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Abstract

Road safety remains a critical global concern, with traffic crashes claiming millions of lives
annually and imposing significant emotional and economic burdens. Human error accounts for
95% of road crashes, underscoring the pivotal role of driver behavior in enhancing safety. This
dissertation investigates the impact of driver telematics feedback mechanism on driving behavior,
addressing gaps in understanding feedback’s lifecycle effects, including pre-feedback, feedback,
and post-feedback phases. Employing a multi-modal approach, the study analyzes diverse user
groups, namely car drivers, motorcyclists, and professional drivers, across urban, rural, and
highway environments to evaluate feedback mechanism comprehensively.

A 21-month naturalistic driving experiment involving 230 drivers across six feedback phases
generated a robust dataset of 106,776 trips, covering 1.3 million kilometers. The tailored feedback
interventions concerned scorecards, gamification, and peer comparisons. Advanced statistical and
machine learning models, including Generalized Linear Mixed-Effects Models (GLMMs),
Structural Equation Models (SEMs), and Survival Analysis methods (e.g., Weibull AFT, Cox-PH
with frailty, and Random Survival Forests), were utilized to analyze behavioral mZetrics such as
speeding, mobile phone use, harsh braking, and accelerations which demonstrated substantial
impacts on reducing risky behaviors.

The overall impact of feedback significantly improved driving behavior, with notable variations
across user groups and driving contexts. Urban environments demonstrated the most substantial
reductions in mobile phone use and harsh events, likely driven by the heightened complexity and
demands of navigating urban settings. Feedback features also influenced outcomes differently;
scorecards were particularly effective in reducing risky behaviors like speeding, while
gamification elements motivated sustained engagement among professional drivers. Despite these
successes, survival analyses revealed significant relapse tendencies once feedback was removed,
with survival probabilities for maintaining improved behaviors, such as reduced speeding and
harsh braking, falling below 50% within 150 trips post-feedback. These findings highlight the need
for continuous and adaptive engagement strategies, incorporating diverse features tailored to the
specific needs of different user groups and driving contexts, to ensure long-term effectiveness and
sustained safety improvements.

This dissertation uniquely approaches feedback as a holistic system, examining its impacts across
multiple phases and user groups, offering a comprehensive framework for evaluating telematics-
based feedback via an integrated suite of three-layer models. Findings provide actionable insights
for policymakers, technology developers, and road safety advocates, supporting the development
of scalable solutions to improve driver behavior and enhance road safety sustainably.
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Yovroun Hepiinyn

H 0o acpdieia mapapéver éva kpioyo maykdso TpoPANUa, He o 0d1Kd atvynpata vo ototyilouv
exatoppoplo {wéc emoiowg Kol va EMPEPOLY  CNUAVTIKEG CLVOLGONUATIKEG KOU OTKOVOUIKEG
emPapovoels. To avBpdmivo AdBog gvbivetal yu 10 95% TV 0dIKAOV ATLYNUATOV, YEYOVOS TTOL
vroypoppilel Tov kaBoptoTikd pOAO TNG CLUTEPIPOPAS TOV 0ONYADV GTNV £VioYLon TG acpaielng. H
TapoHGo OTPIPN OLEPELVA TOV AVTIKTUTO TNG AVATPOPOSOTNGNS TOL 001YOU HECH TNAEUATIKNG GTNV
00N YIKY] GUUTEPLPOPD, OVTILETOTILOVTAG TO KEVE GTNV KATAVOTNOT TOV ENMTOGEMY TOL KOKAOV (®1G
™S avaTpoPoddTNoNG, GCLUTEPIAOUPOVOUEVOY TOV  PACE®V TPV TNV OVOTPOPOdOTNOT, TNG
aVOTPOPOOOTNONG KOl TNG UETA TNV AVATPOPOSOTNGN. XPTCILOTOUDVTOG LU0 TOAVTPOTIKY] TPOGEYYIO),
N HEAETN AVOADEL SLOPOPETIKEG OUAOES YPNOTOV 050D, ONANOT 001YOVG CLTOKIVITMV, LOTOGIKAETIGTES
KOl ETOYYEALOTIEG 0ONYOVS, O AGTIKO KOl VIEPACTIKA TEPPAALOVTA, KOl QVTOKIVITOOPOLOVS Y10 VO
0ELOAOYNGEL GUVOALKA TOV UNYOVIGHO OVOTPOPOSOTNOMG.

‘Eva melpapa puotkng odnynong owdpkeoc 21 unvov, oto oroio cvoppeteiyav 230 odnyol oe £€1 paocelg
avaTPOPOdOTNONG, ONovpynoe Eva 1oxvpd chvoro dedopévev 106.776 dadpoudv, Tov kdAvyav 1,3
exatoppdpo yraopetpa. Ot egatopukevpéveg mopeUPAGELS OvVATPOPOOOTNONG APOPOVGAV KAPTEG
Babuoroyiag, moyvidiopo Kot GLYKPICES HETOEDL TOV 0dNydV. Xpnolwomomdnkav mponyuéva
OTOTIOTIKA LOVTEAQ KO LOVTEAD, UINXAVIKNG LAOMNONG, CUUTEPIAUUPBOVOUEV®VY YEVIKEVUEVOV YPOUUIKOV
HOVTEA®V WKTOV omotedecpdtov (GLMM), poviéhov dopkdv eélomcemv (SEM) kot peboddwv
avaivong emPioong (m.y. Weibull AFT, Cox-PH kot Random Survival Forests), yio v avdivon
LETPNOEDV CLUUTEPLPOPAS OGS 1 VIEPPOAIKN TOYVLTNTA, 1 YPNON KIVNTOD TNAEQOVOV, TO, OTOTOL
ovuPavra, o1 0moieg KOTEOEIENV CNUOVTIKEG EMUTTAOGELS OTI UEIMON TOV EMKIVOLV®OV GUUTEPIPOPDV.

H ocvvoln emidpacn g avatpo@oddtnong PeAtioce onuavIikd Tn GLUTEPIPOPA OONYNONG, LE
aE100NUEIDTES d1LPOPOTONCELS LETAED OUAOWV YPNOTMV KOl 0ONYIK®V TAGIOV. Ot 00TIKEG TEPLOYES
EUGAVICOV TIC MO CNUOVTIKEC LEWMOELS OTN XPNON KWWNTOU THAEPOVOL Kol 6€ omdTOUd CLUPBAvVTA,
TOUVOS AOY® TS ALENUEVNS TOAVTAOKOTNTOG KOl TOV OTOLTICEMY TOV GUVIEOVTAL LE TNV TAONYT|OT) GE
aotikd mepiBdArovia. Ta yapakInploTiKd TG avaTpoPodOTNONG EXNPEACAY EMIONG TA OMOTEAEGLOTO
dwpopetikd, ot Paduoroyieg amodeiydniov 1dwitepa amOTELECUATIKEG OTN Helwon EmKivOLvmV
CLUTEPIPOPDV, OTTWG 1) VIEPPOAIKY] TOYVTINTO, EVED GTOYEIN TOLYVIOOTOINoNG EVioyvoay TN JloPKN
OE0UEVOT TOV EMOYYEAUATIOV 00NYDV oTn Pedtioon g odnykng Tovg ovumepipopdc. [Mapd Tig
emtuyieg avTég, 01 avaADoels eMPBimons amokdAVYOV GNUAVTIKEG TAGELS VTOTPOTNG UETE TV APOIPEST
™G aVOTPOPOdOTNONG, LE TIg TOavOTNTEG EMPIONG Y1 TN S1ATHPNON PEATIOUEVOV GUUTEPLPOPAOV, VO
népTouy Kdtw oamd 50% péoa ce 150 dwdpopés petd v avatpoeodotnon. To gvpriuota ovtd
VIOYPOUUIlOVY TNV aVAYKY Y10 GULVEXEIS KOl TPOCOPUOCTIKEG OTPOUTNYIKEG OECUELONG, TOL Vo
EVOOUATOVOLY TOKIAQ YOPOKTNPIOTIKE TPOGUPUOGUEVE GTIC GUYKEKPUUEVES AVAYKES JLOPOPETIKMV
OUAd®V  YPNOTOV KOl  OdMYIKOV TAoGiov, ©ote va  JceoAletor M pokpompodeoun
OTOTEAEGULOTIKOTNTO KOt 1) O1pKNG PEATION TNG 0JKNG AGPAAELOS.

