Design of a dedicated driving simulator experiment on driving behaviour

Eleonora Papadimitriou, Ph.D
Research Associate
National Technical University of Athens

Athens, 26 June 2015
Background

- The DISTRACT research project
 - “Analysis of causes and impacts of driver distraction”
 - Causes: endogenous & exogenous, Impacts: driver behaviour & safety
 - Drivers from the general population, as well as drivers with altered cognition due to cerebral diseases with high prevalence: e.g. Mild Cognitive Impairment (MCI), mild Alzheimer’s Disease, Cerebrovascular disease (stroke).

- The DriverBrain research project
 - “Analysis of the performance of drivers with cerebral diseases” altering cognition
 - Alzheimer’s Disease, Parkinson’s disease, Cerebrovascular disease - both in their MCI (pre-dementia) stages, but also in their mild dementia stages.

- An interdisciplinary research team
 - Dpt. of Transportation Planning and Engineering of the NTUA
 - Dpt. of Neurology of the University of Athens (NKUA) Medical School, ATTIKON General University Hospital, Athens
 - Dpt. of Psychology, UoA School of Philosophy, Pedagogy and Psychology

- A common simulator experiment
Objectives

Objective

Design of a dedicated driving simulator experiment to assess the driving performance of older drivers in terms of both traffic and safety parameters with emphasis on driver distraction

- The experiment has a twofold objective
 - assessment of driving performance
 - impacts of driver distraction

- Targets two groups of drivers
 - Drivers from the general population
 - Drivers with a mild pathological condition
Key research parameters

- Medical and neurological parameters
- Neuropsychological parameters
- Road type and traffic parameters
- Driver behaviour and safety parameters
Overview of the experiment

Designed sample size

<table>
<thead>
<tr>
<th>Age</th>
<th>Impaired</th>
<th>Healthy</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 55</td>
<td>125</td>
<td>75</td>
<td>200</td>
</tr>
<tr>
<td>< 55</td>
<td>50</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>175</td>
<td>125</td>
<td>300</td>
</tr>
</tbody>
</table>

Phases of the Experiment

- **Phase 1.** Medical / Neurological Assessment
- **Phase 2.** Neuropsychological Assessment
 - Questionnaire on driving habits
- **Phase 3.** Driving at the simulator
 - Rural and urban driving sessions
 - Motorway driving session
Phase 1: Medical / neurological assessment

Comprehensive clinical evaluation

- Present & past history, pharmacological treatment, life habits (alcohol consumption, smoking, etc)
- Detailed neurological examination (neurological signs: markers for a disease)
- Psychiatric assessment for depression, anxiety, behavioral disturbances
- Ophthalmological evaluation: visual acuity, visual fields, fundoscopy
- Motor ability-tests in Fitness to Drive: Specific clinical tests examining motor control, balance, visual fields etc. related to driving skills

- **Phase 1A** - pre-simulator with up to 14 exams
- **Phase 1B** - post-simulator with up to 2 exams
Phase 2: Neuropsychological assessment

Covering a large spectrum of cognitive functions

- visuo-spatial, verbal episodic and working memory
- general, selective and divided attention
- reaction time
- Processing speed, psychomotor speed

Associated with fitness to drive

- MMSE: General Cognitive State
- Clock Drawing Test
- Hopkins Verbal Learning Test
- Trail Making Test
- Useful Field of View

- **Phase 1A** - pre-simulator with up to 13 tests
- **Phase 1B** - post-simulator with up to 6 tests
Phase 3: Driving at the simulator

Urban and rural driving sessions

Objective: investigate the driving performance of healthy versus impaired subjects at typical driving conditions, with different road, traffic and distraction characteristics.

