3rd International Conference on Road Safety and Simulation Session: MODERN SAFETY MANAGEMENT Thursday, September 15

DETECTING & MODELING SECONDARY ACCIDENTS ON TOLLWAYS

Matthew G. Karlaftis, Ph.D. <u>mgk@mail.ntua.gr</u>

OUTLINE

- Secondary Incidents-crashes
- Scope
- Application and Results
- Conclusions

SECONDARY INCIDENTS

Crashes within a predefined spatiotemporal region of a primary incident.

Importance

- Major source of freeway incidents → additional traffic delay
- Much more severe than the primary incident
- Longer clearance times
- Affect freeway operations

Identification contributes to maintaining and increasing safety levels on freeways

PREVIOUS RESEARCH

Secondary Incident Detection

- Pre-defined spatiotemporal criteria
- Dynamic thresholds based on reported queue data
- Estimation of maximum queue length and traffic delay based on cumulative arrival and departure plots.

Influencing factors of Secondary Incident Likelihood

- Traffic (but, usually AADT, day and time, period of day).
- Weather conditions not explicitly considered

SCOPE OF WORK

Analytically define dynamic thresholds of the influence area of a primary incident

- Use of detailed real-time collected traffic data from upstream loop detectors
- Accident occurring within the defined influence area \rightarrow secondary
- Modeling secondary accident likelihood
 - Concentrate on real-time traffic and weather effects
 - Compare methodological approaches (Stats & AI)

METHODOLOGY

 $x_{up}^{(jam)}(t) = L_{i+1} - \int_{t_0^{(i+1)}}^{t} \frac{q_0^{(i)}(t) - q_{min}}{\rho_{max} - \left(q_0^{(i)}(t)/w_0^{(i)}(t)\right)} dt$ ASDA Model

$$x_{down}^{(jam)}(t) = L_j - \int_{t_1^{(j)}}^t \frac{q_{out}^{(j)(jam)}(t) - q_{min}}{\rho_{max} - \left(q_{out}^{(j)(jam)}(t) / w_{max}^{(j)}(t)\right)} dt$$

Dynamic spatiotemporal boundaries of the influence area of the primary incident fully defined

- Automatic tracking of the propagation of moving traffic jams at any time
- Accurate calculation of the positions of the upstream and downstream front of the bottleneck
- Calculation of the jam width, queue length propagation and queue duration

METHODOLOGY

Secondary accident likelihood modeling

- Logit (Probit, Gompit)
- Multilayer Perceptrons

Independent Variables

- Duration
- Collision Type
- Nr. Lanes
- Nr. Vehicles
- Heavy Vehicle
- Travel Speed
- Hourly volume
- Rainfall
- Alignment
- Downstream Geometry
- Upstream Geometry

METHODOLOGY

Low

Neural Networks as Explanatory Models

High

Mutual Information

Mutual Information	$I(Y \mid \vec{X}) = \frac{H(Y) - H(Y \mid \vec{X})}{H(Y)} \times 100$	
Partial Derivatives	$\frac{\partial y_j}{\partial x_i} = \sum_k \frac{\partial y_j}{\partial net_j} \frac{\partial net_j}{\partial h_k} \frac{\partial h_k}{\partial net_k} \frac{\partial net_k}{\partial x_i} = \sum_k f'_k w_{kj} f'_k w_{ik}$	Interpretation
	Partial Derivative	

High	Small changes in the variable's value can have a high impact on the magnitude of the response. The variable has a high contribution to the response value.	Small changes in the variable's value have limited or no effect on the magnitude of the response, but its absence would have a large impact.
>	Although the variable contributes less to the	The variable has low contribution to the

Although the variable contributes less to the magnitude of the response, changes to the variable's value might have an impact on the magnitude of the response. The variable has low contribution to the response, and offer limited opportunity to effect change to the magnitude of the response.

