

INTERNATIONAL CONGRESS ON TRANSPORT INFRASTRUCTURE AND SYSTEMS IN A CHANGING WORLD

Road Geometric Design

Crest Vertical Curvature Safety Assessment through Variable Grade Stopping Sight Distance Control

Stergios Mavromatis, Vassilios Matragos, Panagiotis Papantoniou

stemavro@central.ntua.gr

<u>vasmatragos@mail.ntua.gr</u>

ppapant@central.ntua.gr

National Technical University of Athens, Greece

http://www.transport.ntua.gr

September 23-24, 2019

Stopping Sight Distance (SSD)

Highway Geometric Design Element of Fundamental Importance

- Must be provided at every point along the road surface
- Affects critical road design parameters (e.g. vertical curvature)
 - imposes economic considerations on new road designs and road improvement projects

Based on AASHTO's Design Guide (Green Book)

- Significant difference in SSD between upgrades and downgrades
- Regarding vertical curves, the grade effect is somewhat balanced
 no need to adjust SSD due to grade
- Moreover (Green Book):

...minimum lengths of crest vertical curves, based on sight distance criteria, generally are satisfactory from the standpoint of safety, comfort and appearance

→ vertical curvature rate is <u>adequately</u> determined through the suggested control values

Investigate the Sufficiency of the Suggested Crest Vertical Curvature Rates (CVCR) from the Grade Control Point of View

3 assessed road design guidelines

- AASHTO (2018)
- OMOE-X (2001)
- DM n.6792 (2001)

$$SSD = \frac{V_{o}t_{pr}}{3.6} + \frac{1}{3.6^{2}g} \int_{V_{o}}^{0} \frac{V}{\frac{s}{100} + f_{T} + \frac{A_{d}}{mg}} dV$$

SSD (m): stopping sight distance

 V_{o} (km/h): vehicle initial speed

t_{pr} (sec): driver's perception – reaction time [2.5sec (AASHTO), 2.0sec (OMOE-X), 2.8-0.01V_o (DM, n.6792)]

 $f_{\scriptscriptstyle T} \colon$ upper limit of longitudinal friction engaged for braking

A_d (N): vehicle drag resistance

m (kgr): vehicle mass

s (%): road grade [(+) upgrades, (-) downgrades]

g (m/sec²): gravitational constant $[9.81 \text{ m/sec}^2]$

Current SSD Determination

AASHTO (2018)

$$SSD = \frac{V_{o}t_{pr}}{3.6} + \frac{1}{3.6^{2}g} \int_{V_{o}}^{0} \frac{V}{\frac{s}{100} + f_{T} + \frac{A_{d}}{mg}} dV$$

$$SSD = \frac{V_{o}t_{pr}}{3.6} + \frac{V_{o}^{2}}{2 \ 3.6^{2}g(\frac{s}{100} + \frac{a_{average}}{g})}$$

 $a_{average}$ (m/sec²): average vehicle deceleration rate [3.4m/sec² = 0.35g]

Current SSD Determination

$$SSD = \frac{V_{o}t_{pr}}{3.6} + \frac{1}{3.6^{2}g} \int_{V_{o}}^{0} \frac{V}{\frac{s}{100} + f_{T} + \frac{A_{d}}{mg}} dV$$

Design Guideline	A _d / mg (Formula)	A _d / mg			a _{average} (m/sec²)		
		80km/h	100km/h	120km/h	80km/h	100km/h	120km/h
OMOE-X (2001) Motorways & Rural Arterials	2.52 10 ⁻⁶ V _o ⁻² {V _o : km/h}	0.02	0.03	0.04	0.39g	0.35g	0.32g
DM, n.6792 (2001) Motorways	$2.66.10^{-6} W^{2} (V_{\rm c} km/h)$	0.02	0.03	0.04	0.51g	0.49g	0.46g
DM, n.6792 (2001) Rural Arterials	2.00 10 v ₀ (v _o . kii/ii)	0.02	0.00	0.04	0.39g	0.34g	0.31g

