

need not be crash inducive. Models indicate that the impact of inconsistency on road safety is interlinked with the 

network structure of the region. Results infers that high variation of speed in region of highly accessible and 

central roads leads to crash occurrence. Similarly, the inconsistency density within a region also plays a crucial 

role in safety assessment. This measure reflects the driver expectation acquisition phenomenon at a macro scale. 

For example, a driver would pre-conceive the presence of frequent sharp curve on a road network in hilly regions, 

making the traverse free of surprises. The regional trends of crash occurrence based on the inconsistency in the 

region can be a promising application to practitioners in identifying macro-level hotspots. 
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Model I : 𝒀𝒊 =  𝒆𝜷𝟎 . 𝒆𝜷𝟏.  �̅� .𝑪.𝑨̅̅ ̅̅̅
 

Variable Estimates Sig. 

(Intercept) 3.064 0.000 

𝐼.̅ 𝐶. 𝐴̅̅ ̅̅ ̅ 0.063 0.000 

Pearson χ2 93.071  

χ2
(0.001) 102.15  

Log-likelihood Chi-square 61.269 0.000 

Log-likelihood -295.885  

AIC 595.769  

Model II :   𝒀𝒊 =  𝒆𝜷𝟎 . 𝒆𝜷𝟏.  𝑰𝑫𝟏𝟎.+ 𝜷𝟐.𝑪.𝑨̅̅ ̅̅̅
 

(Intercept) 4.115 0.000 

ID10 -0.276 0.000 

𝐶. 𝐴̅̅ ̅̅ ̅ 0.376 0.000 

Pearson χ2 81.549  

χ2
(0.001) 100.881  

Log-likelihood Chi-square 94.818 0.000 

Log-likelihood -281.145  

AIC 568.290  
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