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Abstract 
 

Increased urbanization and widespread use of private vehicles increases the need for mobility and the quality of 
driving behavior in terms of aggressiveness and accident risk. An important tool in this direction is the spatial 

mapping and analysis of driving incidents on road hazard maps. This paper attempts to leverage smartphone based 

driving risk metrics to study the spatial distribution of aggressiveness and risky driving. To this end, DBSCAN 

and the BI-Directional-Extension-based frequent closed sequence mining (BIDE) algorithm are trained and 

evaluated on more than 100,000 driving trips of more than 200 drivers in the metropolitan Athens area. The 

analyses result to identifying the network's dangerous points based on the collective driving behavior among 

different users. Finally, the spatial representation of the groups resulting from the application of the algorithms on 

risk maps was made to serve as a tool for informing and warning the drivers of the network. The paper ends by 

discussing the limitations of the proposed approach and further research directions. 
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1. Introduction 

Together with the recent urbanization, people’s needs for transportation are also increased. One 

of the main challenges for Transportation Engineers is to manage the road system effectively 

in order to improve users’ driving behavior to achieve safe, efficient and environmentally 

friendly conditions. However, when it comes to identifying driving hazards, most approaches 

are based on police reports after an accident has occurred, making it difficult to enable 

precautionary actions early enough, or expensive Naturalistic Driving Studies (NDS) with 

instrumented vehicles, using GPS, IMUs and cameras (Vlahogianni & Barmpounakis, 2017).  

 

Smartphones are considered as an economical manner to crowdsource information on users’ 

mobility patterns including the manner they drive. Literature has to show numerous efforts to 

monitor driving behavior using smartphones (Castignani, Derrmann, Frank, & Engel, 2015; 

Mantouka, Barmpounakis, & Vlahogianni, 2019; Toledo, Musicant, & Lotan, 2008; 

Vlahogianni & Barmpounakis, 2017). The main driving indicators that have been taken into 

consideration are (Handel et al., 2014): harsh Braking and  Acceleration, harsh Left/Right 

Cornering, speeding, mobile usage etc. Smartphones overcome the limitations on other 

telematics approaches (e.g. OBDs) due to the low cost (the users crowdsource and not oblige 

them to buy a telematics device), their penetration to user population, their transparent data 

collection mechanisms (the users may easily resort to their data to check their behavior or even 

https://scholar.google.gr/citations?view_op=view_org&hl=el&org=16539297749990713900
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interact with them through the proper software, usually developed to work in a smartphone) 

(Vlahogianni & Barmpounakis, 2017). 

However, smartphones are susceptible to uncertainty of the location-based information, noisy 

signals and battery drain (Handel et al., 2014; Paefgen, Kehr, Zhai, & Michahelles, 2012; 

Vlahogianni & Barmpounakis, 2017). These issues should be properly addressed to ensure the 

efficiency and sustainability of smartphone-based driving behavior monitoring systems.   

 

From a conceptual perspective the ability to have complete information on how someone is 

driving in terms of aggressiveness and risk can have far-reaching implications to the 

understanding of network wide traffic and road safety – if this information is considered 

collectively with the existing roadway and traffic conditions, as well as weather and incidents.  

The spatial distribution and further visualization accident and of extreme driving phenomena 

could hint to a unified problematic condition in the road network that should be alleviated taking 

proactive traffic and safety measures (Han et al., 2015). To this end, (Chau, Sato, Kubo, & 

Namatame, 2015) proposed a method for generating traffic safety maps based on differences in 

individual recognition of the road environment by using smartphone data from various users. 

In (Han et al., 2016), authors analyzed the road accidents hotspots based on natural nearest 

neighbor clustering algorithm. Hotspot identification through clustering has been also followed 

in (Anderson, 2009; Han et al., 2016; Ouni & Belloumi, 2019; H. Wang, De Backer, Lauwers, 

& Chang, 2019; Zeng et al., 2018).  

 

A thorough look at the literature demonstrate that little attention has been placed in the proactive 

spatial analysis of near misses, as an indication of possible high accident risk areas. The driving 

metrics have not been introduced in the analysis of aggressive and risky network locations. To 

fill this gap, this paper aims to provide a spatial mapping of extreme driving behavior in order 

to inform and warn the drivers and decision-makers in time. In this paper, crowdsourced data 

are used to identify the dangerous areas prior to a potential accident. Following, spatial 

clustering algorithms are applied and critical areas where frequent extreme driving behavior 

occurs are identified. The results of the clustering algorithms are then grouped spatially and 

visualized in order to produce the final hazard maps. 

2. Methodological Approach 

The approach attempts to identify locations with similar frequency of harsh driving events and 

speeding occurrence based on clustering. Conceptually, harsh driving events (such as 

acceleration and braking) have very short duration (e.g 1-2 seconds) and emerge as a point 

location in the dataset. This is also because the frequency of collecting the data in the specific 

experiment is set to 1Hz for energy efficiency. On the other hand, speeding emerges as an event 

that have spatio-temporal extent, meaning it occurs in a specific location and last for several 

minutes. In the specific paper, these differences are treated with a different clustering policy 

explained below.  

