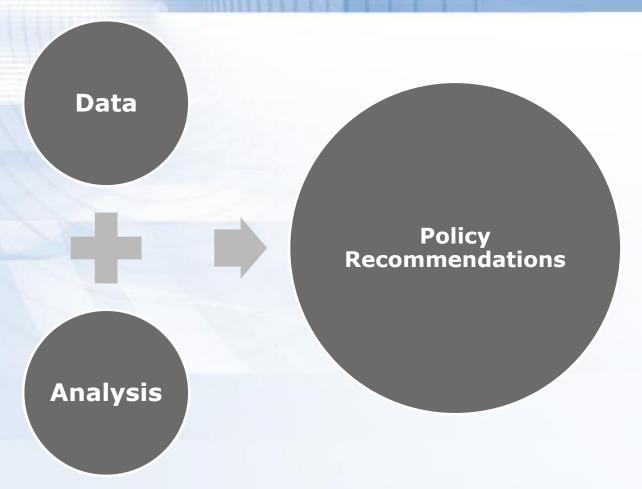
Road Safety Data Analysis Conflicting Objectives - Modeling Implications

Matthew G. Karlaftis, Ph.D.

National Technical University of Athens http://users.civil.ntua.gr/mgk


Outline

1. How are decisions made?

2. New data in Safety

3. Emerging modeling challenges

Data Analysis in Safety

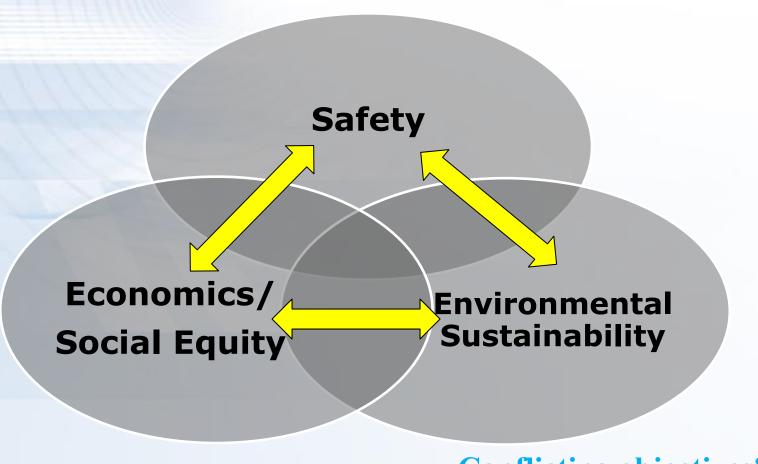
Does this relationship (always) work?

But...

- Analyses may lead to "erroneous" policies
 - 1. Errors in data

- 2. Model misspecification
- 3. Complexity and hidden relationships

(1) Data Errors


- Manual data collection
 - ✓ police reports problematic (severity assessment, location)
- Incomplete datasets
 - ✓ Lack of exposure data insufficient information
- Spatial and temporal coverage
 - ✓ Pre-, during, and post- crash data

(2) Model Misspecification

Unreliable statistical analyses

- ✓ Model selection
- ✓ Parsimonious vs fully specified models
 - Spatial- and temporal correlations
 - Unobserved heterogeneity
 - Selectivity, bias/Endogeneity
 - Under-reported phenomena (severe crashes)
 - Risk compensation

(3) Complex Relationships

Conflicting objectives?

Conflicting Objectives

- Environmental sustainability highway safety
 - ✓ Improve fuel efficiency and reduce GHG → smaller vehicles
 - ✓ Climate change → crash frequencies and severities

- □ Highway safety environmental sustainability
 - ✓ Life cycle costs of road safety countermeasures (pavement rehabilitation, friction enhancements, ...)

Conflicting Objectives

- □ Highway safety social equity
 - ✓ Increased costs associated with advanced safety features
 - ✓ Vehicle safety features impose externalities on those without

- Economics/social equity → Highway safety
 - ✓ Demand for freight movement → increases truck traffic & speed
 - ✓ Increased mobility → traffic speeds & volume

Understanding Complexities

- Many traditional tools are applicable (efficient?)
- Understanding of the process has been data-limited
- Driving Forces for Change
 - 1. New Technologies and Data Sources
 - 2. Novel Modeling Paradigms

... where Change lies, Challenges Emerge!

