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ABSTRACT 

The purpose of this paper is to develop neural network models with enhanced explanatory 
power in order to extract useful information on the variables that affect secondary accident 
likelihood. Traffic and weather conditions at the occurrence of a primary incident are 
explicitly considered. Two influence measures to extract variable significance are introduced: 
mutual information and partial derivatives. The proposed approach is also compared to other 
classical statistical approaches of the Logit family. Results suggest that changes in speed and 
volume, number of blocked lanes, and percentage of trucks significantly influence the 
probability of having a secondary incident, whereas changes in rainfall intensity are less 
influential to secondary incident likelihood. Finally, the managerial implications of the 
proposed modeling approach are evaluated and discussed.  

Keywords: Secondary incidents, traffic flow, rainfall, neural networks, Logit, mutual 

information, partial derivatives. 
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INTRODUCTION 

Severe freeway incidents cause excessive delays and are frequently associated with secondary 

incidents. Secondary incidents are generally defined as incidents that occur within a 

predefined spatiotemporal region of a primary incident and reduce roadway capacity (Moore 

et al., 2004; Zhang and Khattak, 2010). Secondary incidents have increasingly been 

recognized as a major source of freeway incidents as their occurrence causes significant 

additional traffic delay. Compared with primary incidents, secondary are more severe and are 

more demanding regarding traffic management resource allocation implications (Karlaftis et 

al., 1999); as a consequence, their identification will help increase safety and maintain 

operational levels on freeways. 

The literature on secondary incident management has revolved around two major issues: first 

is the detection of secondary incidents. Research has used predefined spatiotemporal 

boundaries to delimit the influence area of a primary incident and, consequently, the spatio-

temporal area of increased secondary incident likelihood (Raub, 1997; Moore et al., 2004). 

Recently, the concept of dynamic thresholds for secondary incident occurrence has been 

introduced by some researchers; methods range from visually observing the progression of the 

queue formulated upstream of a primary incident (Sun and Chilukuri, 2010), to queue based 

analytical estimations (Zhang and Khattak, 2010), cumulative arrival and departure plots 

(Zhan et al. 2009), and or other analytical estimation of the produced congestion from loop 

detector data (Orfanou et al., 2011).  

The second issue refers to modeling secondary incident likelihood and identifying 

determinants related to the different incident, traffic and geometric characteristics. Karlaftis et 

al. (1999) examined the primary incident characteristics that influence secondary incident 

occurrence likelihood. Clearance time, season, type of vehicle involved, and lateral location 

of the primary incident were the most influential factors. Hirunyanitiwattana and Mattingly 

(2006) examined differences in the characteristics of primary and secondary incidents with 

respect to time of day, roadway classification, primary collision factors, severity level and 

type of incident; they found that secondary incidents are more likely to occur in urban 

freeways with more than 4-lanes and during peak periods, and are associated with 

exceedances of posted speed limits.  

Recently, Zhan et al. (2008) identified the number of involved vehicles and number of lanes 

and primary incident duration as the most significant factors influencing secondary incidents; 

one year later Zhan et al. (2009) suggested that the primary incident type, primary incident 
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lane blockage duration, and time of day are the most significant factors of secondary accident 

likelihood. Khatak et al. (2009) focused on further studying the interdependency between the 

primary accident duration and the secondary accident likelihood via a two stage least squares 

model where the duration was the endogenous variable and detection type, incident type, lane 

closure, vehicle involved, response vehicles, AADT, left shoulder/ramp, and time of day the 

independent variables. Vlahogianni et al. (2010) proposed a Bayesian framework for 

combining incident and queue information on freeways to reveal the characteristics of 

primary incidents that affect secondary incident likelihood. Results indicated that traffic 

conditions at the time of the incident as well as the time to respond to, and clearing of, the 

incident scene, are the most significant determinants in defining the upstream influence area 

of an incident. Finally, Zhang and Khattak (2010) developed an ordered Logit model to 

address the interrelations between secondary incident probability occurrence and primary 

incident characteristics; the duration of a primary incident, the number of vehicles involved, 

and the segment length - but not curvature - were found to be influential. A thorough and 

critical review of previous research can be found in Khattak et al. (2011). 

