

Design of a dedicated driving simulator experiment on driving behaviour

Eleonora Papadimitriou, Ph.D

Research Associate
National Technical University of Athens

Athens, 26 June 2015

Background

The DISTRACT research project

- "Analysis of causes and impacts of driver distraction"
- Causes: engodenous & exogenous, Impacts: driver behaviour & safety
- Drivers from the general population, as well as drivers with altered cognition due to cerebral diseases with high prevalence: e.g. Mild Cognitive Impairment (MCI), mild Alzheimer's Disease, Cerebrovascular disease (stroke).

The DriverBrain research project

- "Analysis of the performance of drivers with cerebral diseases" altering cognition
- Alzheimer's Disease, Parkinson's disease, Cerebrovasular disease both in their MCI (predementia) stages, but also in their mild dementia stages.

An interdisciplinary research team

- Dpt. of Transportation Planning and Engineering of the NTUA
- Dpt. of Neurology of the University of Athens (NKUA) Medical School, ATTIKON General University Hospital, Athens
- Dpt. of Psychology, UoA School of Philosophy, Pedagogy and Psychology

A common simulator experiment

Objectives

Objective

Design of a dedicated driving simulator experiment to assess the driving performance of older drivers in terms of both traffic and safety parameters with emphasis on driver distraction

- The experiment has a twofold objective
 - assessment of driving performance
 - impacts of driver distraction
- Targets two groups of drivers
 - Drivers from the general population
 - Drivers with a mild pathological condition

Key research parameters

- Medical and neurological parameters
- Neuropsychological parameters
- Road type and traffic parameters
- Driver behaviour and safety parameters

Overview of the experiment

Designed sample size

Age	Impaired	Healthy	Total
> 55	125	75	200
< 55	50	50	100
Total	175	125	300

Phases of the Experiment

- Phase 1. Medical / Neurological Assessment
- Phase 2. Neuropsychological Assessment
 Questionnaire on driving habits
- Phase 3. Driving at the simulator
 - Rural and urban driving sessions
 - Motorway driving session

Phase 1: Medical / neurological assessment

Comprehensive clinical evaluation

- Present & past history, pharmacological treatment, life habits (alcohol consumption, smoking, etc)
- Detailed neurological examination (neurological signs: markers for a disease)
- Psychiatric assessment for depression, anxiety, behavioral disturbances
- Ophthalmological evaluation: visual acquity, visual fields, fundoscopy
- Motor ability-tests in Fitness to Drive: Specific clinical tests examining motor control, balance, visual fields etc. related to driving skills
- Phase 1A pre-simulator with up to 14 exams
- Phase 1B post-simulator with up to 2 exams

Phase 2: Neuropsychological assessment

Covering a large spectrum of cognitive functions

- visuo-spatial, verbal episodic and working memory
- general, selective and divided attention
- reaction time
- Processing speed, psychomotor speed

Associated with fitness to drive

- MMSE: General Gognitive State
- Clock Drawing Test
- Hopkins Verbal Learning Test
- Trail Making Test
- Useful Field of View

- Phase 1A pre-simulator with up to 13 tests
- Phase 1B post-simulator with up to 6 tests

Phase 3: Driving at the simulator

Urban and rural driving sessions

Objective: investigate the driving performance of healthy versus impaired subjects at typical driving conditions, with different road, traffic and distraction characteristics.

Motorway driving session

Objective: determine whether varying levels of operational and tactical task demands would differentially affect healthy versus impaired subjects in recall of traffic safety messages.

driver BRAIN Urban and rural driving sessions (1/2)

- Full factorial within-subject design
- 1 driving simulator
 - Foerst Driving Simulator FPF (1/4 cab)

* 2 road environments

- Rural: undivided two-lane rural road
- Urban: divided urban arterial

* 3 distraction conditions

- No distraction
- Conversation with passenger
- Mobile phone use

* 2 traffic scenarios

- Low to moderate traffic conditions (v/c \sim 0.50-0.70) Moderate to high traffic conditions (v/c \sim 0.70-0.85)

2 unexpected incidents at each trial

- Deer or donkey at rural area
- Child crossing the road or sudden appearance of a car at urban area

Urban and rural driving sessions (2/2)

- 2 driving sessions with up to 6 trials each
- 1,7 km for each urban trial 2,1 km for each rural trial (3,5 minutes on average)
- Counterbalanced between and within session-trials
- Incidents at fixed points

Session	Area Type	Trial	Traffic	Distractor	~ Length (Km)	~ Duration(Min)
		1	Moderate	None	1,7	3:30
		2	High	None	1,7	3:30
1	Urban	3	Moderate	Cell Phone	1,7	3:30
	Ulbali	4	High	Cell Phone	1,7	3:30
		1,7	3:30			
		6	High	Conversation	1,7	3:30
		7 Moderate None	None	2,1	3:30	
		8	High	None	2,1	,
2	Rural 9 Moderate	Cell Phone	2,1	3:30		
	Ruiai	10 High Cell Phone 2,1	3:30			
		11	Moderate Conversation 2,1 3:30	3:30		
		12	High	Conversation	2,1	3:30
				Total	22,8	42:00

Motorway driving session

- 3 trials (6 minutes each)
- Memory task involving a cued recall of important safety information presented (8sec)
 - Three signs to recall:
 - a) a type of situation ahead (icy road)b) a distance (4 km ahead)

 - c) a driver action required (use of snow chains)

- Low demand trial: minimal steering input, lead vehicles at safe distance ahead
- **Moderate demand trial**: after an initial low-demand driving the driver makes a double lane change (roadworks section)
- High demand trial: same steering requirements in addition drivers are required to execute a lane change in response to a discriminative stimulus (activation of brakes of the lead vehicle).

Discussion

Contribution of the research

- Interdisciplinary approach
- Large sample size
- Focus on impaired drivers
- Endogenous and exogenous effects on driver performance
- Detailed effects of traffic

Challenges in the experiment design

- Combine and balance the objectives & targets
- Selection of key variables (medical, neuropsychological, traffic)
- Individual assessment and population analysis
- Efficiency: rigorous design yet manageable size
- Effects of simulator sickness and unfamiliar technological environment

Key figures of the experiment (1/2)

Experiment characteristics

	Total		
Total paricipants	316 (192 impaired)		316
Phase A Pre-Simulator	307 completed (192 impaired)	9 drop outs	316
Driving at the Simulator	226 completed (133 impaired) (25AD, 59MCI, 25PD, 22other, 5unknown)	49 sim. sick. drop outs 41 drop outs	316
Phase B Post-Simulator	209 completed	107 drop outs	316

209 participants completed all phases (127 impaired)

Key figures of the experiment (2/2)

Sample characteristics

Design of a dedicated driving simulator experiment on driving behaviour

Eleonora Papadimitriou, Ph.D

Research Associate
National Technical University of Athens

Athens, 26 June 2015