

Safety Assessment of Control Design Parameters through Vehicle Dynamics Model

Stergios Mavromatis¹, Alexandra Laiou²

¹Technological Educational Institute of Athens, Greece School of Civil Eng. and Surveying & Geoinformatics Eng. ²National Technical University of Athens, Greece Department of Transportation Planning and Engineering email: stemavro@teiath.gr

The Hague, October 2017

Background

- Design speed
 - key parameter for defining critical geometric elements
- Road design practice
 - simplified approach
 - failure to assess interactions between parameters

$$R_{\min} = \frac{V^2}{127(f_{R,perm} + e_{\max})}$$

where

R_{min}: minimum curve's radius (m)

V : vehicle speed — usually design speed (km/h)

e_{max}: maximum superelevation rate (%/100)

m : vehicle's mass

f_{R.perm}: permissible side friction factor as a portion of peak friction

Point Mass Deficiencies

- Steady state cornering is assumed
 - acceleration effect is ignored
- Key vehicle parameters ignored
 - type, mass and position of gravity (mass) center, loading driving configuration, horse-power supply, etc.
- Vehicle motion is examined independently in tangential - lateral direction of travel
 - respective friction components interact
- Utilized lateral friction based on empirical vehicle accident considerations
 - assumed as fixed portion of the relevant peak (40%-50%)
- Longitudinal profile disregarded

Necessity for More Sophisticated Models

- Current control grade values
 - based mostly on experience
 - limitations from the operational point of view and not an outcome of a safety assessment
- Simulate vehicle's cornering process
 - especially in cases of steep grades (reduction of safety margin)
 - upgrade road sections more critical in terms of horizontal radii requirements

Objective

- Lift restrictions imposed by point mass model
- Assess the ability of a typical passenger car to maintain design speed values for the corresponding control design parameters
 - critical upgrade values
 - various tire road friction values
- Investigate the safety impact of vehicle's peak attainable constant speed against design parameters imposed by design speed

Vehicle Dynamics Model

Moving 3D coordinate system

- Parameters correlated
 - vehicle technical characteristics
 - road geometry
 - tire friction

- 4-wheel model
 - lateral load transfer

Methodology

- Output: V_{safe}
 vehicle's peak attainable constant speed
 - C class passenger car utilized (KIA Proceed)
 - assessment for AASHTO-2011 design guidelines $(V_d = 50 \text{km/h} V_d = 90 \text{km/h})$
 - 3 pavement friction values (0.35, 0.50, 0.65)
 - definition of critical wheel (impending skid conditions)

Grade Impact during V_{safe} Determination

Impending skid

f_{R demand}: critical on mild grades

f_{T demand}: critical on steep grades

HP Utilization Rates during V_{safe} Determination

Impending skid

vehicle skids when driven above suggested HP utilization values

Friction Safety Margins for V < V_{safe}

Comfortable driving

 f_T : grade dependent

 $f_R \approx f_R$ point mass model

V_{safe} Variation for Control Design Values ($f_{\text{max}} = 0.35$)

Impending skid

critical cases ($f_{max} = 0.35$):

- $V_d = 50 \text{km/h}, \text{ s} > 11\%$
- $V_d = 60 \text{km/h}, \text{ s} > 11\%$

V_{safe} Variation for Control Design Values ($V_d = 50 \text{km/h}$)

Impending skid

critical cases $(V_d = 50 \text{km/h})$:

- $f_{max} < 0.40$
- s > 11%

- Investigation of the ability a C-class passenger car on steep grades to maintain Vd
 - AASHTO 2011 design guidelines $(V_d = 50 \text{km/h} V_d = 90 \text{km/h})$
 - 3 pavement friction values (0.35, 0.50, 0.65)

- 2 cases examined for assessing safety margins
 - comfortable curve negotiation (V<V_{safe})
 - V_{safe} impending skid conditions

Comfortable curve negotiation (V<V_{safe})

- f_{R demand} independent to grade
- f_{T demand} increases with grade

V_{safe} impending skid conditions

- f_{R demand} critical on mild grades
- f_{T demand} critical on steep grades
- Steady state cornering not always feasible
 - $V_d = 50 \text{km/h}$, s>11%, $f_{max} = 0.35$
 - $V_d = 60 \text{km/h}$, s>11%, $f_{max} = 0.35$
- Point mass model model somehow underrates lateral friction requirements
- Vehicles equipped with excessive HP rates must be driven very conservatively in road with poor friction pavement

Recommendations - Further Research

- Identified critical cases
 to be treated cautiously through actions
 - adoption of acceptable parameter arrangements (new alignments)
 - posted speed management (existing alignments)
 - scheduling friction improvement programmes more accurately (both cases)
- Assessment on entire vehicle fleet
- Further analysis of interaction between driver – vehicle

Safety Assessment of Control Design Parameters through Vehicle Dynamics Model

Stergios Mavromatis¹, Alexandra Laiou²

¹Technological Educational Institute of Athens, Greece School of Civil Eng. and Surveying & Geoinformatics Eng. ²National Technical University of Athens, Greece Department of Transportation Planning and Engineering email: stemavro@teiath.gr

The Hague, October 2017