Most previous studies have used aggregated traffic related information in the form of AADT 

or the type of day and time period of incident occurrence to account for prevailing conditions. 

Further, the effect of weather conditions has not been explicitly considered, although they 

may significantly affect the predictability of travel speed and its influence on traffic incidents 

cannot be disregarded (Tsirigotis et al., 2011). Regarding the methods employed, there has 

been extensive use of classical statistical models such as the Logit, largely disregarding many 

flexible computational intelligence models that are both systematically implemented in 

various transportation problems and which may allow for important insights into the 

secondary incident mechanism (Karlaftis and Vlahogianni, 2011).  

In this paper past research on secondary incident risk modeling is extended by developing 

transparent neural network models combined with different influence measures to enhance 

their explanatory power. To detect secondary incidents, a dynamic threshold methodology 

that considers real-time traffic information from loop detectors is used. Factors such as 

prevailing traffic conditions (speed and volume), and weather conditions are explicitly 

considered and evaluated. The proposed modeling approach is compared to popular statistical 

models. The managerial implications of the proposed modeling approach are evaluated and 

discussed.  
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NEURAL NETWORKS FOR CLASSIFICATION PROBLEMS 

Neural Networks (NNs) are considered in transportation as efficient predictive models widely 

applied in function approximation and classification problems (Karlaftis and Vlahogianni, 

2011). NNs provide for a flexible and adaptable representational framework for developing 

familiar statistical models (Cheng and Titterington, 1994). In general, most popular structures 

of NN classifiers based on Multi-Layer Perceptrons (MLPs) bear several similarities with the 

popular Logit models (Sarle, 1994; Tu, 1996); a logistic regression model with no interaction 

terms (main effects logistic regression) for example, is identical to a single layer Perceptron. 

In parameter estimation, logistic regression converges when the likelihood function is 

maximized, whereas in a neural network the algorithm usually converges when a least-

squares error function between the actual and predicted output is minimized (Tu, 1996). 

A MLP with one hidden layer and a logistic output activation function provides an output 

value py  of the p-th data example of the form (McNelis 2005): 
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where kjw  is the connection weight between the kth neuron in the hidden layer and the jth 

neuron in the output layer and j is the bias term. The term kh presents the output of the 

hidden neuron and is given by: 
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connection weight between the kth neuron in the hidden layer and the ith input variable. i is 

the bias term. The output of the MLP for a discrete choice model can be described by 

(McNelis 2005):  
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where probability ip  is the weighted average of the logsigmoid function for neurons bounded 

between 0 and 1. The functional form described in Eq(1) resembles a logistic regression 
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model which can be considered as a special case of a neural network regression for binary 

choice, since the logistic regression represents a neural network with one hidden neuron 

(McNelis 2005). The difference is in the existence of the hidden layer; the nonlinearity 

induced in the hidden layer - the output kh  is usually a nonlinear function of the input 

patterns - provides the NN model with enhanced flexibility compared to Logit models (Tu, 

1996). Tu (1996) summarizes the advantages and disadvantages of neural networks models 

when compared to logit models; current literature in neural network applications for 

transportation problems emphasizes that, although neural networks may result to more 

flexible and robust models when compared to similar statistical structures, they may not be 

considered as a stand-alone modeling choice, as they require statistics for increase their 

transparency and explanatory power (Karlaftis and Vlahogianni 2010).  

Neural Networks as Explanatory Models 

One of the fundamental differences between MLPs and statistical modeling is the lack of an 

inherent mechanism for explicitly describing the learnt relationship between the input and 

output space. Most researchers implementing NN models perceive them as “black-boxes” and 

focus on improving the accuracy of modeling disregarding the explanatory power that NNs 

may have (Zobel and Cook, 2011).The need for developing NN models with explanatory 

power is related to the decision-making process in transportation. Intuitively, any decision in 

transportation and traffic operations should be based on a solid understanding of the 

mechanism by which different factors interact and influence transportation phenomena. 