Avt 1 dwtpPn mpooceyyilel Lovadikd TV ovaTpoPoddTNon ®¢ £va OMGTIKO cvoTnua, e€eTtalovtag Tig
EMNTMOGELS TNG G€ TOAMATAES PAGEIS KOl OUAES YPNOTDOV, TPOGSPEPOVTOS VO OAOKANPOUEVO TAAIGLO
yio Vv afloAdynon G avaTpoPodoTNoNG HECH TNAEUOTIKNG ME MO OAOKANPOUEVT GEPA
TPIGTPOUATIKOV HOVTEA®V. Ta VpLOTO TOPEYOVY TPUKTIKEG TANPOPOPIES Yio LITEVBVVOVG YAPAENS
TOALTIKNG, TE(VOAOYIKOVS TPOYPOUUUOTIOTEG KOl VITOGTNPIKTES TNG 0OKNG 0cQAAELNS, vrootnpilovTag
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Summary
Objectives and Methodology

Road safety is a critical public health and societal issue, as road traffic crashes claim millions of
lives and cause severe injuries globally every year. Beyond the tragic loss of life, these incidents
impose immense emotional and economic burdens on families and communities. Research
attributes approximately 95% of road crashes to human error, underscoring the critical role
of driver behavior in accident prevention. Understanding and addressing risky driving behaviors—
such as distracted driving, speeding, and harsh events—are pivotal to enhancing road safety.

Based on the above, the primary aim of this dissertation is to investigate the driver telematics
feedback mechanism under the framework of driving behavior and road safety. Despite growing
interest from automotive manufacturers and transportation researchers in driver behavior, limited
research exists on quantifying the comprehensive impact of driver feedback across its entire
lifecycle—encompassing the pre-feedback, feedback, and post-feedback phases. To address this
gap, this dissertation adopts a holistic approach to evaluate the effectiveness of feedback on
modifying driving behavior and ultimately enhancing road safety.

To achieve these objectives, a series of methodological steps were carefully implemented. These
steps are outlined and visually depicted in Figure I. The methodological framework provides a
structured approach to achieving the objectives of this dissertation.

As a first step, a systematic literature review was conducted to evaluate the effectiveness of
driver feedback within naturalistic driving studies. Feedback methods have evolved from in-
vehicle devices and paper-based reports to sophisticated, user-friendly smartphone applications.
These advancements enable the collection of high-resolution driving data and the delivery of
personalized, data-driven feedback. Systems such as real-time alerts, post-trip summaries, and
performance reports have demonstrated potential for improving driver behavior.

However, significant gaps remain regarding the long-term sustainability of these effects and
the differential impacts of feedback features. While studies highlight the effectiveness of
feedback in reducing speeding, harsh braking, and mobile phone use, the influence of feedback
type, frequency, and incentives on behavior remains underexplored. Additionally, many studies
observe a relapse into risky behaviors once feedback is removed, necessitating further
investigation.

Based on the results of the systematic literature review, the following research questions were
formulated:

1. How does feedback influence driver speeding and distracted behavior in terms of the
percentage of trip time during which the speed limit was exceeded and mobile phone was

used while driving?

2. How does feedback influence harsh driving events, in terms of the number of harsh
accelerations and harsh brakings?
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3. Do different feedback features (e.g., scorecards, maps, peer comparisons, motivations,
gamification, rewards) have different effects on driver behavior? Which feature
demonstrates the most significant impact?

4. How does the post-feedback effect influence long-term driver behavior, and to what extent
are the changes sustained after the feedback is removed?

5. How can advanced statistical techniques be applied to understand the mechanisms of driver
feedback and develop more individualized, data-driven approaches for driving behavior
change?

To answer the research questions, a robust methodological framework was developed,
combining theoretical approaches and experimental design principles. This included the
application of advanced modeling techniques, such as Generalized Linear Mixed Effects Models
(GLMMs), Structural Equation Models (SEMs), and Survival Analysis Models, alongside the
design of a naturalistic driving experiment.

A 21-month naturalistic driving experiment involving 230 drivers was conducted. The
participants were divided into three groups (car drivers, professional van drivers, and
motorcyclists), and their driving behavior was monitored across six distinct feedback phases.
These phases were defined as follows:

e Phase 1: Basic trip data and characterization were accessible to drivers.

e Phase 2: Introduction of scorecards with trip-level scoring.

e Phase 3: Addition of maps and highlights for further trip insights.

e Phase 4: Peer comparisons enabled for driver performance benchmarking.

e Phase 5: Competitions and challenges introduced with rewards for safe driving.

e Phase 6: Reversion to Phase 1, removing all additional feedback.

High-resolution data were collected from 106,776 trips, covering a total of 1,317,573 kilometers
and 30,532 hours of driving. Behavioral metrics were captured using non-intrusive smartphone
sensors, ensuring a seamless and accurate recording of driving behaviors. This sensor data was
complemented by self-reported information from participants, providing a holistic understanding
of driver perceptions, habits, and behavioral changes. The experimental design adhered to strict
ethical standards, having been approved by the Research Ethics and Conduct Committee of
NTUA, and ensured full compliance with General Data Protection Regulation (GDPR) guidelines.
Continuous communication with participants was maintained throughout the study to address any
technical issues, sustain engagement, and monitor the smooth execution of the experiment.

Extensive data processing and cleaning were carried out to ensure the quality and reliability of the
dataset. Invalid or incomplete trip data were systematically identified and excluded, while key
behavioral metrics such as speeding, mobile phone use while driving, harsh accelerations, and
braking events were standardized for analysis. Data preprocessing steps included the conversion
of raw sensor outputs into meaningful variables and the integration of self-reported data for cross-
validation. This rigorous approach to data management enabled the creation of a robust
dataset, facilitating detailed statistical analyses and ensuring the accuracy of the findings
presented in this dissertation.
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Literature Review Research Questions

Driver feedback system 1. Impactoffeedback on behavior and safety
Experimental design 2.Investigation of feedback features effects
Modellingapproaches 3. Post-feedback effect on long-term driver
Examined indicators behavior and safety

Methodological Framework

Theoretical Framework Naturalistic Driving Experiment

Generalized Linear Mixed Effects Models 230 drivers (car, van, motorcyclists)
Structural Equation Models A within-subjects design experiment
Survival Analysis Models 6 different feedback phases

Large-Scale Data Collection and Processing

Comprehensive Suite
of Advanced Statistical and Machine Learning Models

Impact of feedback Effects of different Post-feedback
on driving behavior feedback features effect via
indicators via via advanced Survival Analysis
GLMMs SEM model methods

The driver behavior telematics feedback
mechanism

Figure I: Graphical representation of the overall methodological framework
of the doctoral dissertation
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Advanced statistical techniques were employed to analyze feedback effects on critical driving
indicators, such as speeding, mobile phone use, harsh accelerations, and harsh brakings. The
analysis unfolded in three key pillars:

1. Impact of Feedback: This pillar assessed the immediate effects of feedback on 1) driver
speeding and distracted behavior, focusing on speeding among motorcyclists and
distraction due to mobile phone use while driving in car drivers, and ii) driving harsh
evenrs, focusing on harsh braking and harsh accelerations among car drivers, and
professional drivers on highways. Generalized Linear Mixed-Effects Models (GLMM)
were then employed in all cases to evaluate the effects of feedback while accounting for
individual differences and contextual factors.

2. Effects of Different Feedback Features: A Structural Equation Model (SEM) was
developed to explore the complex relationships between feedback features (e.g. scorecards,
maps, peer comparisons, motivations, gamification, rewards) and driver behavior,
exposure metrics and safety outcomes, allowing for the simultaneous analysis of multiple
variables and their interactions.