Emerging Data Sources

■ Safety- Related

- ✓ More detailed crash and injury data
- ✓ Naturalistic driving data
- ✓ Vehicle Event Data Recorders (EDRs)

Mobile Internet

Autonomous vehicles

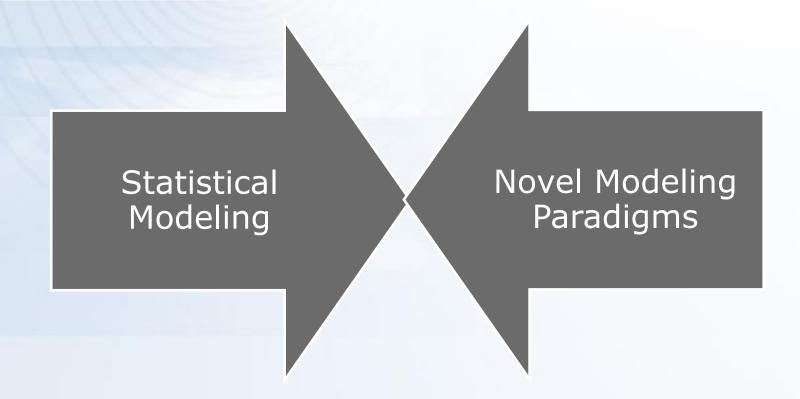
Wireless

Energy Storage Technologies

Emerging Data Sources: Big Data

Policy decisions with big data is ... different

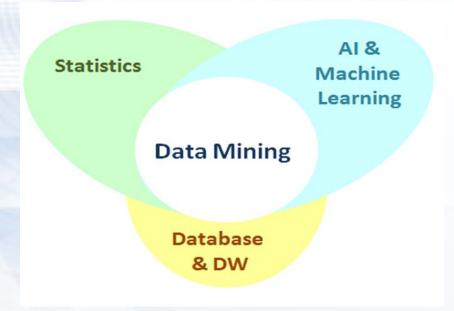
- Much more operational data
 - ✓ Volumes, speeds, travel time etc.
- Much more unstructured data
 - ✓ social media data
 - √ Web transactions
 - ✓ Smart objects


Emerging Data Sources: Challenges

- 1. Database size and high dimensionality
- 2. Overfitting and assessing statistical fit
- 3. Rapidly changing and imperfect data
- 4. Complexities and interactions

Can traditional statistical modeling efficiently transform massive data into knowledge?

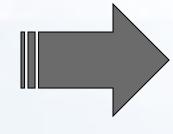
Big Data Analysis


Debatable...

Analysis: Statistical Modeling

- Classical models
- But we also have extensions...
 - ✓ Random Parameter models
 - ✓ Finite mixture latent class
 - ✓ Markov switching
 - ✓ Multivariate models
 - ✓ Psychometric (ICLV)
 - **√** ...

Analysis: Data Mining



- Classical techniques from statistics, machine learning and CI
- □ Faster analysis of growing data with errors and imperfections
- Enables (easier) data fusion
- Robust to uncertainty

Data Mining in Transportation

Three promising and rapidly growing research fields

- 1. ITS Applications
- 2. User Experience Mining
- 3. Behavioral Recognition

Significant implications to proactive safety policies

The road ahead contains well developed statistical models and intelligent data mining

....but with caution

Key Drivers

- Demystifying the gap between modeling and policy making
 - √ Caveats
- Unraveling the complex relationships
 - ✓ Emerging technologies and novel methodologies
 - ✓ Means for success
 - Synergies of statistics and Data Mining
 - Testbeds and Test data

Key Drivers

Efficient policy recommendation will stem from understanding complexities

Disregard complexities

✓ We will be simply ignoring potentially important information moving blindly forward

Do something about them but poorly

✓ Will lead to erroneous and ineffective policies that will adversely impact safety, social equity and environmental sustainability

A New Era in Safety Analysis

- Safety will always be the cornerstone of modern societies
- Emerging technologies
- New and exciting data
- We also must consider
 - ✓ Modeling Efficiency
 - ✓ Informed Decision Making
 - ✓ Proactive Management

Some Thoughts

- We need to expand our educational boundaries
- New Learning Paradigms
 - ✓ Formulating new problems revisiting old
- New tools for dealing with old and new problems
- Beware of the hype...

Road Safety Data Analysis Conflicting Objectives - Modeling Implications

Matthew G. Karlaftis, Ph.D.

National Technical University of Athens http://users.civil.ntua.gr/mgk