Various methods to extract the significance of input variables in neural network modeling 

have been proposed; Zobel and Cook (2011) provide a comprehensive discussion regarding 

several sensitivity analysis techniques and categorize them into two classes: the general 

measures, which provide an estimate for each variable’s influence on the overall behavior of 

the network and, the specific measures, which estimate each variable’s influence on the 

network’s output for a particular instance of an input vector. Such approaches can be further 

divided on whether they are implemented before or after training. When testing for variable 

importance before neural network training, information theoretic measures form a solid 

alternative (Papadokonstantakis et al., 2006): 
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where ( )H Y  and ( | )H Y X


 are the entropy and conditional entropy of the dependent 

variable Y , and X


 is the input space used to predict Y . Mutual information quantifies the 

strength of the relationship between input and output; the higher the value of ( | )I Y X


 the 

greater the information transfer between X


 and Y and the greater the contribution of X


to the 

knowledge of Y. Mutual information may account for the relationship between different input 

variables and the output, regardless of whether the relationship is linear or nonlinear 

(Vlahogianni et al., 2006).  

A class of variable significance measures, that has attracted considerable attention, is those 

resulting from the partial derivative of the output with respect to the input variable (an 

example of such measure is the relative strength of effects measure proposed by Yang and 

Zhang, 1997). The first order partial derivative of the output variable y to the input variable x 

for the jth variable in a neural network is given by: 

 j j j k k
k kj k ik

k ki j k k i

y y net h net
f w f w

x net h net x

       
       (6) 

where jf   and kf   is the first order partial derivative of the jth variable of the output layer and 

the kth variable in the hidden layer. Using a logistic transfer function we get:  1j j jf y y  

(we can use the same for kf  ). For the calculation of partial derivatives, a finite differences 

approach may be implemented (details may be found in McNelis 2005). 

The significance input variables may be established based on partial derivatives and 

bootstrapping (McNelis 2005). From the calculated set of residuals ˆ ˆe y y  , where ŷ  and 

y are respectively the predicted and actual values of the output obtained by the best fitted 

MLP, a first set of shocks for the first bootstrap experiment, 1ˆbe , is obtained and a new 

dependent variable for the first bootstrap experiment is generated. Then, 1 1ˆ ˆb by y e   is 

generated and, from the new dataset  1,by x , the MLP is re-estimated and the partial 

derivatives are obtained. The above procedure is repeated several times. The bootstrap p-

values for each of the derivatives, giving the probability of the null hypothesis that each of 

these derivatives is equal to zero, are calculated by ordering the set of estimated partial 

derivatives (as well as other statistics) from lowest to highest values, and obtaining a 

probability distribution for these derivatives. The disadvantage of the bootstrap approach to 
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extract the significance form the partial derivatives is that it is more time-consuming than 

likelihood ratio statistics, as the modeler has to resample from the original data and re-

estimate the MLP multiple times (McNelis 2005). 

In this paper two types of sensitivity measures are implemented; the first is mutual 

information and the second is partial derivatives. These measures will be used to rank the 

importance of the independent variables in the modeling of the probability of having as 

secondary accident. Both measures may significant managerial implications. Based on mutual 

information, a transportation engineer may acquire information on the overall significance of 

certain variables on the secondary accident likelihood under the prevailing roadway and 

traffic conditions, whereas, using the partial derivatives based ranking the engineer may have 

direct information on which variable to alter in order to affect immediate change to the 

secondary accident likelihood. Table 1 depicts a short interpretation of the joint consideration 

of partial derivatives and mutual information on the impact of each input variable to the 

output.  

<Table 1> 

Evidently, the joint consideration of these measures should provide useful and sophisticated 

information in terms of modeling and managerial perspectives. For example, one could omit 

from modeling those variables that have low mutual information and low partial derivative. 