DESCRIPTION OF DATA

Variable	Туре	Description
Duration	Continuous	The incident duration in minutes
Collision Type	Categorical	0 to 4, from no history to delays
Nr. Lanes	Categorical	1 to 3, 1:1 lane, 2: two, 3: more than 2
Nr. Vehicles	Categorical	1 to 3, 1:one vehicle, 2: two vehicles, 3: more than 2 vehicles involved
Heavy Vehicle	Categorical	0 to 1(Heavy Vehicle involved)
Travel Speed	Continuous	Travel speed (km/h) at the occurrence of the incident
Hourly volume	Continuous	Hourly volume (veh/h/lane) at the occurrence of the incident
Rainfall	Continuous	Rainfall at the occurrence of the incidentin mm/10min
Alignment	Categorical	0 to 1(curve)
Downstream Geometry	Categorical	0 to 4, 0: no special geometry, 1: adjacent to tunnel, 2: adjacent to toll, 3: adjacent to entrance/exit, 4: more than one
Upstream Geometry	Categorical	0 to 4, 0: no special geometry, 1: adjacent to tunnel, 2: adjacent to toll, 3: adjacent to entrance/exit, 4: more than one

Traffic jam's width (L_s) versus time

Accidents falling within the curve's boundaries are considered as secondary

Identified secondary accidents:

- 3.5% of the total number of accidents based on our approach
- 3.3% of the total number of accidents using fixed boundaries of 2 hours and 3.2 km
- 1.6% of the total number of accidents using fixed boundaries of 15 minutes plus clearance time and 1.6 km

Variable contribution to the secondary accident risk with respect to the conditional mutual information.

High contribution to the response value

Low contribution to the response value

Variable	Normalized Mutual Information
Speed	1.00
Duration	0.72
Hourly volume	0.69
Rainfall	0.67
Nr. Vehicles	0.51
Upstream Geometry	0.45
Nr. Lanes	0.45
Collision Type	0.39
Alignment	0.38
Heavy Vehicle	0.33
Downstream Geometry	0.27

Variable	Partial Derivative	
	MLP(11-12-2) ²	Logit
Duration	0.014	0.014
Collision Type	-0.023*	-0.023*
Nr. Lanes	-0.065**	-0.065**
Nr. Vehicles	0.063**	0.062**
Heavy Vehicles	-0.098**	-0.097**
Speed	-0.091**	-0.091**
Lane Volume	0.053**	0.053**
Rainfall	0.021**	0.018**
Alignment	-0.063**	-0.066**
Downstream Geometry	0.003	0.003
Upstream Geometry	0.034**	0.035**
	Variable Duration Collision Type Nr. Lanes Nr. Vehicles Heavy Vehicles Speed Lane Volume Rainfall Alignment Downstream Geometry Upstream Geometry	VariablePartial Deri MLP(11-12-2)2Duration0.014Collision Type-0.023*Nr. Lanes-0.065**Nr. Vehicles0.063**Heavy Vehicles-0.098**Speed-0.091**Lane Volume0.053**Rainfall0.021**Alignment-0.063**Downstream Geometry0.0034**

¹ Significance is calculated from bootstrapped distributions

² The numbers in parentheses signify the number of neurons of the input, hidden and output layer.

*significance at 95% level, ** significance at 99%level

Error Percentages for out-of-sample forecasting

Model ¹	False Positive	False Negative	Percent Correct
MLP(11-6-2)	0.042	0.102	72
MLP(11-12-2)	0.050	0.089	63
Logit	0.044	0.102	70

¹ The numbers in parentheses signify the number of neurons of the input, hidden and output layer of the MLP.

Evaluation of the two sensitivity measures

- Small changes in speed and volume have a high impact on secondary accident likelihood.
- Upstream geometry complexity, # of vehicles involved and rainfall intensity have limited effect on secondary accident likelihood
- Changes in the % heavy vehicles, alignment, total rainfall, and # of lanes have an impact on secondary accident likelihood.

CONCLUSIONS

Identification of dynamic boundaries defined using real-time traffic data

- May work with historical data
- Analytical calculation of the position of the upstream and downstream front of the moving jam
- No demanding calculations
- 'Accurate' determination of secondary crashes

CONCLUSIONS

- Influential factors: traffic conditions at the occurrence of an incident and rainfall.
 - speed and volume, number of blocked lanes, heavy vehicles and alignment were found significant.
 - Changes in downstream geometry and duration of an incident were not significant.
- Both models (NN, Stats) give similar results.
- Neural Network models for transportation applications with tractable explanatory power.