Motorway driving session

Objective: determine whether varying levels of operational and tactical task demands would differentially affect healthy versus impaired subjects in recall of traffic safety messages.
Urban and rural driving sessions (1/2)

- Full factorial within-subject design
- 1 driving simulator
 - Foerst Driving Simulator FPF (1/4 cab)
- 2 road environments
 - Rural: undivided two-lane rural road
 - Urban: divided urban arterial
- 3 distraction conditions
 - No distraction
 - Conversation with passenger
 - Mobile phone use
- 2 traffic scenarios
 - Low to moderate traffic conditions ($v/c \approx 0.50-0.70$)
 - Moderate to high traffic conditions ($v/c \approx 0.70-0.85$)
- 2 unexpected incidents at each trial
 - Deer or donkey at rural area
 - Child crossing the road or sudden appearance of a car at urban area
Urban and rural driving sessions (2/2)

- 2 driving sessions with up to 6 trials each
- 1.7 km for each urban trial - 2.1 km for each rural trial (3.5 minutes on average)
- Counterbalanced between and within session-trials
- Incidents at fixed points

<table>
<thead>
<tr>
<th>Session</th>
<th>Area Type</th>
<th>Trial</th>
<th>Traffic</th>
<th>Distractor</th>
<th>~ Length (Km)</th>
<th>~ Duration (Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Urban</td>
<td>1</td>
<td>Moderate</td>
<td>None</td>
<td>1.7</td>
<td>3:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>High</td>
<td>None</td>
<td>1.7</td>
<td>3:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Moderate</td>
<td>Cell Phone</td>
<td>1.7</td>
<td>3:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>High</td>
<td>Cell Phone</td>
<td>1.7</td>
<td>3:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Moderate</td>
<td>Conversation</td>
<td>1.7</td>
<td>3:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>High</td>
<td>Conversation</td>
<td>1.7</td>
<td>3:30</td>
</tr>
<tr>
<td>2</td>
<td>Rural</td>
<td>7</td>
<td>Moderate</td>
<td>None</td>
<td>2.1</td>
<td>3:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>High</td>
<td>None</td>
<td>2.1</td>
<td>3:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>Moderate</td>
<td>Cell Phone</td>
<td>2.1</td>
<td>3:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>High</td>
<td>Cell Phone</td>
<td>2.1</td>
<td>3:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>Moderate</td>
<td>Conversation</td>
<td>2.1</td>
<td>3:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>High</td>
<td>Conversation</td>
<td>2.1</td>
<td>3:30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.8</td>
<td>42:00</td>
</tr>
</tbody>
</table>
Motorway driving session

- 3 trials (6 minutes each)

- **Memory task** involving a cued recall of important safety information presented (8sec)
 - Three signs to recall:
 - a) a type of situation ahead (icy road)
 - b) a distance (4 km ahead)
 - c) a driver action required (use of snow chains)

- **Different levels of task demand** (100sec each)
 - **Low demand trial**: minimal steering input, lead vehicles at safe distance ahead
 - **Moderate demand trial**: after an initial low-demand driving the driver makes a double lane change (roadworks section)
 - **High demand trial**: same steering requirements in addition drivers are required to execute a lane change in response to a discriminative stimulus (activation of brakes of the lead vehicle).
Discussion

Contribution of the research

- Interdisciplinary approach
- Large sample size
- Focus on impaired drivers
- Endogenous and exogenous effects on driver performance
- Detailed effects of traffic

Challenges in the experiment design

- Combine and balance the objectives & targets
- Selection of key variables (medical, neuropsychological, traffic)
- Individual assessment and population analysis
- Efficiency: rigorous design yet manageable size
- Effects of simulator sickness and unfamiliar technological environment
Experiment characteristics

<table>
<thead>
<tr>
<th>Total participants</th>
<th>Total progress 30 April 2015</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase A Pre-Simulator</td>
<td>307 completed (192 impaired)</td>
<td>9 drop outs</td>
</tr>
<tr>
<td>Driving at the Simulator</td>
<td>226 completed (133 impaired)</td>
<td>49 sim. sick. drop outs</td>
</tr>
<tr>
<td>Phase B Post-Simulator</td>
<td>209 completed</td>
<td>107 drop outs</td>
</tr>
</tbody>
</table>

209 participants completed all phases (127 impaired)
Key figures of the experiment (2/2)

Sample characteristics

Sample Scheme
(209 participants through all phases)

Age Distribution
(209 participants through all phases)

Mental Condition Distribution
(209 participants through all phases)
Design of a dedicated driving simulator experiment on driving behaviour

Eleonora Papadimitriou, Ph.D
Research Associate
National Technical University of Athens

Athens, 26 June 2015