3. Post-Feedback Effects: Effects on long-term driver behavior, with a particular emphasis
on understanding the relapse of driving behaviors following the withdrawal of feedback
telematics during the last phase of the experiment. Survival analysis methods were
employed to investigate relapse patterns across various indicators, including harsh
accelerations, harsh braking, speeding behavior, and mobile phone use while driving.
These analyses leverage Kaplan-Meier curves, Cox-PH models with frailty, Weibull AFT
models with clustered heterogeneity, and Random Survival Forests to evaluate and
compare the predictive power and insights offered by each model.

Ultimately, the synthesis of all the analyses carried out within the framework of this doctoral
dissertation resulted in a driver behavior telematics feedback mechanism with numerous original
and interesting results, which are discussed below.

Main findings

Feedback Impact on Driver Behavior

The investigation of feedback impacts on driver behavior yielded significant findings across
different user groups, driving environments, and behavioral metrics. Overall, during the two
phases of the experiment a large dataset of 3,537 trips from a sample of 13 motorcyclists were
recorded and analysed. Using Generalized Linear Mixed-Effects Models with random intercepts
and random slopes for total trip duration revealed that providing motorcyclists with feedback about
their riding performance during experiment Phase 2 led to a remarkable decrease in speeding
percentage over a trip. Particularly, in the developed models rider feedback seems to decrease
speeding percentage, having a risk ratio of exp(B=-0.145) = 0.865 for the overall model (13.5%
decrease), and exp(p=-0.031) = 0.970 and exp(p=-0.420) = 0.657 for urban (3.0% decrease) and
rural (34.3%) road types respectively. These results highlight the effectiveness of feedback in
targeting high-risk behaviors, offering a foundation for scalable interventions in rider training and
policy design.
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Similarly, distracted driving, particularly mobile phone use, was examined across urban,
rural, and highway contexts via GLMM models for 65 car drivers over 21,167 trips. Feedback
emerged as a strong restrictive in using the mobile phone while driving overall (f =—0.4276, p <
2e—16), particularly in urban settings (f = —0.3687, p < 2e—16), while its impact was notably
weaker in rural environments (3 =—0.1180, p <2e—16) and unexpectedly positive on highways (3
=0.5490, p < 2e—16), suggesting compensatory behaviors or a perceived lower risk of distraction
on high-speed roads. The substantial variability in random intercepts (SD = 1.4024 overall)
highlights notable individual differences in baseline behavior, while random slopes for trip
duration (SD = 0.2827 overall) show diverse responses to prolonged trips.

In the domain of harsh events such as accelerations and brakings, feedback mechanisms
demonstrated significant behavioral improvements, as well. Results from the analysis of 65 car
drivers during the first two phases of the experiment, revealed a significant reduction in harsh
accelerations (12%) and harsh brakings (10%), both changes being statistically significant (p
< 0.001). The GLMM models further reinforce these findings, as feedback was consistently
associated with reduced frequencies of harsh events, particularly in urban and rural environments.
Notably, the relative risk ratios for speeding duration and trip duration indicate strong positive
associations with harsh events, though feedback appears to mitigate these effects to a degree in
Phase 2 of the experiment. Importantly, driver-specific variability, captured through random
intercepts and slopes, underscores the need for tailored feedback mechanisms to address unique
behavioral traits.

Professional drivers, due to their prolonged driving hours and distances, were also a key area of
exploration. Using GLMMs calibrated on a dataset of 5,345 trips from 19 professional drivers, the
analysis revealed that participation in a social gamification scheme with incentives led to
notable improvements in harsh events of professional drivers. During the competition phase,
the likelihood of harsh accelerations was reduced by a factor of 0.348 (p < 0.001), while harsh
brakings decreased by a factor of 0.404 (p < 0.001), indicating the efficacy of gamification in
promoting safer driving practices. Additionally, trip duration showed a positive association with
harsh events, with a 1-second increase in driving time raising the odds of harsh accelerations and
harsh brakings by factors of 1.558 and 1.564, respectively, highlighting the cumulative effects of
extended driving. The inclusion of random intercepts in the models underscored substantial
variability in baseline driver behavior, emphasizing the importance of personalized interventions.

Feedback Different Features Effects on Driver Behavior

The Structural Equation Model (SEM) analysis provided significant insights into the impact of
effects of feedback features on driver behavior, specifically speeding, harsh braking, and harsh
acceleration events. The dataset, comprising 73,869 trips from 175 car drivers over 21 months,
offered a robust basis for modeling. The SEM results identified two latent variables, namely
feedback and exposure as critical influences. The model exhibited excellent goodness-of-fit
measures, with Comparative Fit Index (CFI) = 0.940, Tucker—Lewis Index (TLI) = 0.944, Root
Mean Square Error Approximation (RMSEA) = 0.049, and Standardized Root Mean Square
Residual (SRMR) = 0.025, indicating a robust and well-specified structure. The inclusion of
covariances among variables, guided by residual correlation analysis, further improved the model
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fit and highlighted critical relationships, such as those between speeding and harsh braking
behaviors.

Among the feedback features analyzed, the scorecard emerged as the most influential feature,
with the highest positive estimate (B = 2.076, p < 0.001), demonstrating its powerful role in
promoting safer driving habits by immediately altering risky behaviors in comparison with the
baseline phase. This result can be attributed to the clear, concise, and actionable nature of
scorecards, which provide drivers with straightforward insights into their performance and
specific areas for improvement, making it easier to adjust their behavior. Similarly, the maps
feature showed a strong impact (f = 1.646, p < 0.001), emphasizing the importance of spatial
awareness in enhancing driving practices. The compare feature allowed drivers to assess their
performance relative to peers, positively influencing behavior (f = 1.215, p <0.001). Additionally,
the competition & challenges feature proved highly effective (B = 2.053, p < 0.001) by
motivating drivers to adopt safer driving behaviors through gamified elements and rewards for
safe driving.

In terms of driving behavior metrics, driver telematics feedback significantly reduced the
percentage of speeding time ( =-0.214, p <0.001) and harsh braking events per 100km (§ =
-0.027, p <0.001). However, an increase in harsh accelerations per 100km (B =0.026, p <0.001)
suggests the need for further refinement of feedback systems to address unintended consequences.
Exposure factors also played a key role in shaping driver behavior, with morning peak exposure
correlating with increased risk-taking (B =2.473, p <0.001), likely driven by time pressure during
commuting hours. Conversely, afternoon peak exposure was associated with less aggressive
behavior (B =-1.360, p < 0.001), providing insights into temporal variations in driving patterns.

Regression analysis confirmed these findings, highlighting the interplay between exposure and
feedback features. While exposure positively influenced speeding (B = 0.326, p < 0.001),
feedback features effectively mitigated this behavior. The competition & challenges feature, in
particular, showed promise in moderating harsh accelerations (B = -0.001, p < 0.001). Harsh
braking incidents were also significantly reduced by feedback, reinforcing the role of feedback in
promoting safer driving practices. Covariance analysis further revealed strong interrelationships
between risky behaviors, such as speeding and harsh braking, underscoring the complexity of
driver behavior patterns. These findings suggest that speeding often necessitates sudden
corrections, like harsh braking, and both behaviors may stem from underlying traits such as risk-
taking tendencies or aggressive driving habits.

