9⁰ ΔΙΕΘΝΕΣ ΣΥΝΕΔΡΙΟ για την ΕΡΕΥΝΑ ΣΤΙΣ ΜΕΤΑΦΟΡΕΣ ΜΕΤΑΦΟΡΕΣ 4.0: Η Ευφυής Εξέλιξη

9th INTERNATIONAL CONGRESS on TRANSPORTATION RESEARCH TRANSPORT 4.0: The Smart Evolution

What is your driving identity? Some empirical findings using large-scale smartphone sensors' data Eleni Mantouka, PhD Candidate

NTUA - School of Civil Engineering Department of Transportation Planning and Engineering

Understanding driving behavior

- Helps to identify the circumstances under which abnormal and unsafe driving events take place
- Is useful for the development of advanced driving assistance
 and recommendation systems

Real-time recommendations for safer and more efficient driving

Remains vital even in the era of autonomous and connected vehicles.

Development of acceptable and user friendly "machines"

Benefits of improved driving behavior

Road safety & Traffic

Less car accidents Improved traffic conditions

Image: Public healthAir pollutionEmissions
Noise

ICTR 2019

What do we aim to do?

- Identify different driving behaviors
- Distinguish safe from unsafe driving styles
- Rank driving behaviors with regards to road safety
- Investigate each driver's behavior volatility in terms of unsafe driving habits

Methodological approach

Methodology: K-means Clustering

- Aims to partition *n* observations into *k* clusters
- Each observation is assigned to the cluster with the nearest mean
- Number of clusters is chosen using the Elbow method

Methodology: Self-Organizing Maps

- A type of Artificial Neural Network (ANN)
- Is trained using unsupervised learning

• Two-dimensional, discretized representation, called a map

Smartphone data

Data used are collected through the Oseven app (www.oseven.io)

More than **240000 trips** were available, performed by more than **200 drivers** in Attika Region.

Clustering Results: Driving profiles

ICTR 2019

October 24-25, 2019 – Athens, Greece

Clustering Results: 1st level of clustering

Cluster centers for Aggressive and Non-aggressive trips								
Variable / Cluster	Harsh Acceleration/km	Harsh Brake/km	Smoothness Indicator	Standard Deviation of Acceleration	Number of trips			
Aggressive trips	0.281	1.801	0.455	0.509	25731			
Non-aggressive trips	0.038	1.169	0.299	0.093	63212			

- 71% of trips are not featured by aggressiveness
- In case of aggressive trips the number of harsh acceleration events are almost 7 times more than in the case of non-aggressive, while the same number for the harsh brake events is less than 2.

Clustering Results: 2nd level of clustering

Variable / Driving profile	Percentage of mobile usage	Percent of speeding						
NON-AGGRESSIVE TRIPS								
Distracted	0.540	0.065						
Risky	0.029	0.289						
Safe	0.013	0.024						
AGGRESSIVE TRIPS								
Risky	0.038	0.292						
Aggressive	0.20	0.032						
Distracted	0.547	0.100						

- The percent of speeding in case of non-aggressive distracted trips is almost 2 times greater than the corresponding percentage for aggressive distracted trips.
- In both aggressive and non-aggressive trips distracted trips constitute less than 8% of the sample

SOM for unsafe driving

	Driving profiles						
SOM component	Distracted	Risky	Aggressive- Risky	Aggressive	Aggressive- Distracted		
V1	0.044	0.107	0.059	0.759	0.030		
V2	0.168	0.397	0.110	0.267	0.057		
V ₃	0.045	0.099	0.059	0.770	0.027		
V4	0.042	0.114	0.058	0.757	0.029		

- Risky
- Distracted
- Aggressive & Risky
- Aggressive
- Aggressive & Distracted

Components V1, V3, V4:

• ≈75% of aggressive trips

Component V2:

- 17% distracted trips
- 40% risky tri<mark>ps</mark>
- 27% of them were clustered as aggressive trips

13

Conclusions

- Most of the trips (71%) did not have aggressive driving features, such as harsh accelerating and abnormal braking
- Aggressive driving behavior does not necessarily imply risk taking or distracted driving
- Drivers do not have a stable driving profile, but instead they change the way they drive on every trip
- In terms of unsafe driving behavior there are two groups of drivers:
 - those who drive only aggressively
 - those who perform several abnormal behaviors (aggressiveness, speeding, distraction)

Future research steps

Does an eco driving profile exist?

- □ Identify additional unsafe behavior while driving (Inappropriate lane changing, Overtaking, Abnormal steering)
- □ Impact of external factors (traffic, road conditions, adverse weather)
- □ Causes of distraction: conversations with passengers, listening to music, out of vehicle incidents etc.

15

NTUA - School of Civil Engineering Department of Transportation Planning and Engineering

What is your driving identity? Some empirical findings using large-scale smartphone sensors' data Eleni Mantouka, PhD Candidate

This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project "Strengthening Human Resources Research Potential via Doctorate Research – 2nd Cycle" (MIS-5000432), implemented by the State Scholarships Foundation (IKY).

Operational Programme Human Resources Development, Education and Lifelong Learning

Co-financed by Greece and the European Union

Thank you Oseven for providing the data!