Moreover, in the case of secondary incident likelihood control, given the prevailing roadway 

and traffic conditions, a transport engineer may develop policies that aim at altering the state 

of those variables that rapidly affect the increase of the secondary accident likelihood, or 

identify which specific characteristic of primary incident may not critically affect the 

probability of having a secondary incident. Nevertheless, expert knowledge is required for 

setting numerical boundaries for the ranges of both influence measures. 

APPLICATION AND RESULTS 

Available Data and Secondary Incident Detection 

The available data come from Attica Tollway, a 65.2 km urban motorway connecting 2 major 

interurban motorways, the Athens international airport and the city center. Entry to the 

freeway is through 39 toll plazas with 195 toll lanes. On a daily basis, more than 370,000 

daily entries are recorded with an average annual increase of 8%. In the central section, traffic 

congestion is frequently observed increasing the likelihood of severe impacts from a “routine” 
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event (e.g. lane closure for maintenance) developing into a wider scale incident. Apart from 

the extensive loop detector system, traffic monitoring and management is conducted via a 

broad ITS equipment network encompassing CCTV cameras and inductive loops, Emergency 

Roadside Telephones (ERT), Carbon monoxide and opacity sensors detectors in bored and cut 

& cover tunnels, and Variable Message Signs (VMS).  

The available data consist of a total of 3,500 incident records for the period between 2007 and 

2010. For each incident record, two categories of characteristics are considered: incident 

related information and traffic related information. Incidents are described by their exact 

location including the lane(s) blocked and the start/end time of the incident that is used to 

extract the total duration of the event. Total incident duration refers to all phases of the 

incident from detection to roadway clearance. It is generally assumed that the total duration of 

the incident may increase the risk of secondary incident occurrence (Karlaftis et al., 1999). 

Additional incident related information incorporated in the dataset refer to vehicle type and 

number of vehicles involved in the incident. Vehicle type influences clearance time since 

larger vehicles, trucks for example, require longer clearance time. In this study, 3 categories 

are considered: a) passenger cars (PC), b) power-two-wheelers (PTW; i.e. motorcycles), and 

c) heavy vehicles. Regarding traffic related information, data such as hourly lane volume and 

travel speed were also included in the analysis. However, reliable traffic information was 

present for only 1465 incident records that will be further used to the proposed analysis.  

The above data was further enhanced by integrating information on the rainfall intensity 

collected every 10 minutes. The weather conditions in the entire Attica toll way are monitored 

by four meteorological stations; these data are available from the METEONET network 

(http://meteonet.chi.civil.ntua.gr/en/divs.html) developed by the National Technical 

University of Athens. For this analysis, speed and volume at the beginning of an incident 

were associated with rainfall intensity information expressed in mm per 10 minutes. As the 

rainfall is a local phenomenon, an inverse distance weighting multivariate interpolation 

algorithm was applied in order to acquire accurate rainfall intensity in every incident location 

weighted to the distance from the closest meteorological sections (Segond et al., 2007). 

For the detection of secondary incidents a methodology that calculates the dynamic thresholds 

of the influence area of a primary incident using detailed real-time collected traffic data from 

upstream loop detectors is used (Orfanou et al., 2011). The methodology is based on the 

ASDA model (Automatische Staudynamikanalyse: Automatic Tracking of Moving Traffic 

Jams), a robust approach for automatically tracking the propagation of moving traffic jams 
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(Kerner et al. 2004). Let (Qo, Qn) be two consecutive loop detectors on a freeway road section 

and let L be their respective distance. After the moving jam has been observed at detector Q0 

at time to, the ASDA model begins by continuously calculating the positions of the upstream 

front xup
(jam) (t). After the downstream front of the moving jam is registered at detector Qn at a 

later time t1, the ASDA model starts calculating the positions of the downstream front, 

xdown
(jam) (t).  