The practical implications of these findings are substantial. Feedback features, particularly those
leveraging personalized scorecards, spatial tools, and gamification elements, hold great promise
for improving driver safety. Tailored interventions targeting specific behaviors and times of day
could further enhance the efficacy of these systems. However, limitations such as the exclusion of
mobile phone use from the final model and potential selection biases due to the voluntary nature
of participation should be addressed in future research.
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Post-Feedback Effect on Long-Term Driver Behavior

Survival analysis techniques were applied to a dataset of 24,904 trips from 31 car drivers,
each contributing at least 20 trips in the post-feedback phase, to investigate the long-term effects
of driver telematics feedback on driving behavior. The analysis focused on relapse patterns in
mobile phone use, speeding, harsh braking, and harsh accelerations. The methods utilized included
Kaplan-Meier curves, Cox-PH models with frailty, Weibull Accelerated Failure Time (AFT)
models incorporating clustered heterogeneity, and Random Survival Forests. The findings
demonstrate the effectiveness of feedback interventions in achieving significant short-term
behavioral improvements during the feedback phase. However, the post-feedback phase reveals
varied relapse tendencies, emphasizing the need for sustained interventions to maintain these
improvements over time.

The Kaplan-Meier survival analysis emphasized relapse trends, showing a steady decline in
improved behavior over successive trips in the post-feedback phase. For harsh accelerations,
survival probabilities dropped from 84.8% at 50 trips to 49.2% by 150 trips. Similar trends
were observed for harsh braking and speeding, with survival probabilities declining to
approximately 40.3% and 46.8%, respectively, by the 150-trip mark. These patterns underscore
the transient nature of feedback effects and the need for continuous reinforcement mechanisms.
Mobile phone use showed slightly greater resilience, with survival probabilities remaining above
80% at 100 trips, but the gradual relapse was evident over time.

Among the survival analysis models applied, the Weibull Accelerated Failure Time (AFT)
model consistently emerged as a robust performer across the examined indicators, balancing
predictive accuracy and interpretability. The concordance index (C-index) values ranged between
0.677 and 0.773, with the model achieving the highest predictive ability for mobile phone use
relapse (C-index = 0.773), indicating strong discriminative capacity in identifying drivers most at
risk of relapse. Key predictors such as age group [35-54] (B = 0.165, p = 0.041), trip duration (B =
-0.022, p <0.001), and self-reported aggressiveness (approaching significance at p = 0.089) were
highlighted, providing actionable insights into relapse behavior. The model also captured
heterogeneity across drivers by incorporating random effects, with frailty effects showing
significant variability in survival times.

For speeding relapse, the Weibull AFT model achieved a C-index = 0.700 with significant
predictors including trip duration (B =-0.022, p <0.001) and morning peak hours (f =-0.096, p =
0.004). Trip duration, in particular, emerged as the dominant predictor, consistently
reducing survival time across all relapse indicators, underscoring the role of prolonged driving
in behavioral regression. Similarly, in the analysis of harsh braking relapse, the model achieved a
moderate predictive accuracy (C-index = 0.724) with significant contributions from variables such
as age group [35-54] (B = 0.360, p = 0.010) and vehicle engine capacity (>1400cc) ( = -0.508, p
= 0.012). These findings highlight that younger age groups and drivers of larger-engine vehicles
are more prone to relapse.

The Random Survival Forest (RSF) model demonstrated superior predictive performance in
some examined indicators, excelling in capturing non-linear interactions and complex
relationships between predictors. With Root Mean Squared Error (RMSE) values as low as 85.87
and out-of-bag (OOB) prediction errors of 24.3% for mobile phone use relapse, RSF identified
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critical predictors such as trip duration, aggressive driving tendencies, and vehicle engine size. Its
flexibility in handling diverse predictors and uncovering nuanced dynamics makes RSF an
invaluable tool for predictive analyses. However, the model's "black box" nature and reliance on
larger datasets limit its interpretability and applicability for explanatory purposes.

Overall, comparing the models, the Weibull AFT model stands out for balancing
interpretability and predictive accuracy, making it particularly suited for contexts requiring
actionable insights into survival dynamics. The Cox model offers a useful compromise with its
interpretability and ability to handle frailty, however repeatedly failed to meet model assumptions.
The RSF model is most appropriate for predictive tasks where capturing non-linear relationships
and complex interactions is critical, though its lack of transparency limits its utility in
understanding the underlying behavioral mechanisms. These findings emphasize the importance
of aligning model configuration with research objectives. For studies focused on understanding
behavioral dynamics and guiding intervention design, the Weibull AFT model provides robust
insights. Conversely, when predictive accuracy is paramount, RSF offers a superior alternative.

While this study offers valuable insights into the dynamics of driver feedback and relapse,
limitations such as the relatively small sample size, exclusion of traffic conditions, and
macroscopic focus should be noted. Future research could incorporate more granular data, such as
traffic dynamics and moment-to-moment driver decisions, to provide a deeper understanding of
behavioral patterns. Employing advanced modeling techniques, such as random parameters with
heterogeneity-in-means, could further enhance the analysis by accounting for driver-specific
variability.

Innovative Scientific Contributions

The innovative contributions of this doctoral dissertation consist of five original scientific
contributions, as described below, and illustrated in Figure II.

Extensive
Naturalistic Driving Multi-Modal Approach
Data Collection to Driver Behavior
Analysis
Driver Feedback

Mechanism as

a Holistic System Comprehensive

Suite of
Three-Layer Models

In-Depth Analysis
of Post-Feedback Effects

Figure II: Innovative contributions of the doctoral dissertation
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Extensive Naturalistic Driving Data Collection

The present dissertation represents a significant step forward in naturalistic driving (ND)
research by leveraging non-intrusive data collection methods that rely on smartphone sensors.
Unlike traditional approaches, this methodology minimizes disruption to participants, enabling the
unobtrusive capture of real-world driving behaviors. The data spans a large sample size of
drivers (230) across diverse road environments and vehicle types, including car drivers,
motorcyclists, and professional van drivers. This inclusivity ensures that findings are not only
representative but also account for variations across driver demographics and vehicle categories.
The dataset's rich temporal resolution provides detailed insights into driving behaviors at the trip
level, offering a granular perspective on driver behavior dynamics.

Moreover, the long-term data collection 21-month period, spanning multiple feedback phases and
covering various road environments, adds unique value. By capturing behavior changes over time,
the study bridges a critical gap in existing ND research, which often relies on short-term
observations. This long-term perspective enables the assessment of sustained behavior
modifications and relapse tendencies, providing a robust foundation for developing adaptive and
sustainable interventions to improve road safety. The methodology sets a new benchmark for
ND experiments, paving the way for more scalable, cost-effective, and technologically advanced
driving behavior studies.

Multi-Modal Approach to Driver Behavior Analysis

This dissertation takes a multi-modal approach, emphasizing the importance of understanding
driving behaviors across diverse road user groups and environments. By including car drivers,
motorcyclists, and professional van drivers, the research recognizes the critical need to study
vulnerable road users, such as motorcyclists, who face heightened risks, and professional drivers,
who spend extended hours on the road. This inclusive focus ensures a comprehensive evaluation
of driver telematics feedback, highlighting their relevance across varying risk profiles and
exposure levels.

The investigation also considers the influence of urban, rural, and highway environments,
acknowledging the distinct challenges posed by each road type. This contextual approach reveals
that feedback effectiveness is not uniform; behaviors like mobile phone use or speeding respond
differently to interventions depending on the driving environment. For instance, motorcyclists
may benefit more from feedback targeting situational awareness, while professional drivers might
require tailored interventions addressing fatigue and repetitive exposure to high-risk scenarios.

By integrating this diversity of user groups and contexts, the dissertation provides actionable
insights for policymakers, road safety advocates, and technology developers. It emphasizes the
importance of developing tailored feedback systems that cater to the unique needs of vulnerable
road users, such as motorcyclists, and professional drivers, who contribute significantly to road
traffic activity. This comprehensive approach supports the creation of adaptive, context-sensitive
interventions, ultimately improving road safety for all users.
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Comprehensive Suite of Three-Laver Models

This dissertation employs a comprehensive suite of advanced statistical and machine learning
models, tailored to address the multifaceted nature of driving behavior analysis. By incorporating
Generalized Linear Mixed-Effects Models, Structural Equation Models, and Survival Analysis
techniques (e.g., Weibull AFT, Cox-PH with frailty, and Random Survival Forest), the study
provides a rigorous analytical framework capable of uncovering both linear and non-linear
relationships between variables. Each model is carefully selected to align with the research
objectives, balancing predictive accuracy with interpretability to ensure actionable insights.