 

For the case of single point events, such as the harsh acceleration and harsh braking a DBSCAN 

algorithm is implemented. DBSCAN is a typical spatial clustering algorithm able to identify 

arbitrary-shaped clusters in any database D and at the same time to distinguish noise points 

(Ester, M., Kriegel, H. P., Sander, J., & Xu, 1996). DBSCAN accepts a radius value Eps(ε) 
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based on a user defined distance measure (Manhattan Distance, Euclidean Distance etc.) and a 

value MinPts for the number of minimal points that should occur within Eps radius. A cluster 

is created, if the total number of the neighbors around a point p is greater than MinPts. The 

minPts is often set to be dimensionality of the data plus one or higher. The knee in kNN 

distribution plot can be used to find suitable values for eps. DBSCAN separates data points into 

three classes: i. Core points that are at the interior of a cluster (Centre), ii. Boarder points that 

fall within the neighbourhood of a core point which is not a core point, and iii. Noise points, 

namely those points that are neither core, or boarder points. 

 

DBSCAN does not require predefining the number of clusters in the data and can result to 

arbitrarily shaped clusters, is robust towards outlier detection (noise). Moreover, it requires just 

two points that are very insensitive to the ordering of the points in the database.  On the other 

hand, DBSCAN does not work well on high-dimensional data in general or data sets with 

varying densities. DBSCAN is sensitive to the distance metric selection, as well as the selection 

of parameters MinPts, Eps. Consequently, the understanding of the physical aspects of the 

problem at hand is critical.  

 

The case of identifying speeding clusters, a sequence pattern mining approach is implemented. 

The problem of sequential pattern mining was proposed by (Agrawal & Srikant, 1994), as the 

problem of mining interesting subsequences in a set of sequences (e.g. 0,1,1,1,1,0,0) “Given a 

set of sequences, where each sequence consists of a list of elements and each element consists 

of a set of items, and given a user specified min_support threshold, sequential pattern mining 

is to find all of the frequent subsequences, i.e., the subsequences whose occurrence frequency 

in the set of sequences is no less than min_support”. The support (or absolute support) of a 

sequence as  in a sequence database S  is defined as the number of sequences that contain as , 

and is denoted by sup( )as . In other words,  sup( ) |a as s s s s S=    . Support may be defined 

as a ratio relative support): ( ) sup( ) /a arelSup s s S= , that is the number of sequences containing 

as  divided by the number of sequences in the database. For example, the relative support of the 

itemset    , ,b f g  is 0.5. 

 
To provide a computationally efficient solution, we implement the BI-Directional-Extension-

based frequent closed sequence mining (BIDE) algorithm (J. Wang, Han, & Li, 2007). BIDE is 

based on the concept of closed sequential patterns (set of sequential patterns that are not 

included in other sequential patterns having the same support). It is considered a pattern-growth 

algorithm, which avoids the curse of the candidate maintenance-and-test paradigm. BIDE 

implements the BackScan pruning method to check the pattern closure in a more efficient way 

while consuming much less memory in contrast to the previously developed closed pattern 

mining algorithms. It does not need to maintain the set of historical closed patterns; thus, it 

scales very well in the number of frequent closed patterns.  

The Data 

The dataset was collected using the OSeven smartphone application (www.oseven.io), 

developed for both iPhone and Android devices that recognizes driving activity without any 

user involvement. Using various criteria, the application starts to collect raw data from 
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smartphones. In order to serve the scope of this paper, driving data from more than 500 drivers 

in Athens, Greece is leveraged. This anonymized data consists of detailed trip information, as 

well as the observed driving events, namely harsh accelerations, harsh breakings and speeding 

that relate to aggressiveness, lack of anticipation and the degree of risky driving respectively 

(Mantouka et al., 2019). The events are distinguished according to whether they occur at a 

specific time point or whether they occur over an interval during the trip. In total, the final 

dataset consists of more than 6000 events. Figure 1 and 2 depict the distribution of harsh driving 

events and of speeding respectively. 

 

 
Figure 1: Distribution of harsh events (acceleration and braking) for the entire trip dataset. 

 

 
Figure 2: Distribution of speeding events for the entire trip dataset 
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3. Findings 

The number of clusters that are formed using the DBSCAN algorithm relate to the parameter 

minPts of the algorithms as can be seen in Figure 3. In order to identify the clusters for harsh 

acceleration events, we choose 40 as the threshold value for the minPts per cluster, while the 

threshold value minPts for harsh brakings is 20 points per cluster. 

 

 
 

Figure 3: Hazard Clusters versus the minimum number of harsh acceleration and brakings 

per cluster 

 

It is worth noting that as the number of these points reduces, after a certain point the algorithm 

will identify a single cluster until it finally detects no clusters (Number of Clusters = 0). This is 

expected, as, when a large threshold is set for the number of points defined by a group, there is 

no uniformity for the points in the database. 

