DESIGN CONSIDERATIONS OF MODERN ROUNDABOUTS

Dimitris Nikou, MSc, Research Associate National Technical University of Athens dnikou@gmail.com

Sophia Vardaki PhD, Senior Researcher National Technical University of Athens sophiav@central.ntua.gr

Stergios Mavromatis, Assistant Professor Technological Educational Institute of Athens stemavro@teiath.gr

> George Kanellaidis, Professor National Technical University of Athens g-kanel@central.ntua.gr

Introduction

Modern Roundabouts have become Popular Worldwide due to their Geometric Design, which, Compared to Other At-grade Intersection Types, Provide:

- > speed control (lower vehicular speeds)
- safety performance regarding all users (conflict points reduced, crossing conflicts eliminated)
- efficient traffic control and lower delays (given that their capacity is not exceeded)
- > more attractive aesthetics and eco-friendly implementation

- Provide a Framework of the Most Critical Geometric Features of Modern Roundabout Design
- Outline a Correlation regarding Design Considerations of Current International Practice and Guidelines between UK, US and Germany
- Investigate whether Innovative Roundabout Layouts Outmatch their more Traditional "Rivals"
 - turbo roundabouts vs 2-lane roundabouts

Basic Roundabout Types

Mini-Roundabouts

- urban use
- Fully traversable central island

Basic Roundabout Types

Single-Lane Roundabouts

- urban and rural use
- > non- traversable central island
- > with or without truck apron

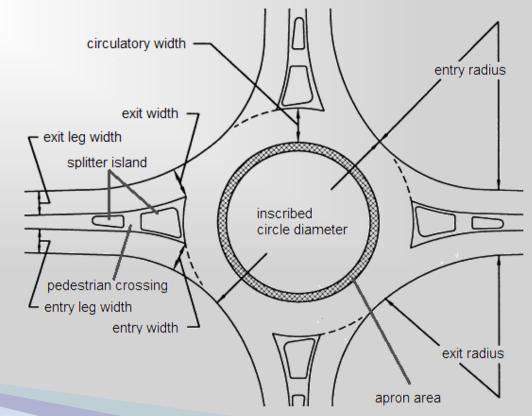
Basic Roundabout Types

Two-Lane Roundabouts

- > urban and rural use
- non- traversable central island
- with or without truck apron

In Germany, Circulatory Roadway without Lane Markings and Strictly Single-Iane Exits (Compact 2-Iane Roundabouts)

(3/3)



General

Roundabout Design Guidelines Reflect a Country's Considerations

- cultural
- behavioral
- environmental
- Control Values for each Geometric Design Element Vary
- Generally UK and US Guidelines Converge Significantly in Most Cases

Critical Design Parameters Basic Geometric Elements

Mini Roundabout Guidelines

Design Element	UK	US	German	
Average operating speed (km/h)	—	< 50	< 50	
Central island treatment	fully traversable			
Typical inscribed circle diameter ^(m)	≤ 28	13 - 27	13 - 24	
Circulatory roadway width (m)	4.5 – 5.5	4.2 – 5.5	4.5 - 6.0	
Typical daily service volumes ^(veh/day)	not specified	≤ 15,000	≤ 20,000	
Entry Lanes	1	1	1	
Exit Lanes	1	1	1	
Urban - Rural	urban			

Single-Lane Roundabout Guidelines

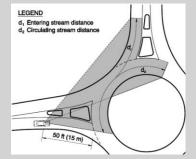
Design Element		UK	US	German
Average operating speed (km/h)	—		< 50	< 50
Central island treatment			raised	
Apron utilization if required	trav	/ersable	traversable	traversable (urban)
Typical inscribed circle diameter ^(m)	28 - 36		27 - 55	26 - 50
Circulatory roadway width (m)	:	≤ 5.5	≤ 6.5	6.0 - 8.0
Typical daily service volumes ^(veh/day)	not	specified	≤ 25,000	≤ 25,000
Entry Lanes		1	1	1
Exit Lanes	1		1	1
Urban - Rural			urban - ru	ıral