This model suite also enables the exploration of complex phenomena, such as the interplay
between feedback features, driving behaviors, and contextual factors like time of day or road type.
For example, survival models uniquely capture relapse dynamics, offering novel insights into post-
feedback behavioral tendencies. Machine learning techniques further enhance the study by
capturing nuanced, non-linear interactions, ensuring that the models are equipped to handle the
complexity of real-world driving data. This innovative analytical framework not only elevates
the scientific rigor of the research but also demonstrates the potential of combining traditional
statistical methods with state-of-the-art machine learning approaches for driver behavior studies.

In-Depth Analysis of Post-Feedback Effects

This dissertation is among the first to analyze thoroughly post-feedback effects on driver
behavior using advanced statistical and machine learning techniques, addressing a critical gap in
existing research. Through survival analysis methods, such as Weibull AFT and Random Survival
Forest, the study evaluates long-term behavior changes and relapse patterns after feedback
withdrawal. These techniques enable a detailed exploration of the factors influencing relapse in
risky behaviors like speeding, harsh events, and mobile phone use, providing actionable insights
for the design of sustained intervention strategies.

The findings reveal the importance of adaptive feedback systems that can maintain behavior
improvements over time. For example, survival analysis showed that trip duration and time of day
significantly influence relapse dynamics, emphasizing the need for context-aware feedback
mechanisms. This innovative focus on the post-feedback phase provides a novel framework for
understanding the longevity of feedback-induced improvements, allowing for more durable
and impactful road safety interventions. It also sets a precedent for future research to integrate
long-term perspectives into the evaluation of driving behavior modification strategies.

Feedback Mechanism as a Holistic System

This dissertation uniquely approaches the feedback mechanism as a holistic system, examining
its full lifecycle through a multiparametric analytical framework. By systematically analyzing
the pre-feedback, feedback, and post-feedback phases, the study offers a comprehensive
understanding of how feedback influences driver behavior across time. The integration of diverse
feedback features, such as scorecards, maps, comparison tools, and competition elements, enables
the evaluation of their individual and combined impacts on behavior modification. This multi-
phase perspective not only captures immediate behavior changes but also sheds light on long-term
patterns and relapse tendencies.
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Furthermore, the holistic framework provides valuable insights into the synergies and trade-offs
between different feedback features. For instance, while scorecards and competition elements are
highly effective in reducing speeding, their impact on other behaviors like harsh accelerations
requires further refinement. This systemic approach advances the field by moving beyond isolated
feedback evaluations, offering a scalable, data-driven framework for designing and
implementing telematics-based interventions. The findings emphasize the potential of adaptive
feedback systems to improve driving behavior sustainably, ultimately contributing to safer road
environments.
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Extetapévn Ilepidnyn

X160l kon MeBodoroyia

H odwm acedielo amotehel kpiowo {ftnua dnuoctag vyeiog kot kowoviag, kabmg to 0dkd
aTvyNuaTo KooTilovv ekatoppvplo (wES Kol TPOKAAOHLY GoPapovg TPOVUATIGUOVS TOYKOGHIMG
KdOe ypovo. Ilépa amd v Tpoyiky amodieln {oov, avtd To TEPOTATIKE emPopHvovv
oLVAICONUOTIKA KOl OTKOVOUIKE TG OWKOYEVELEG Kot TG Kowotntes. 'Epgvveg dgiyvouv 0Tl T0
avlpamvo Aa0og evBiveTm Yo TEPITOV TO 95% TOV 0IKAOV aTVYNRATOV, VTOoYpoppilovTog
TOV KPIGIHo pOAO TNG GLUTEPLPOPAS TV 0ONYDV GTNV TPOANYT TV atvynudtov. H katovonon
KOl OVTIHETOTION EMKIVOLVOV OOMNYIKAOV GUUTEPLPOPOV—ONTOS 1 omOCTACT, TPOGOYNG, M
VREPPOAKT TOYVTNTA KO Ol ATOTOMOL YEPIGHOi—Eeivan (TIKNG onuaciog yia ) PBeAtioon g
001KNG 0GPAAELOG.

Me Bdorn to mapoamdve, 0 KOPLog otdyog avtis TS owTpiPrs €ivar n digpevvnon Tov
PNYOVIGROU AVOTPOPOOOTNOIS TS OCLUTEPLPOPAS TOV 00NYAV RECH TNAEUUTIKIG OTO
TAOLG10 TNG 00N YIKNG CLUTEPIPOPAS Kot TNG 0d1KNG acpdietoc. [Tapd To avéavouevo evolapépov
a0 KOTOOKEVOOTEG OVTOKIVITOV KOl EPEVVNTES UETAPOPDY YO T1] GUUTEPIPOPH TOV 0ONYADV,
VILAPYEL TEPLOPICUEVT] £PEVVO. GYETIKA WE TNV TOCOTIKOMOINGCT TNG GLVOMKNG EMOpAONS NG
avaTPOPOSOTNONG KATA TN SLAPKELL OAOKANPOL TOV KOKAOV (®1g TNC—OoLUmeEPAaUPavoUEvVOV
TOV QAGE®V TPV TNV oVATPOPOOHTNOT), KATA TN SLAPKELN TNG OVATPOPOSOTNONG KOl HUETA TNV
avatpo@odotnon. ['a va kalvedetl avtd 10 kevo, N StatpPn viobetel o oAeTIKY TPOGEYYIoN
Yo TV 0EAOY 6T TS UTOTEAECRATIKOTNTOS TG AVOTPOPOIOTNONS GTNV TPOTOTTOINGT TNG
00MYIKNG CLUTEPLPOPES Kot 6N PEATiOON TNG 0OIKNG ACPAAELNG.

INa v enitevén avtdV TOV 6TOXOV, EPAPUOGTNKE Mo, 6elpd pedodoroyik®v fnudtov. Ta
Bruata avtd Teptypdeovtal Kot ansikoviCovtal ypapikd oto Zynua I. To pebodoroyikd miaicilo
TAPEXEL L0 SOUMUEVT) TPOGEYYIOT] Y10 TNV EMITEVEN TOV GTOYWV NG dlaTpPic.

Q¢ mpwto Prpa, Tpaypotomromonke Ui GVGTNRATIKY ovookomnoen Piploypagiog yo v
a&0AOYNOT TG OMOTEAECUATIKOTNTOG TNG OVATPOPOSOTNONG TWV 001 YDV GTO TANIGIO PUOIKOV
nepapdtov odnynong. Ov pébodot avatpo@oddtong éxovv efelybel amd cvoKEVEG EVTOG
OYMLLOTOG KOl OVOLPOPES GE YOPTL GE TPONYUEVES, PIMKEG TTPOG TOV YPNOTI EPOPLOYES Y10 KIVNTA
mMAEQ@vVa. Avtég ot egelilelg emtpémovy T GVAAOYN dedopEVOV LYNANG avaALoNG KOl TNV
Tapoyn EEATOUIKEVUEVIC OVOLTPOPOOOTNOTG PacIoUEVIG GE dedOUEVaL.

