

Driver distraction in patients with neurodegenerative diseases

Mary H. Kosmidis

Professor, Aristotle University of Thessaloniki

Haris Kavouras, Aristotle University of Thessaloniki

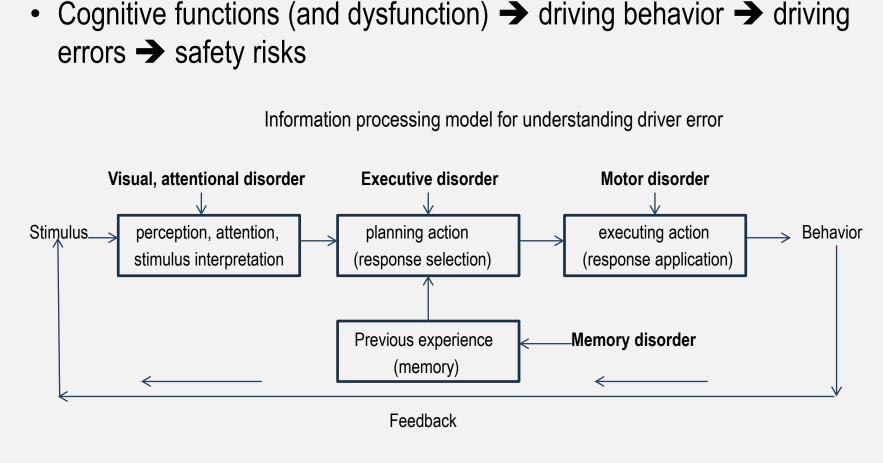
Athens, 26 June 2015

<u>Objective</u>

Identify neuropsychological variables predictive of driving ability and describe driving patterns of healthy and neurologically impaired individuals

Methodological steps

- 1. Literature review of potential neuropsychological correlates of driving and driving ability in individuals with MCI, AD and PD
- 2. Correlations between neuropsychological measures and driving ability in healthy individuals
- 3. Highly original driving simulator experiment: comparisons of healthy and neurologically impaired individuals (neurodegenerative diseases) on driving parameters


distrACT driver BRAIN Human factors in accidents: Distraction

- Human factors are basic cause of motor vehicle accidents in 65-95% of cases
 Sabey & Taylor (1980), Salmon et al. (2011)
- Driver distraction explains 12% of factors contributing to motor vehicle accidents
- Within-car factors explain 2/3 distraction incidents

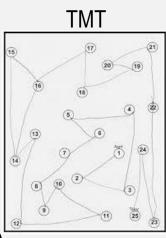
US Department for Transport (2008)

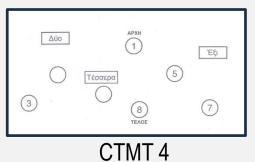
Driver distraction is the 3rd factor in lethal motor vehicle accidents in Greece Hellenic Police (2014)

Rizzo & Kellison, 2010

distr ACT

driver BRAIN


Conceptual framework



distrACT driver BRAIN Neuropsychological variables predictive of driving ability

- Test highly correlated with driving ability (i.e., TMT, CTMT)
- No test adequate alone
- Critical not to use age-corrected norms**
- Global deficit score emphasize number and weight of impairment, below average performance
- Composite scores
- Screening tests (Clinical Dementia Rating, Mini Mental State Examination)
- Driving Scenes (Neuropsychological Assessment Battery)

Participants

- Participants: *N*=238 healthy adult drivers (women: *n*=128) from Athens & Thessaloniki
- Mean age=45.41 (SD=17.55) years, range=20-90 years

<u>Results</u>

Factor analysis (promax rotation loadings > or = .40) yielded 5 cognitive domains:

Sustained/focused	Verbal memory	Working memory	Visuospatial	Visual recognition
attention			perception & memory	
CTMT2	HVLT Descr Index	Spatial span forward	JOL	BVMT recognition
CTMT1	HVLT recognition	Spatial span backward	BVMT delayed	BVMT Desc index
CTMT3	HVLT delayed	Letter-number sequencing	Embedded figure total	
CTMT4	HVLT total		BVMT total	
CTMT5				

Psychomotor Vigilance

Which neuropsychological variables predict driving ability?

Coefficients ^a								
Model		Unstandardized Coefficients		Standardized Coefficients	t Sig.		Collinearity Statistics	
		В	Std. Error	Beta			Tolerance	VIF
1	(Constant)	42.203	1.135		37.172	.000		
	Selective attention	-1.668	.463	309	-3.606	.000	.593	1.686
	Verbal memory	.812	.328	.179	2.480	.014	.835	1.197
	Working memory	.188	.349	.041	.540	.590	.739	1.353
	Visuospatial perception/me	.813	.357	.195	2.279	.024	.595	1.681
	Visual recognition memory	.083	.695	.008	.120	.905	.991	1.009

a. Dependent Variable: NAB Driving Scenes

distr ACT

driverBRAIN

Factors predictive of Driving Scenes difference detection: selective attention, verbal memory and visuospatial perception/memory (not working memory or visual recognition memory)