The positions of both fronts of the formulated moving jam, caused by the primary incident, 

are defined by using the following two equations (Kerner et al. 2004):  
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with index i and j for the detectors whose time values at time t have to be used, Li+1, Lj are the 

distances of the corresponding detectors from the location of interest,  t0
(i+1) indicates the time 

when the upsteram front of the moving jam has been observed at detector i+1, t1
(j)indicates the 

time when the downstream front of the jam has been observed at detector j, q0 
(i)(t) and w0

(i)(t) 

are the measured flow rate and average vehicle speed at the I detectors upstream of a moving 

jam, qout
(j)(jam) and wmax

(j) are the measured flow rate and the average vehicle speed at detector j 

downstream of the moving jam, qmin and ρmax are the measured flow rate and density inside the 

moving jam (Kerner et al. 2004).  

The algorithm described by Equation 7 is the simplest version of the ASDA algorithm and is 

based on the use of the shockwave formula. This algorithm differs from other widely applied 

methodologies for spatio-temporal congested patterns tracking in that it uses not only speed 

but also traffic rates for detecting the spatio-temporal evolution of traffic and potentially more 

robust in defining traffic states. The ASDA algorithm has been applied and evaluated for 

tracking congestion against other techniques in Li and Bertini (2010); the authors discuss the 

difficulty of the specific technique in detecting the random fluctuations of traffic flow induced 

either by special roadway or local extreme traffic conditions.  

To assist the ASDA algorithm, a speed threshold technique is implemented similar to the one 

in Li and Bertini (2010). In particular, the time when the upstream and downsteram front are 

observed at each detector is estimated based on the speed threshold algorithm. Because high 
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speeds were observed, a maximum speed threshold equal to 60 kph was set; additionally, the 

speed differential between two successive detectors was set to 20 kph. The upstream front of 

the moving jam has reached a given detector at some point in time if the following criteria are 

observed: 

1. The speed at the detector is below the maximum speed threshold, 

2. The speed drop at the detector is higher than 35%, 

3. The difference between the speeds at the detector and the next downstream detector  

is greater than the speed differential.  

If congestion occurs, only the speed drop criterion is applied since the speeds are already 

below 60kph and the speeds between successive detectors range at the same levels.Using Eq. 

(7), it is possible to accurately calculate the position of the upstream and downstream front of 

the wide moving jam at any time. Consequently, it is also possible to estimate the jam width 

Ls= xdown
(jam)-xup

(jam) at any time, as well as queue duration and maximum queue length caused 

by the primary incident occurrence. Therefore, the spatiotemporal boundaries of the influence 

area are fully defined. The application of the methodology results in defining a curve of the 

form of Figure 1 for each incident record in the available incident dataset; any incident falling 

within this area is considered as secondary. 

<Figure 1> 

The above methodology is applied to the available incident dataset and results suggest that 

approximately 3.5% of total 1465 incidents can be regarded as secondary. This percentage 

matches those presented in previous research studies on secondary incident detection (Raub, 

1997; Moore et al., 2004). Details of the results comparative study of the different secondary 

detection methodologies including the proposed approach can be found in Orfanou et al. 

(2011) 

Developing Classifiers for Secondary Incident Risk Modeling 

Neural classifiers as described by the Equations 1 to 4 are developed and compared to Logit, 

Probit and Gompit models with respect to their accuracy and explanatory power. Probit 

models use the cumulative Gaussian normal distribution rather than the logistic function - 

used by the Logit model - for calculating the probability of belonging to either of two 

categories (Washington et al., 2010): 
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
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whereΦ is the cumulative standard distribution and   represents the standard normal density 

function. The Gompit model uses the Weibull distribution that is asymmetric and strongly 

negatively skewed and approaches zero only slowly and 1 more rapidly (compared to the 

Probit and Logit models; Washington et al., 2010): 

 01 exp( exp( ))i ip x       (9) 

The dependent variable is incident type; y=1 if it is secondary and 0 otherwise, βi are the 

coefficients. The independent variables are shown in Table 2. Those variables are selected 

based on previous studies. Moreover, the detailed traffic information as well as weather 

information on precipitation at the emergence of a primary accident is introduced. 