Qc1000, TAPAUEVOVY GUAVTIKO KEVA 660V a@opd TN pokponrpédeoun frooipdtnto ovtOdv
TOV OTOTEAECUATOV OALA KOl TIS OLOQPOPOTONUEVES EMOPACELS TOV YUPUKTNPLGTIKOV TNG
avaTpoPodoTNons. Evd ot peléteg avadetkviouy TV omoTEAEGLATIKOTITO TNG AVOTPOPOOOTNONG
ot Melwon ¢ VIEPPOMKNG TaXDTNTAS, TOV OTOTOU®MV CUUPAVI®OV Kol TNG XPNoNG Kvntol
TNAEQPOVOL, 1] EXIOPACT] TOL TUTTOV AVATPOPOSOTNONG, TN CLYVOTNTAS TNE KOl TOV KIVITP®V OTN
ovumeplpopd mopapével aveEepeuvntn. EmmAiéov, moAlég pedéteg mopatnpodVv LIOTPOTY| GTIG
EMKIVOUVEC OGULUTEPLPOPEG UOMGC  apatpebel 1 avaTpo@OOOTNOT, OMOTOVTOG TEPULTEP®
dlepevvnon.
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Me Bdaon ta amoteAéopaTo TG GLGTNUATIKNG avaokomnong Pipiloypagpioc, dtutvmmOnkay ta
axolovbo gpeuvnTiKdG EpOTHpOTA:

1. Tlog emnmpedler M avoTpoPOOHTNOY TN GLUTEPLPOPE TOL 0ONYOL OGOV APOPH GTNV
VIEPPOAKT TOYVLTNTA KO TN YPNOT KvNnToH TNAEPOVOL KATA TNV 00N yNon;

2. Iog emmpedlel n avatpo@oddHTNO™ T1 CLUTEPLPOPAE TOV 0ONYOV OGOV ALPOPH GTO OTOTOLLOL
cLUPavTa, OTMS 01 ATOTOWES EMTOYVVGELS KO TOL ATOTOLO PPEVOPICUATOL

3. Ta JSopeTikd YOPAKTNPIOTIKA TNG avatpo@oddtnong (m.y. Pabuoroyiec, ydptec,
ovykpicelc pe GAAovg odnyovg, kivntpa, waryvidomoinon, emPpafevoelg) £yovv
OLPOPETIKEG EMOPAGEL GTN GLUTEPLPOPH Kol TNV ac@dAiei tov o0onyov; Ilowo
YOPAKTNPLOTIKO EYEL TOV GNUOVTIKOTEPO OVTIKTLTO;

4. Tlog emmpedler n emidpoon g avatpoPodOTNONG HETE TNV OAOKANP®OT TG Ao TNG
NV HOKPOTPOOEGUN GLUUTEPLPOPE KOl AGPAAEL TOV 0OMYDV, Kol G Towo Pobud
dtatnpovvtat ot aAAayES ol aporpedel | avaTpoPodOTNON;

5. H®g pmwopovv va epoprocTohV TPONYUEVES CTATIOTIKEG TEXVIKES Y10 TNV KOTOVOTN oY TOV
LUNYOVIGU®V TNG AvaTPOPOdOTNONG KOt TNV ovATTLén o e€atopukevévav, Paciopévey
o€ 0E00UEVO TPOGEYYIGEMY Y10 TNV GAANYT) TNG 0ONYIKNG GUUTEPLUPOPAC;

INo ™y aravinon avtOv TOV EPOTNRATOV avarTOYONnKE £va 16Vp6 nedodoroyiko Tiaiono,
170 omoio ovvdvace BePNTIKEG TPOGEYYIGEIS KOl OPYES TEPAUATIKOD OYEOAGUOV. AT
TEPIAAUPAVE TNV EQOPLOYN TPONYUEVOV TEXVIKAOV LoVvTEAOTOIN GG, Ommg [Nevikevpéva I'pappukd
Movtéha piktav emdpdocov (GLMMs), Movtéha Aopikov E&womwcewv (SEM) kot Movtéha
Avéivong EmPiowong (Survival Analysis), kaOdg kot Tov oxedlaopud evOg TEPAUATOS PLGIKNG

odnynong.

HpaypotomomOnke éva meipopo @uowig odfynong owipkewwg 21 pnvov, 6to omoio
ovppetelyav 230 0dnyoi. Ot GUUUETEXOVTEG YOPIOTNKAY GE TPELS OLAOES (00N YOl ALTOKIVAT®V,
emoyyehpotieg odnyol Pov kol  HOTOCIKAETIOTEG) KOL 1 OONYIKN TOLG GULUTEPLPOPA
mopakolovdndnke oe €1 SLoKPITEC PAGELS AVATPOPOSOTNONG. AVTEG O1 PACELS OpioTNKAY MG EENG:

e  ®don 1: [IpécPacn oe Pacicd dEOOUEVE FLUOPOUDY KO YOLPOKTIPLOTIKA.

e ®don 2: Ewoaywyn Pabuoroyidv pe okop avd d1adpoun.

e ®don 3: [IpocHNKN YOPTOV KOL CTLOVTIKMOV GTIYUADV Y10 TEPULTEP® TANPOPOPIEG

Sadpoune.

e ®don 4: Evepyonoinom cuvykpicewmv pe GuvadéApovg yio v a&loAdynon g amddoong
TOV 0ONYOV.

e  ®don 5: Ewcaywyn dloyoviopoVv Kot TpoKANce®V e emPBpaPedcels Yo oo
odfynon.

e  ®don 6: Emotpoen ot @don 1, pe v agaipeon OAov Tov Tpdchetmv
YOPOKTNPLOTIKAOV OVOTPOPOIOTNONG,.

SuAAEYONKoY dgdopéva VYNANG avdivong amd 106.776 dwwdpopés, KAADTTOVTOS GUVOAKA
1.317.573 yuadperpa ko 30.532 opeg 001ynons. Ot LETPNGEIS GLUTEPLPOPAS KOTOYPAPTKOV
YPNOLOTOIOVTOS Un TapepPatikods aecOnmpeg smartphone, dacpaiilovtog o adidikonn Kot
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KPP KaToypapn TV 00N YIKOV GUUTEPIPOPDV. AVTA T, dedoUEVE s TN POV GLUTANPOONKOV
Ao OVTO-0VOPEPOLEVES TANPOPOPIES TOV CUUUETEYOVTOV, TOPEYOVTAS L0 OAMGTIKY KATOVONGN
TOV OVTIMYE®VY, GLVNOELOV KOl OAAOYDV OTI CLUTEPLPOPA TV 0dNYDV. O TEPURATIKOG
oyeowaopdg TNpNOnke avetnpd otic NOkég mpodwaypapéc, Kabng elxe eykpidel and v
Empom Epegvvov kot Acovroroyiag tov EMII, kot dtacpdiile v TANPT GUUUOPO®GN UE TIG
KatevBuvinpieg ypapupés tov 'evikov Kavoviopo yua v [poctacia tov Aedopévov. H cuveync
EMKOVOVIN LLE TOLG CLUUETEXOVTEG OlaTn PN ONKE KB' OAN TN O1dpKELD TG LEAETNG YOl TV EMIALGT
TEYVIKOV (Tnudtov, T JTnpnon TS CLUUETOYNG KOl TNV TOPAKOAOVLONOoT TG OUOANG
EKTELEOTC TOV TTEPALOTOG,
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BiBAioypa@iki Avaokotnon Epeuvnrikég EpwTioeig
. . . 1. Emidpaon g avarpopod6tnong ol
ZuothpaTa averpogodornang odnyod ou:m;up?)gd Kﬂl‘?l'l](\': uccpg)\gugx !
Neipaporikog oxediaopog 2. Aigpelvnon TWV EMMTTWOEWY TWV
Mpooeyyioeigpovrehomoinong XOPAKTNPIOTIKWY avaTpopodoTnong

E¢etalopevol SeikTeg 3. Emidpaon perd Tnv avatpopodoTnan aTn
MOKPOTIPOBEO N CUNTTEPIQPOPA Kal THV Ao PAAEIa

MeBodoAoyikd Yopadpo

OwpnTiko6 MAaiolo Neipapa Guoikhg O5AYNoNG

Fevikeupéva Mpappikd Mikrd Movréha (GLMM) 230 odnyoi (autokivnTa, popTnyd,
MovTtéAa Aopikwv E§icwoewv (SEM) HOTOGIKAETIOTEG)
Movtéha AvaAuong EmiBiwong (Survival Neipapa oxed100pP0U EVTOG TWV UTTOKEINEVWV
Analysis) 6 S1a@opETIKEG PATEIG AVATPOPODOTHONG