 

Critical locations based on the above analysis for the harsh accelerations and brakings can be 

seen Figure 4 and 5 respectively. It is interesting to note that a fairly large percentage of the 

points where the drivers perform either harsh accelerations or brakings have been annotated by 

the DBSCAN algorithms as noise. More precisely, the DBSCAN algorithm identified 4176 out 

of the 4894 hash acceleration events (85.39% of events) in the dataset as been “outliers” (noise). 

The percentage increases to 92.27% for the case of harsh brakings. These points are likely to 

have a greater distance than the one that is set for the formation of a cluster or if they are close 

enough, they do not meet the limit for the number of points that define a cluster. Evidently, this 

may reflect locations where there is an inconsistency in the users’ driving behavior on the road 

network.  

 

A thorough look at the speeds when these harsh events occurred shows that 12.53% of the total 

accelerations in a cluster is carried out at a speed greater than 30 km/h, whereas 17.36% of the 

total decelerations in a cluster is carried out at a speed greater than 30 km/h. From the speeds 
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above, it is clear that most sudden accelerations and braking are at a slower speed, which 

confirms that most of these events are near a light signal or a special sign.  

 
Figure 4: Hotspot Map for Harsh Acceleration Events. 

 

 
Figure 5: Hotspot Map for Harsh Braking Events. 

 

The hotspots identified may shed light to the reasons that a collective harsh driving behavior 

may be observed. For example, Figure 6 shows the most hazardous location in terms of 

accelerations at the intersection of Kifissias and Alexandras Avenues. For the specific 

intersection, a total of 105 events from 27 different drivers have been documented and 13 of 

them take place at a speed greater than 30 km/h. It should be noted that in the specific hazardous 

cluster no harsh event is documented over the speed limit. 
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The cluster which is considered as most hazardous for harsh brakings is located at the 

intersection of Kifissias Avenue and Kapodistriou Street (Figure 7Figure 6). For the specific 

intersection, a total of 29 events from 16 different drivers have been documented and 25 of 

them take place at a speed greater than 30 km/h. Again, in the specific hazardous cluster, no 

harsh event is documented over the speed limit. 

 

 
Figure 6: Critical intersection for harsh accelerations 

 

 
Figure 7: Critical intersection for harsh brakings 
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Evidently, in areas where a harsh acceleration occurs, it is not common for a harsh braking to 

occur after it. This may hint an indication of collective aggressive driving, as most of these 

points are highly visited parts of the Athens road network. As far as the speed of the drivers is 

concerned, for harsh accelerations, it is observed that most of them occur at low speeds, which 

relates them to the acceleration after a stop. For harsh brakings, it has been observed that they 

occur at higher speeds. 

 

In Figure 8, the clusters with the most critical speeding locations are depicted and each different 

color represents a different cluster. From the spatial representation of the clusters related to 

speeding events it can be observed that, as expected, the clusters that are considered the most 

hazardous are found in freeways and urban motorways of the Athens metropolitan road 

network. Yet, in a database of 200 users, a specific part of Kifissias Avenue is presented as one 

of the most probable parts of the arterial for exceeding the speed limit. 

 

 
Figure 8: Hazard map for speeding events 

 

4. Conclusions 

Introducing new technologies, like smartphones, makes it possible to collect, store and transmit 

high precision data. While previous works have made significant steps when it comes to 

exploiting these data, there are insufficient works to their spatial representation. Thus, with this 

paper we intend to create a methodological approach that initially groups data based on extreme 

driving behavior and, then, perform spatial mapping of these on hazard maps to improve the 

decision making for traffic management and proactive road safety. 

 

The methodology followed was based on clustering events that occur in specific locations on 

the road network, but also can extend in time. Two basic clustering algorithms were 

implemented, the DBSCAN to identify critical locations of harsh acceleration and braking 

events and the BIDE to identify the critical locations of speeding behavior. 
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Findings reveal useful insights in relation to the homogeneity of the behavior of one individual 

driver and many random users. In addition, the most dangerous points of the road network are 

identified and the hazard factors that play a significant role are further researched. Drivers' 

behavior is greatly affected by the presence of traffic signals and intersections, where drivers 

react aggressively. Moreover, although speeding critical locations are to be frequently met in 

high speed road network, there exist areas inside the densely populated city center where drivers 

may exhibit collecting speeding behavior. 

 

The proposed approach can be used to inform drivers on their extreme behavior in certain 

locations. These hazard maps are an information and warning tool for each user individually, 

as the driver can be aware of the sections of the network where most driving events are taking 

place in order to make the right decisions in a timely manner. Moreover, the aggregated 

information on risky locations, such as speeding, can improve the proactive road safety or in 

real time applications as a case of Advanced Driver Assistance Systems (ADAS). 

 

Further research should be focused on introducing the aspects of geometry and traffic 

conditions in the identification of critical driving hotspots. Additional variables should be also 

included in future research related to driving during peak hours or not, the weather conditions. 

The above will enhance the explanatory power of the clustering approach providing the possible 

causal relationships that may exist in the spatio-temporal occurrence of extreme driving events. 
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