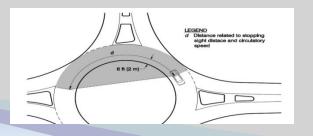
			Contraction of the second s			
Multilane Roundabout Guidelines						
Design Element	UK	US	German			
Average operating speed (km/h)	_	< 50	< 50			
Central island treatment		raised				
Apron utilization if required	traversable	traversable	traversable (urban)			
Typical inscribed circle diameter ^(m)	not specified (even > 100)	46 - 90	40 - 60			
Circulatory roadway width ^(m)	≤ 12.5	8.5 - 9.8 (2 lane) 12.8 - 14.6 (3 lane)	8.0 – 10.0			
Typical daily service volumes ^(veh/day)	not specified	≤ 45,000	≤ 32,000			
Entry Lanes		2+	1 or 2			
Exit Lanes		2+	1			
Urban - Rural	urban - rural	urban - rural	rural (mainly)			

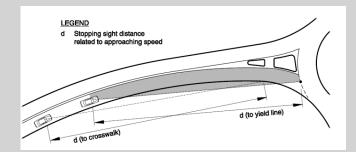
Speed Impact

- Roundabout's Operating Speed Mostly Critical in Terms of Evaluating Safety Performance
- Frequency of Crashes Directly Related to Volume, Severity of Crashes Directly Associated to Speed
- Attention to the Speed of a Roundabout is Fundamental in Order to Attain Good Safety Performance
 - > design successive reserve curves of reducing radii values in advance of the roundabout
 - > at entry area, between conflicting traffic streams, consistency in the relative speed values is critical
 - minimize the crash rate
 - ✓ force vehicles to negotiate the roundabout along a curved path

Critical Design Parameters Design Vehicle

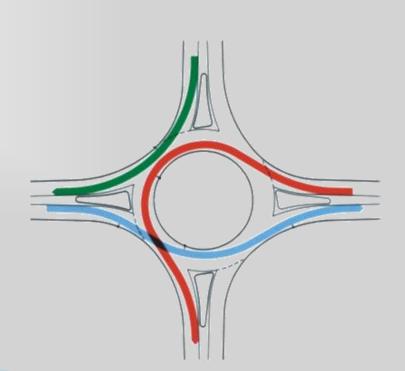

- Accommodation and Maneuvering Requirements (Swept Path) determines in Great Extent the Roundabout's Final Layout (Entry & Exit Radii)
- Simulation of Vehicle's Swept Path is Encouraged via Computer Simulation in all Approaches




Critical Design Parameters Sight Distance

- US & UK Guidelines Provide Evaluation Methods for both SSD and ISD, where Greater than Control Values should be Provided
- In German Guidelines Visibility is Considered Fundamental and Drivers must be Constantly Able to Perceive the Presence of other Vehicles, Pedestrians and Bicyclists

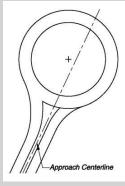
Critical Design Parameters Entry Path Deflection

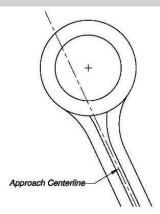


US & UK Guidelines

- provide adequate entry path deflection through
 - inscribed circle diameter
 - circulatory roadway width, entry & exit widths, radii, angles

German Guidelines


 proper central island size is considered to provide adequate deflection



Critical Design Parameters Approach Alignment

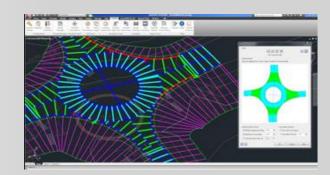
- Radial Alignment of each Leg's Centerline, so Drivers to Negotiate Roundabout at Lower Speeds while Entering and Exiting (Common Design Practice)
- In UK & US the Centerline is Offset (Right or Left) so that Entry Path Deflection Increases and Vehicular Entry Speeds Decrease (Multilane Roundabouts)
 - consequence: higher exit speeds

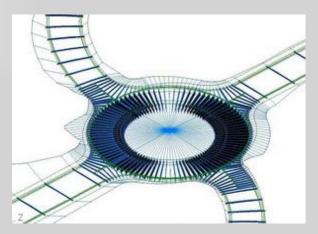
Critical Design Parameters Number of Legs and Angle Between