ZuhAoyn kai ETre€epyaoio Asdopévwv MeyaAng KAipakoag

OAokAnpwpévn Aéoun
Mponypévwy MovTtéAwv ZratioTikng Kai Mnyavikig Maénong

Emidpaon Tng Al0QOpPETIKEG
avarpo@odoTnong EMOPATEIS TWV

oTNV 00NYIKA XOPAKTNPICTIKWV
OUMTTEPIPOPA HECW avarpo@odoTnong
HovTéAwv GLMM HéOw TTpONYHEVOU

Emidpaon perd nv
avaTpo@odoTnon
péow HEBOBWY
Survival Analysis

Mnxaviouég Avatpo@odotnong Zuptepipopds Odnyou
MéOw TnAeUaTIKAG

Eiwxova I: IT'pagikij avarapdetocy tov covolikob uedodoloyikod mlaiciov tys JI00KTOPIKHGS OLATPIPHS

28



Appipa Kovtaé&n | Mnyaviopog Avatpo@odotnong e Zvumepipopds tov Odnyod Méow Trniepotikng

AK0M0V0MG, TpaypatortomOnke emelepyacio Kol KOOAPIGROS OEOOREVOV EKTEVOS Yol VO
dto@ootel N TowdTNTA Kot 1 a&lomioTio Tov cLVOLoL dedopévav. Ta dkvpa 1 el dedouéva
SLOPOUDV EVTOTIGTNKOY CLGTNUOTIKA Kol eEopédnkay, evd PBaciKeég LETPNOELS GUUTEPIPOPEG
Omwg 1 LVHEPPOAMKT TOYLTNTO, 1 XPNOT KWWNTOL THAEP®OVOL KOTA TNV OONYNOT, Ol OTOTOLESG
EMTAYVVOELS KOl TO. amOTOU Ppevapiopoto Tvmomomdnkay yo tnv avdivon. Ta Prjpata mpo
eneepyaciog dedopévov mEPAAUPOvOY TH UETATPOT TOV TPMOTOYEVAOV OEOOUEVOV TV
awoONTNPOV GE OLGLIOTIKEG UETAPANTEC KOl TNV EVOOUAT®OON TOV  OLTO-0VOPEPOUEVOV
JEQOUEVMV Y10 TN SLOCTAVPMGT TV ATOTEAECUATMV. AVTN 1 AVGTNPT TPOCEYYIoT 6T dtoyeipion
dedopévev  emETPEYE TN ONUIOLPYIL €VOC 10YVPOL GUVOAOL JEGOUEVAV, OLELKOADVOVTOG
Aentopepelg OTOTIOTIKEG OvOADGES Kot Stac@aAilovtag v akpifeld TV €VPNUATOV TOL
mopovotalovion ot dtTpipn.

Iponypéves oTATIOTIKES TEYVIKES EQOPUOCTNKOV YOl TNV OVAALON TOV EMOPACE®V TNG
avaTPOPOSOTNONG GE KPIGIUOVG OeikTEG 0ONYNOMG, OTMG 1| VILEPPOAIKY| TOLTNTA, 1) ¥PNON KIVITOD
TNAEQPAOVOL, Ol OMOTOUEG EMTOYVVOELS Kol To amdtopo  @pevopiopata. H  avdivon
TPOyLaTOTOmONKE o€ TPELS PAOIKOVS TVADVES:

1. Eamidpacn mg Avatpo@odotnoens: Avtdc o muAdvos aSloAdynoe Tig dueces emdpaoelg
™G avaTPOPOOOTNONG 1) OTN GLUTEPLPOPA TOL OONYOV, UE EUPOCT OTNV VREPPOAIKY|
TOYOTNTO Y10 TOVG HOTOGIKAETIOTEG KOl TNV OMOGTACT TPOGOYNS AdY® YPNoMG Kivntol
TNAEQPOVODL Y10l 001 YOVS CLTOKIVITMV, KOl 11) GTNV ACPAAELL T®V 00NYADV, LE ELPOCT] OTA
OTTOTOLO. PPEVOPIGLOTA KOl EMTAYVVOELS Y0 0ONYOUG OUTOKIVITMV KOl ETOYYEALOTIEG
00MNyov¢g 6e avtokvnTdOpopovs. Xpnowworombnkav Ievikevpévo Tpappikd Moviéra
Mwtov  Emdpdoesov (GLMMs) ywoo v afloddynon Ttov  EMOPAGEDV NG
avaTPOPOdOTNONG, AAUPAVOVTOS VITOYN TIC ATOUIKES OLOPOPES KO TOVG GVUPPALOUEVOVS
TOPAYOVTES.

2. Emopdosic Tov Alo@opeTik@v XopoKTNPLOTIKOV AvaTpo@odotinons: Avomtoydrnie
éva Movtéro Aopukov E€loocemv (SEM) v v e€epedhivnon tov ToAOTAOK®V GYECEDV
HeTAld YOPOKTNPIOTIKAOV avaTpo@odotnong (m.y. Pabuoroyiec, xaptec, cvykpicels pe
dAAovg odnyovg, Kivntpa, moyvidomoinom, emPpofevoelg), HeTpk®V EkBeomng Kot
arotedecpdtov acedieas. To poviélo emétpeye TV TOLTOHYPOVN OVOALGN TOAADV
HETOPANTAOV Kol TOV OAANAETIOPAGEDY TOVC.

3. Emodpacsig Metd v Avatpo@odotnon: Melét tov pokpompofecumv aAlay®v 01N
CUUTEPLPOPE KOl OCQAAELN TV 0ONYDV, HE WOwWTEPT EUPACT GTNV VTOTPOT TMOV
CLUTEPIPOPDOV 00NYNONG HETA TNV ATOGVPGT TNG AVATPOPOOOTNONG KATH TNV TEAELTOLN
(Ao TOL TEPAUATOS. XpnoiponomOnkav péBodot Avaivong EmBioong yio v e&étaon
potifwv vrotponng 6e O1APoPOVG OEIKTEG, OTMG Ol AMOTOUES EMITAYVVOELS, TO OTOTOUO
epevapiopato, 1 VIAEPPOMKY TOYLTNTO KOl 1) YPNON KWNTOV TNAEPAOVOL KOTO TNV
odnynon. Avtég ot avaivoels Paciotrav oe koumvieg Kaplan-Meier, povtéha Cox-PH
LE TapOyoVTIKY] TuYoOTnTa, povtéda Emtayvvopevov Xpovov Anotuyiog (Weibull AFT)
pe etepoyévewn, kot Tvyoia Adon EmPioong yoo v a&loldynon Kot cOykpion g
TPOPAETTIKNG IKAVOTNTAG KOL TOV EVPNUATOV KAOE LoVTELOL.
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H obvBeon Ohov tov avaidoemv mov mpoypoatomromdnkay 610 TANGIO0 avTNg TG dttpPng
KatéAnge oe €vav UNYOVIGHO avaTPOPOdOTNONG CLUTEPIPOPAS TOL 0ONYOL HE TOALAPOLA
TPOTOHTLTOL KO EVOLAPEPOVTO ATTOTEAEGLLATO, TOL OTTOT0L TLINTOVVTOL TAPUAKAT®.