- MCI: driving difficulties (maintaining speed, steering wheel, lateral position) Wadley et al. (2009)
- MCI: lane position, distraction by external sounds, inadequate response to sudden events, irritability

Frank-Garcia et al. (2009)

• Dementia: adequate driving in early stages

Harvey et al. (1995)

• AD: more safety-related driving errors (lane position)

Dawson et al. (2009)

 PD: distraction (conversation while driving) more driving errors with and without distraction, drive more slowly and variations during distraction

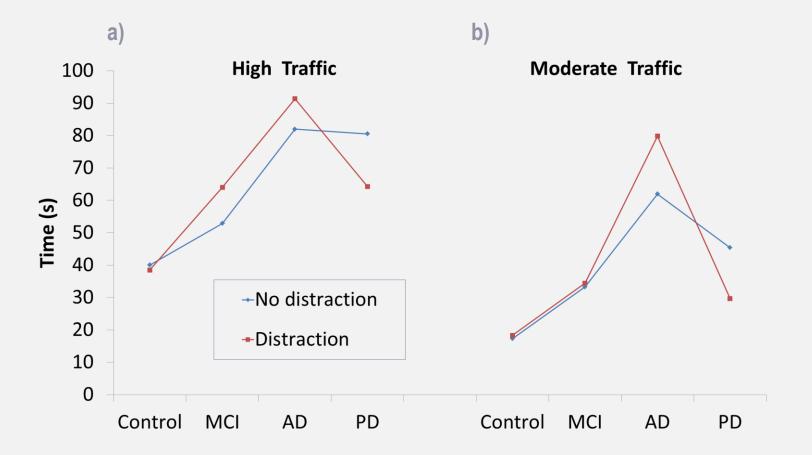
Uc et al. (2006)

• N=225 community-dwelling adults (22-90 ετών) currently driving (32% women)

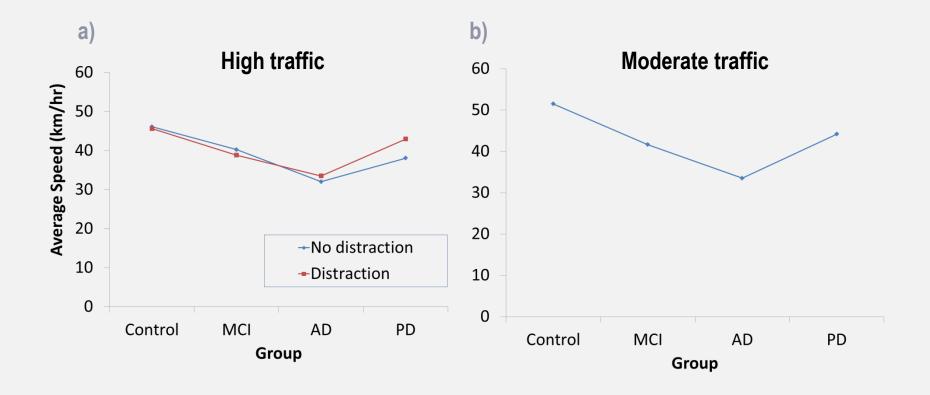
Group	n	Mean age (SD) (years)
Healthy	90	46.97 (16.04)
Mild Cognitive Impairment	56	69.30 (10.14)
Alzheimer's Disease	24	73.54 (6.69)
Parkinson's Disease	24	63.46 (10.01)
Total	225	59.24 (16.46)

• Mean age = 59.24 (SD=16.46) years

• All participants drove simulator under 4 rural conditions:


Traffic	Distraction	
Moderate	None	
High	None	
Moderate	Conversation	
High	Conversation	

- Driving ability variables:
 - Lateral position of vehicle relative to right-sided road limit (m)
 - Average speed (km/hr)
 - Thead (average time to potential collision with preceding vehicle) (s)
 - Sudden braking (frequency)
 - Speed violation (frequency)


Thead (average time to potential collision)

Group X distraction interactions in (a) high and (b) moderate traffic conditions

(a) Group X distraction interaction in high traffic condition(b) Group main effect in moderate traffic condition

Conclusion

- Healthy and MCI groups drove consistently despite distraction
- The AD group compensated, driving more slowly and further from preceding vehicle
- The PD group did not compensate

Snapshots

- Particular neuropsychological domains selective attention, verbal memory and visual perception/memory -- are predictive of driving behavior and should be part of standard neuropsychological assessments regarding driving ability
- Driving patterns of neurologically impaired individuals differ based on brain regions/neuropsychological domains involved in the pathology (e.g., frontal-subcortical regions vs. temporal-parietal regions)
- Implications for driving difficulties in non-degenerative neurological disorders or trauma
- Exploration of personality, in addition to cognitive factors regarding driving ability

Driver distraction in patients with neurodegenerative diseases

Mary H. Kosmidis

Professor, Aristotle University of Thessaloniki

Haris Kavouras, Aristotle University of Thessaloniki

Athens, 26 June 2015