<Table 2> 

Table 3 shows the estimated mutual information conditioned on the observed output values y. 

As can be seen, traffic conditions at the occurrence of an incident (travel speed and hourly 

lane volume), as well as weather conditions in terms of rainfall seem to significantly 

contribute to an incident categorization. Moreover, incident duration is also highly 

contributing to the secondary accident’s likelihood. Variables such as upstream geometry, 

blocked lanes, vehicles involved in the incident and the existence of curves are less critical, 

whereas the geometry conditions downstream of an incident have the least contribution to the 

likelihood of having a secondary incident. 

<Table 3> 

Prediction results are depicted in Table 4 and Table 5, where the false positives and negatives 

are presented for the five models and for in- and out-of-sample accuracy respectively; the in-

sample performance will evaluate how well the model is specified, whereas the out-of-sample 

performance will evaluate the ability of a well-specified model to generalize to unseen data 

patterns. The out-of-sample performance is critical to the predictability of the model 

(Vlahogianni et al. 2005). 

A false positive occurs when the predicted variable is incorrectly labeled as being a 

secondary, whereas a false negative occur when a true secondary is labeled as a primary 

incident. The out-of-sample accuracy of the different models results through a bootstrapping 

procedure; an iterative process repeated 100 times was undertaken where each time 1000 
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draws from the original sample, with replacement, where used for estimation; the remainder 

of the data were used to evaluate the out-of-sample forecast performance. The resulting 

statistics of true and false positives are produced by examining the mean and distribution of 

the error-percentages of the alternative models. 

<Table 4> 

Results indicate that the MLP and the Logit have similar performance in classifying the 

incidents as secondary, as well as in forecasting the occurrence of secondary incidents using 

out-of-sample data. An MLP with few hidden layers has exactly the same performance as the 

Logit model; this may be expected considering the Logit as a special class of MLP with 1 

hidden neuron.  

<Table 5> 

Interestingly, when the number of hidden neurons increases the model’s performance 

in the out-of-sample data increases and outperforms the Logit model without showing signs of 

over-fitting (because of increased hidden neurons). Moreover, the comparison of the models 

in the out-of-sample data shows that both the MLP and the Logit outperform the Probit and 

Gompit models.  
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TABLE 6Table 6 summarizes the results with respect to the partial derivatives and the 

corresponding p-values for the different models considered. MLP’s explanatory power 

converges to the one of the Logit model. The same does not apply for the rest of the models. 

For example, although the collision type seems to be significant in the MLP and Logit 

models, in the Probit and Gompit models this variable is not significant.  

<Table 6> 

Changes in speed and volume, number of blocked lanes and vehicles involved, as well as the 

upstream geometry are found critical regarding the probability of having a secondary incident, 

whereas changes in rainfall intensity does not greatly influence secondary incident likelihood. 

More specifically, results suggest that decreases in speed and increases in lane volume 

increase the probability of having a secondary incident. Moreover, an increase in rainfall may 

result in increased secondary incident likelihood. However, it should be noted that all rainfall 

incidents coinciding with incidents in the available database were light rain, limiting the 

model’s transferability to heavier rain instances. Further, increased road geometry complexity 

upstream of a primary incident seems to increase the likelihood of having a secondary 

incident, and the probability of having a secondary incident is higher when the number of 

vehicles involved increases. The results also indicate that secondary incident likelihood is 

negatively related to changes in the number of lanes that are blocked due to the primary 

incident, to the existence of a curved section at the location of the primary incident, and the 

involvement of heavy vehicles (similar findings were reported by Zhang and Khattak, 2010). 

Interestingly, in all models, small changes in downstream geometry and duration of the 

incident were not found significant with respect to the likelihood of a secondary incident. 

The joint consideration of both sensitivity measures is graphically depicted in Figure 2, where 

the x axis is the ranking of the variables using the partial derivatives measure PD(x) and the y 

axis represents the ranking of the variables using the mutual information measure I(x). In 

Figure 2, two distinct areas are observed: the high contribution variables area and the area of 

variables whose small changes may impose changes to the probability of having a secondary 

accident.  