- US and UK Guidelines Suggest Roundabouts to be Designed with 3 – 4 Approach Legs
 - > double or signalized roundabout if more legs required
- Angle between Legs
 - ideally 90° or near
 - Iarger angles encourage high negotiating speeds to right-turning flows (left in the UK)
 - Iower angles result to accommodation problems for trucks

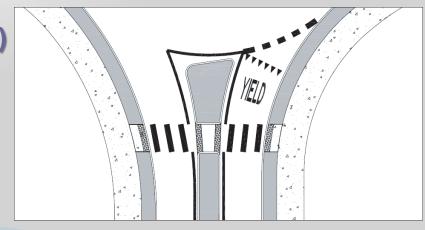
TOANA

- German Guidelines Utilize Apron Areas Only in Urban Layouts (mostly Single-lane)
- German and US Guidelines
 Suggest Apron Width Not to Exceed
 1/3 of Circulatory Roadway
 (>1.0m, <4.5m)
- Raised (3cm 7cm)
- Surface's texture different


Truck Apron



- Drainage
- Outward Slope
 - ➤ US, 2.0%
 - > German, 2.5%
- Inward Outward Slope (UK)
 - Sector Secto
 - > ≤2.5%, small urban (outward)


Cross Slope

Critical Design Parameters Splitter Islands (1/2)

- Separate and Guide Entering and Exiting Traffic
- Assist Speed Control
- Forms
 - raised (refuge for pedestrians)
 - painted
 - traversable

Critical Design Parameters Splitter Islands (2/2)

Roundabout Types

> mini

 ✓ splitter islands mandatory at every approach (US, UK)
 ✓ splitter islands optional (German)
 > single-lane, multilane
 ✓ raised– painted (UK, German)

✓ raised (US)

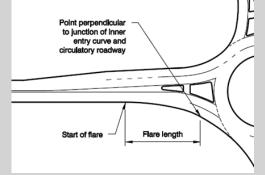
Various Design Dimensions

width, length, location of pedestrian area

Critical Design Parameters Entry Width and Flaring (1/2)

Entry Width Dimensions

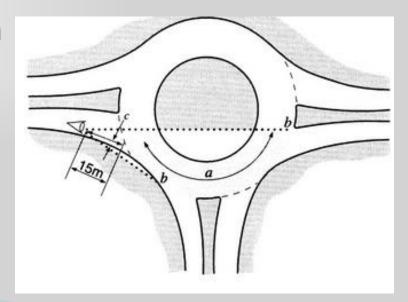
- > UK
 - ✓ 3.0m 3.5m / lane, 2+ lane entries
 - ✓ 4.5m, 1 lane entry
- > US
 - ✓ 3.7m 4.6m / lane, 2+ lane entries
 - √ 4.2m 5.5m, 1 lane entry
- > German
 - √ 3.25m 3.75m / lane, urban
 - 3.50m 4.00m / lane, rural



Critical Design Parameters Entry Width and Flaring (2/2)

□ Flaring

- local widening of entry roadway from approach area to the entry width
 - ✓ additional entry capacity
 - ✓ more efficient accommodation of large vehicles
- > UK
 - ✓ min width 2.5m existing entry lanes
 - ✓ min length 10m (urban), 50m (rural)
- > US
 - ✓ min width equals existing lane
 - length maximized within site constraints
 - ✓ vane island design based on design vehicle



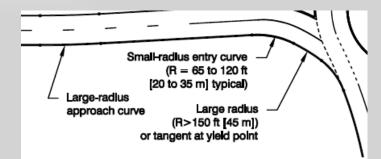
Critical Design Parameters Entry Radius (1/2)

Entry Radius Selection

- > desired speed
- visibility
- design vehicle accommodation

Entry Radius (2/2)

u US


- > 15m 30m single-lane RBs
- compound curve or tangent at multilane RBs
 - ✓ align vehicles into proper circulatory lane
 - ✓ 6m before circulatory roadway, radius (20m 35m) followed by a tangent or radius (>45m)

