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Understanding driving behavior

• Helps to identify the circumstances under which abnormal 
and unsafe driving events take place

• Is useful for the development of advanced driving assistance 
and recommendation systems 

• Remains vital even in the era of autonomous and connected 
vehicles.
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Development of acceptable and user friendly “machines”

Real-time recommendations for safer and more efficient driving



Benefits of improved driving behavior
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Road safety & Traffic
Less car accidents

Improved traffic conditions

Environment Air pollution

Public health
Emissions

Noise



What do we aim to do?

• Identify different driving behaviors

• Distinguish safe from unsafe driving styles 

• Rank driving behaviors with regards to road safety

• Investigate each driver’s behavior volatility in terms of 
unsafe driving habits
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Methodological approach

Identification of 
Driving profiles

1st level of clustering 
Aggressive / 

Non-aggressive trips)

2nd level of clustering 
(Distraction / Risk 

taking)

From trips to 
drivers

Remove safe trips

Estimate number 
of trips in each 

profile

Driver’s 
behavior 
volatility  

Stable / 
unstable 
behavior
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Methodology: K-means Clustering
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• Aims to partition n observations 
into k clusters

• Each observation is assigned to the 
cluster with the nearest mean

• Number of clusters is chosen using 
the Elbow method



Methodology: Self-Organizing Maps
• A type of Artificial Neural Network 

(ANN)

• Is trained using unsupervised 
learning

• Two-dimensional, discretized 
representation, called a map
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Smartphone data

Data used are collected through 
the Oseven app (www.oseven.io)

More than 240000 trips were 
available, performed by more than 
200 drivers in Attika Region.
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Variables

Harsh acceleration events

Percent of trip duration 
over the speed limit

Percent of 
mobile 
usage

Acceleration

Harsh 
braking 
events

Smoothness 
indicator



Clustering Results: Driving profiles
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1st level of clustering 2nd level of clustering

Aggressive 
Driving

Non-
aggressive 

Driving

Aggressive Driving

Aggressive & Risky Driving

Aggressive & Distracted 
Driving

Safe Driving

Risky Driving

Distracted Driving



Clustering Results: 1st level of clustering
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Cluster centers for Aggressive and Non-aggressive trips

Variable / Cluster Harsh 
Acceleration/km

Harsh 
Brake/km

Smoothness 
Indicator

Standard Deviation 
of Acceleration

Number of 
trips

Aggressive trips 0.281 1.801 0.455 0.509 25731

Non-aggressive trips 0.038 1.169 0.299 0.093 63212

• 71% of trips are not featured by aggressiveness

• In case of aggressive trips the number of harsh acceleration events are almost 7 times 
more than in the case of non-aggressive, while the same number for the harsh brake 
events is less than 2.



Clustering Results: 2nd level of clustering
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Variable / Driving 
profile Percentage of mobile usage Percent of speeding

NON-AGGRESSIVE TRIPS
Distracted 0.540 0.065

Risky 0.029 0.289
Safe 0.013 0.024

AGGRESSIVE TRIPS
Risky 0.038 0.292

Aggressive 0.20 0.032
Distracted 0.547 0.100

• The percent of speeding in case of non-aggressive distracted trips is almost 2 times greater than 
the corresponding percentage for aggressive distracted trips.

• In both aggressive and non-aggressive trips distracted trips constitute less than 8% of the sample



Ranking of driving behavior
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01
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06AGGRESSIVE & 

DISTRACTED 
BEHAVIOR

AGGRESSIVE & 
RISKY 

BEHAVIOR DISTRACTED 
BEHAVIOR

RISKY 
BEHAVIOR

AGGRESSIVE 
BEHAVIOR

SAFE 
BEHAVIOR

Ranked by importance to driving safety



SOM for unsafe driving
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Driving profiles
SOM 

component Distracted Risky Aggressive-
Risky Aggressive Aggressive-

Distracted
V1 0.044 0.107 0.059 0.759 0.030
V2 0.168 0.397 0.110 0.267 0.057
V3 0.045 0.099 0.059 0.770 0.027
V4 0.042 0.114 0.058 0.757 0.029

Risky
Distracted
Aggressive & Risky
Aggressive
Aggressive & Distracted

V1
V2

V3V4

Components V1, V3, V4:
• ≈75% of aggressive trips

Component V2: 
• 17% distracted trips 
• 40% risky trips
• 27% of them were clustered as 

aggressive trips



Conclusions
• Most of the trips (71%) did not have aggressive driving features, 

such as harsh accelerating and abnormal braking

• Aggressive driving behavior does not necessarily imply risk taking 
or distracted driving

• Drivers do not have a stable driving profile, but instead they 
change the way they drive on every trip

• In terms of unsafe driving behavior there are two groups of 
drivers: 
o those who drive only aggressively
o those who perform several abnormal behaviors (aggressiveness, speeding, 

distraction)
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Future research steps
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 Does an eco driving profile exist?

 Identify additional unsafe behavior while driving (Inappropriate 
lane changing, Overtaking, Abnormal steering)

 Impact of external factors (traffic, road conditions, adverse weather) 

 Causes of distraction: conversations with passengers, listening to 
music, out of vehicle incidents etc.
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