<Figure 2> 

As can be observed, the joint consideration - when using some expert knowledge to set the 

boundaries of high/low ranking - may clarify the ambiguities resulting for separately 
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considering each influence measure separately. It also provides some useful managerial tools 

for alleviating the effects of a primary incident in traffic and, thus, in reducing the likelihood 

of having a secondary accident. From Figure 2 it is evident that it is important to know the 

speed and volume at the occurrence of the primary incident, the duration of the primary 

accident, and rainfall intensity to define the probability of having a secondary accident. 

Moreover, critical variables to the knowledge of the probability of secondary accidents are the 

number of blocked lanes and vehicles involved, and upstream geometry. Further, if one would 

like to reduce in the probability of having a secondary accident, he/she should focus on 

managerial actions that would lead to controlling the speed and volume in the area of the 

accident, shift the number of blocked lanes (primarily by speeding-up the clearance 

procedures), and redirecting heavy vehicles. The above joint consideration of the proposed 

influence measures may be used to identify and structure a set of action plans that may be 

used to mitigate the effects of primary incident on freeway operations. 

CONCLUSIONS 

Identifying influential roadway, traffic and incident characteristics that increase the likelihood 

of secondary incident occurrence is critical to the development and implementation of 

efficient traffic management strategies. This paper extended past knowledge by comparing 

different structures of MLPs to the classical statistical models such as Logit, Probit and 

Gompit models, for secondary incident likelihood modeling. The comparison focused on both 

the accuracy and the explanatory power of the models evaluated. Results indicate that the 

MLP with a logistic activation function that acts as a general Logit model, along with the 

Logit model, outperform the rest of the methods evaluated. Regarding influential factors, we 

found that traffic conditions at the occurrence of an incident as well as weather conditions in 

terms of rainfall, seem to significantly contribute to secondary accident occurrence. Changes 

in speed and volume, number of blocked lanes and percentage of heavy vehicles, as well as 

upstream geometry were found to significantly influence the probability of having a 

secondary incident, whereas changes in rainfall intensity do not critically influence secondary 

incident likelihood. Interestingly, for all models, changes in downstream geometry and 

duration of an incident were not found significant with respect to the likelihood of having a 

secondary incident.  

From a methodological perspective, the paper contributes towards two distinct directions: 

first, it provides neural network models for transportation applications with tractable 

explanatory power, as well as a methodological framework for comparing neural network and 
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classical statistical models. Second, the potential benefits of a decision making framework 

that describes which variables to monitor and how to change those variables in order to 

control the probability of having a secondary accidents are evaluated and discussed. The 

proposed neural network approach to modeling the secondary accident likelihood may be 

considered as a step forward to using neural networks as a transparent managerial tool for 

decision making and can be easily extended to other transportation applications.   
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TABLE 1: Interpretation of the joint consideration of partial derivatives and mutual information 
on the impact of each input variable on the output. 

 

  

 
Partial Derivative 

High Low 
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Small changes in the variable’s value 
can have a high impact on the 
magnitude of the response. The variable 
has a high contribution to the response 
value. 

Small changes in the variable’s value 
have limited or no effect on the 
magnitude of the response, but its 
absence would have a large impact. 

L
ow

 

Although the variable contributes less to 
the magnitude of the response, changes 
to the variable’s value might have an 
impact on the magnitude of the 
response. 

The variable has low contribution to 
the response, and offer limited 
opportunity to effect change to the 
magnitude of the response. 
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TABLE 2: Description of the input variables. 