Current CVCR Determination

 H_{κ} (m): crest vertical curvature rate

L (m): length of vertical curve

h₁ (m): driver eye height [1.08m (AASHTO), 1.06m (OMOE-X), 1.10m (DM, n.6792)]

h₂ (m): object height (m) [0.60m (AASHTO), SSD tan[(5/60)°] (OMOE-X), 0.10m (DM, n.6792)]

 s_1, s_2 (%): grade values

Design Control Values for SSD and CVCR

ASSOCIATONE TRALINA per INSEGNERIA el ITRAFICO e del TRASPORTI

	SSD (m)			H _K (m)			
Design Guideline	80km/h	100km/h	120km/h	80km/h	100km/h	120km/h	
AASHTO (2018) Motorway & Rural Arterial	130	185	250	2600	5200	9500	
OMOE-X (2001) Motorway	170	245	290	6200	11000	15000	
OMOE-X (2001) Rural Arterial	140	205	-	4500	8500	-	
DM, n.6792 (2001) Motorway	95	135	180	2500	4900	8700	
DM, n.6792 (2001) Rural Arterial	110	170	240	3300	7800	15500	

Braking Calculation On Variable Grades

Suggested Approach

$$V_{i+1} = V_i - g\left(\frac{a_{average}}{g} + s_i\right)t$$

$$BD_i = V_i t - \frac{1}{2}g\left(\frac{a_{average}}{g} + s_i\right)t^2$$

$$SSD = V_o t_{pr} + \sum BD_{k-1}$$

del TRAFFICO e dei TRASPORT

 V_i (m/sec): vehicle speed at a specific station i

 V_{i+1} (m/sec): vehicle speed reduced by the deceleration rate for t = 0.01 sec

t (sec): time fragment (t = 0.01 sec)

 s_i (%/100) : road grade in i position [(+) upgrades, (-) downgrades]

BD_i (m): pure braking distance

 $\sum BD_{k-1}(m)$: total vehicle pure braking distance for the initial value of vehicle speed

Braking Calculation On Variable Grades

ASSOCIAZIONE ITALIANA per l'INGEGNERIA del TRAFFICO e dei TRASPORTI

International Congress on Transport Infrastructure and Systems – TIS Roma 2019 September 23 - 24, 2019

Overall Crest Vertical Curvature Rates (V=80km/h)

ASSOCIAZIONE ITALIANA per l'INGEGNERIA del TRAFFICO e dei TRASPORTI

September 23 - 24, 2019

Overall Crest Vertical Curvature Rates (V=100km/h)

ASSOCIAZIONE ITALIANA

ROM

September 23 - 24, 2019

Overall Crest Vertical Curvature Rates (V=120km/h)

ASSOCIAZIONE ITALIANA

ROA 201

Discussion

- CVCR safety assessment through variable grade SSD control
 - 3 design guidelines
 - AASHTO (2018)
 - DM, n.6792 (2001)
 - OMOE-X (2001)
 - 3 (high) speed values arterials, freeways)
 - 80km/h
 - 100km/h
 - 120km/h
 - Point mass model
 - Laws of mechanics
 - 2D approach

Conclusions

(1/2)

Greek OMOE-X (2001)
Costly overdesigned CVCR adopted

DM, n.6792 (2001), AASHTO (2018)

CVCR inadequacy on the downgrade area with s<-2%</p>

Amended CVCR, in order to grant SSD adequacy throughout the braking process

Provide designers with ready-to-use values

Conclusions

(2/2)

DM, n.6792 (2001)

■ Increase object height $0.10m \rightarrow 0.50m$

Current CVCR adequate for s>-6%

Further Research

- Assess the impact of combined horizontal – vertical alignment
- Additional qualitative research in current vehicle dynamics trends
 - Evaluate parameters of SSD
 - braking on curves
 - ABS braking
 - friction coefficient etc.
- Additional restrictions from human factors

INTERNATIONAL CONGRESS ON TRANSPORT INFRASTRUCTURE AND SYSTEMS IN A CHANGING WORLD

Road Geometric Design

Crest Vertical Curvature Safety Assessment through Variable Grade Stopping Sight Distance Control

Stergios Mavromatis, Vassilios Matragos, Panagiotis Papantoniou

stemavro@central.ntua.gr

<u>vasmatragos@mail.ntua.gr</u>

ppapant@central.ntua.gr

National Technical University of Athens, Greece

http://www.transport.ntua.gr

September 23-24, 2019