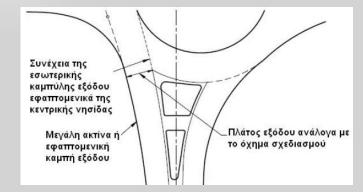
German

- 8m 10m, mini RBs
- > 10m 14m (urban), 14m 16 (rural) single-lane RBs
- > 12m 16m (urban), 14m 16 (rural) Compact 2-lane RBs

ם UK

- > >10m, mini RBs
- > >15m, single-lane RBs
- > <100m, multi-lane RBs

D UK


- exit widths equal entry widths, single-lane entries and exits
- > 10.0m 11.0, 2-lane exit RBs

u US

exit widths equal entry widths in general

German

- 3.50m 4.00m, urban
- 3.75m 4.50m, rural

Exit Width

Critical Design Parameters Exit Radius (1/2)

Exit Radius Selection

- provide maneuvering sufficiency for design vehicle
- safe pedestrian crossings (urban)
 - ✓ slow exit path speeds
- > avoid potential conflict between exiting and circulating flow (multilane RBs)
 - ✓ force paths of entering traffic to cross the relevant paths of circulating traffic

Critical Design Parameters Exit Radius (2/2)

D UK

exit curvature designed equal to entry

u US

- exit curvature designed greater than entry
- > 30m 60m single-lane
 - ✓ >250m in certain cases (truck-trailer)

German

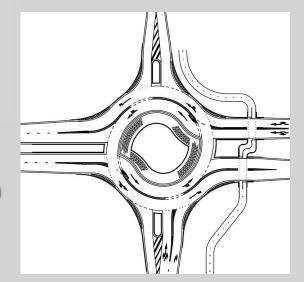
- 8m 10m, mini RBs
- **12m 16m, urban**
- 16m 18m, rural

Critical Design Parameters Bypass Lanes

Right-turn Lanes (Left-turn UK)

- > do not share the same entrance line with the other directions (through and left-turning)
- May Allow a Roundabout to Function Acceptably and Avoid Upgrade
- Considered as the First Step for Increasing Capacity
- Endorsed by All 3 Guidelines

Safety Performance


- Converting a Traditional Intersection to RB may Induce Reduction of Over 70% for Fatal and Severe-injury Accidents
- Low-cost Damage-only Accidents Usually Occur
- Single-lane Rbs seem to be the Safest
 Type Among All Intersections
- Positive Guidance Through Geometry can have a Positive Impact for Further
 Decrease in Accident Rates

Special Roundabout Design Concept Turbo Roundabouts

- Achieves Concurrently High Capacity (Similar to 2-lane RBs), and High Safety Performance (Similar to Single-lane RBs)
- Reduces the Number of Conflicts and Increases Capacity
- Principles
 - no lane changing on the RB
 (circulatory lane is defined before entering)
 - > no weaving is possible (raised lane dividers)
 - Iow driving speeds through the RB

(1/2)

Special Roundabout Design Concept Turbo Roundabouts

(2/2)

- Raised Lane Dividers on Circulatory Roadway
 - Dutch guidelines suggest
 - German guidelines avoid (winter maintenance and motorcycle safety)
- In Germany, Turbo RBs Suggested
 Only in Rural Environment
 (No Pedestrians, No Cyclists)

Conclusions

Popular At-grade Intersection Configuration

- increased safety performance
- efficient traffic control
- Proper Geometric Design Key Issue
 - determines vehicle speed control
 - achieves consistency in the relative speed between conflicting traffic streams

Conclusions

Mini Roundabouts

designed under common approach

Compact Single-lane Roundabout

- safest layout
- similar approach in terms of design

Multilane Roundabouts

- marginal differences between both UK and US guidelines and the relevant German
 - German: no more than two-lane roundabouts, circulatory path with single lane operation for trucks, noticeable design differences at entry - exit areas

Conclusions

Roundabout Configurations

- reduce the number of conflicts
- eliminate the crossing maneuver
- accidents mainly involve PDO
- Research in Safety Impact of Roundabout Conversions
 - radical improvement in pedestrian accident rates

pedestrian safety remains an issue of concern

 curb geometry requires special care as to impose slow entrance/exit path speeds