 

 

 

 

  

Variable Type Description 
Duration Continuous The incident duration in minutes 
Collision Type Categorical 0 to 4, from less to more severe 
Nr. Lanes Categorical 1 to 3, 1:1 lane, 2: two, 3: more than 2 
Nr. Vehicles Categorical 1 to 3, 1:one vehicle, 2: two vehicles, 3: more 

than 2 vehicles involved
Heavy Vehicle Categorical 0 to 1(Heavy Vehicle involved) 
Travel Speed Continuous Travel speed (km/h) at the occurrence of  the 

incident 
Hourly volume  Continuous Hourly volume (veh/h/lane) at the occurrence of  

the incident 
Rainfall Continuous Rainfall at the occurrence of the incident in 

mm/10min 
Alignment Categorical 0 to 1(curve) 
Downstream Geometry Categorical 0 to 4, 0: no special geometry, 1: adjacent to 

tunnel, 2: adjacent to toll, 3: adjacent to 
entrance/exit, 4: more than one 

Upstream Geometry Categorical 0 to 4, 0: no special geometry, 1: adjacent to 
tunnel, 2: adjacent to toll, 3: adjacent to 
entrance/exit, 4: more than one 
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TABLE 3: Variable contribution to the incident category y with respect to the conditional mutual 
information. 

Variable ( | )I Y X


Normalized ( | )I Y X


 

Speed 0.17 1.00 

Duration 0.12 0.72 

Hourly volume 0.12 0.69 

Rainfall 0.11 0.67 

Nr. Vehicles 0.09 0.51 

Upstream Geometry 0.08 0.45 

Nr. Lanes 0.08 0.45 

Collision Type 0.07 0.39 

Alignment 0.07 0.38 

Heavy Vehicle 0.06 0.33 

Downstream Geometry 0.05 0.27 
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TABLE 4: Error percentages for in-sample classification. 

 
Model1 Likelihood False Positive False Negative Weighted Average 

MLP(11-6-2) 425.52 0.037 0.091 0.064 
MLP(11-12-2) 425.52 0.036 0.091 0.064 

Logit 425.52 0.037 0.091 0.064 
Probit 428.99 0.037 0.090 0.063 

Gompit 442.96 0.040 0.090 0.065 
1 The numbers in parentheses signify the number of neurons of the input, hidden and output 

layerof the MLP. 
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TABLE 5: Error Percentages for out-of-sample forecasting. 

Model1 False Positive False Negative Weighted Average 
MLP(11-6-2) 0.042 0.102 0.072 
MLP(11-12-2) 0.050 0.089 0.069 

Logit 0.042 0.102 0.072
Probit 0.705 0.002 0.353 

Gompit 0.764 0.000 0.382 
1 The numbers in parentheses signify the number of neurons of the input, 

hidden and output layer of the MLP. 
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TABLE 6: Input variable significance with respect to partial derivatives and p-values1. 

 

Variable 
Partial Derivative (p-value) 

MLP(11-12-2)2 Logit Probit Gompit 
Duration 0.014* 0.014* 0.012 0.013 
Collision Type 0.023* 0.023* 0.019 0.014 
Nr. Lanes 0.065** 0.065** 0.065** 0.061** 
Nr. Vehicles 0.063** 0.062** 0.071** 0.073** 
Heavy Vehicles 0.091** 0.091** 0.094** 0.094** 
Speed -0.098** -0.097** -0.089** -0.068** 
Lane Volume 0.053** 0.053** 0.053** 0.053** 
Rainfall 0.021** 0.018** 0.030** 0.039** 
Alignment 0.033** 0.036** 0.039** 0.037** 
Downstream Geometry 0.003 0.003 0.003 0.001 
Upstream Geometry 0.034** 0.035** 0.032** 0.026** 

1 Significance is calculated from bootstrapped distributions 
2 The numbers in parentheses signify the number of neurons of the input, hidden and output layer. 
*significance at 95% level, ** significance at 99%level 
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FIGURE 1: Boundaries of the length Ls of the influence area upstream of an incident with 
duration equal to 58 min using as proposed method of analysis based on the ASDA algorithm.  
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FIGURE 2: Graphical representation of the influence of input variable with regards to the 
partial derivative versus the inputs’ influence based on the conditional mutual information. 

 

 

 