Kvpwe Evpijporta

Enriopoocn Avatpo@od0Ttnonc 6tn Loureploopd tov Oonyav

H diepehivnon tov emntdcemv TG avaTpoPodOTNONG GTI] GCUUTEPLPOPE KL TV ACPAAELN TOV
00N YDV OMEOMCE OTLLOVTIKA EVPNUATO GE OPOPETIKEG OPLAOES YPNOTAV, TEPPAALOVTO 0O YNONG
KOl PETPIKES CLUTEPLPOPAS. ZVVOAIKA, KATA TN OPKEW TOV VO (PACEMYV TOV TEPAUATOC
KOTOYpAeNKE Kot avaAvOnke éva peydho ohvoro dedopévev 3.537 dwedpopdv and éva dsiypa
13 potoowiretiotadv. H ypnon Ievikevpévov Dpappikdv Moviéhov Mewktov (ITMM)
ATOTEAEGUATOV PE TUYaiES TapEUPOAES Kot TUYOiES KAIGELS Yol T GLVOAIKT S1dpKELR TOL TAEOL0D
amokdAvye OTL M| TOPOYN AVATPOPOOOTNONG GTOVG HOTOCIKAETIOTEG OYETIKAL UE TIG EMIOOCELS
001 YNONGS TOLG KATA TN SLAPKELD TNG PAoNG 2 TOV TEPAUATOG OONYNOE GE GTATIGTIKG GTLOVTIKY)
NEL®GT TOV TOG0GTOV VAEPPOMKNGS TAYVTNTAS KOTE TN dapKeLo evog Ta&otov. Edwotepa,
OTO LOVTEAQ TTOV aVOTTTUYXONKOV 1] VA TPOPOSITNGT TOL avaATn QOIVETOL VO LELOVEL TO TOGOGTO
vrepPoAKng TayvTNTOG, £X0VTag AdYo Kivovvou exp(Pf=-0,145) = 0,865 yia 10 Guvolkd povtéro
(neiwon 13,5%) kow exp(P=-0,031) = 0,970 o exp(p=-0,420) = 0,657 y1o. Tovg ACTIKOVG (UeimON
3,0%) kot aypotikovg (34,3%) tomovg opopwv avtictoya. Ta anotedéopata avtd avadetkviovy
TNV OMOTELECUATIKOTNTO TNG OVATPOPOJOTIONG GTI| GTOYEVCT] GLUTEPLPOPADV VYNAOD KIvdUVOUL,
TPOGPEPOVTAG Lo PACT Y10 EMEKTAGIUES TAPEUPAGEIS GTNV EKTAIOELOT TOV AVAPATMOV KOl GTO
oXEO10G L0 TOALTIKNC.

Avtictotya, 1 améomacn TPOGOYNGS, LOLUITEPE LOY® YPNGNS KIVIITOUD TNAEQPOVOV, eEETAGTIKE
0€ OOTIKA KOl VTEPACTIKA TEPIBAAAOVTA Kol VTOKIVITOdPOUOVS HEGm povtédmv TTMM yia 65
001nyovg avtoKivijtov o 21.167 owdpopés. H avatpopoddtnon mpoékuye ®G 1oyvpog
TEPLOPIOTIKOG TOPAYOVTAC GTN YPNON KIVNTOU TNAEPOVOL KATA TNV 001ynon cuvolkd (B =
—0.4276, p < 2e—16), Waitepa oe aoctikd meparirovta (f = —0.3687, p < 2e—16). Qot6G0, 1
emidopaon g Nrav acbevéotepn o vepaotikd mepiPdrirovta (Estimate = —0.1180, p < 2e—16)
Kol ompoodoknTa Oetik) o avtokvntodpopovs (B = 0.5490, p < 2e—16), vrodeikvhovtog
OVTIOTOO O TIKEG GUUTEPLPOPES 1] LU0 LELWUEVT] OVTIANTTH EMKIVOLVOTNTA OTOGTOGTG GE 0SKOVG
d&oveg vynAng taydrag. H onuovtikn petafAntéommra otovg tuyoiovg cuviereotéc (SD =
1.4024 cuvoAiKa) VoY popilel TIG CNUAVTIKES OTOMKES O10POPES GTN POCIKT GUUTEPIPOPE, EVD
ol tuyaieg kAioelg yo T Sudpkea dwdpouns (SD = 0.2827 cvvorkd) delyvouv motkileg
AVTIOPAGELS OE TOPATETAUEVES OLULOPOUEC.

2TOV TOPEN TOV ATOTOU®MY GLUUPBAVIOV, OT®G Ol EMTAYVVOELS KOL TO PPEVAPIGLATO, O UYOVIGHOL
avaTpoPodOTNoNG £0e1lav emiong onuavTikég Pertidoelg ot copmeprpopd. Ta amoteléouato
and ™V avédivon 65 0dNYOV CVTOKIVITOV KOTA TIS TPMOTEC OVO PACELS TOL TEIPAUATOS
ATOKAALYOY SNUOVTIKN peioon oTig omotopsg emrayvveels (12%) ko oto amdtopo
opevapiopata (10%), kot ot dVo arrayég Nrav otatiotikd onpavtikes (p < 0.001). Ta povtéra
ITMM evioyhovv TepaUTEP® AVTA TO. ELPNUATO, KAODS 1 AvaTPOPOSOTNGN GLVOEONKE GTaBEPA
HE UEIOUEVEC oOLYVOTNTEC OAMOTOU®V YEYOVOT®V, 1OWHTEPO OE OOTIKO KOl VTEPOUCTIKA
nepPaAlovio. ZnNUavtikd givor 0Tt o1 OeikTeg oYETIKOD KIVOHVOL Y1 TN SLAPKELD TNG TOYVTNTOG
Kol TNG 01 OPOUNG VITOOEIKVVOLV 15YVPEG BETIKEG CLGYETICELG LE T ATOTOUN YEYOVOTO, OV KOL 1)
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avaTpoPodOTNoN Paivetol vo, HeTpldlel avtég TIg EMOPAcEIS o€ KAmolo Padud katd t Pdon 2
TOV TEWPAUATOC.

Ot enayyeipoties odnyoi, AOy® TOV TOPATETOUEVOV POV KOl OTOGTAGE®V 0ONYNONG,
anotélecav emiong Poowkd medio eEgpevvnong. Xpnotipomoiwvrag poviéAa ['TMM  mov
Babuovoundnkav o éva chvoro dedopévov and 5.345 dadpouég and 19 enayyeipotieg 0onyovg,
1N avOAVOT ATTOKAALYE OTL 1) GUUUETOYN OE £VO KOWVMOVIKO TAOIGL0 TOL(VIO0TTOINGG HE KIVTPO
001 yNoe o€ aSloonNpueimTes PEATIOCELS 6TU ATOTORN CVUPAVTA TOV EMTAYYEARATIAOV 001 YAOV.
Katd ™ @don tov dayoviopov, n mbavotnto amdTOU®V EMTOYVVOE®V LEWWONKE Katd Evav
ovvtereot) (B= 0.348p < 0.001), evd to amdTopa @pevopicpate pewdOnkov Kotd &vov
ovvtereotn (B= 0.404, p <0.001), vrodeviOVTOG TNV ATOTEAEGUATIKOTITO TG TTOLYVIOOTOINONG
oTNV TTPODONGN ACPUAESTEPOV TPOKTIKOV odfynone. Emumhiéov, n didpkewo g Sadpoung
mopovcioce OETIKT CLGYETION HE TA ATOTOUA YEYOVOTO, KOOMDS 1 adénom g StipKeELOg 00N yNong
Kkatd 1 devtepdiento avénoe Tig TBUVOTNTES AMOTOUMV EMTAYVOVOEDV KOl PPEVOPICUATOV KOTA
1.558 wotr 1.564, avtictoyo, OvVOOEIKVOOVTOG TIG COPELTIKEG EMOPAGEIS TNG TAPUTETOUEVIG
odnynonc. H evoopdtwon tuyaiov petafAntdv oto poviéda ovEdelEe onpuavtikny LetafAntotnta
ot Poocikn 00Ny cLUTEPLPOPA, VROYPOUUIlOVTOS TNV avAYKN Yol €E0TOUIKEVUEVEG
TapePPAGELG.

Emopdaocsic Tov Ald@opeTiKOV XopUKTNPICTIKOV AVOTPOQ000TNONS 6T LVUTEPLPOPH TOV
Odonyov

H avaivon péom tov Movtérhov Aopkav E€iowcewv (MAE) mapeiye onuoavtikég yvooeig yio
NV ENIOPAOT TOV SLUPOPOTOMUEVOV YAPAKTNPIGTIKOV OVOTPOPOIOTNONG GTI GLUTEPLPOPE KoL
TNV ACQAAELN TOV 00NYDV, CLYKEKPILEVO GTNV LIEPPOAIKT TOYVTNTA, TO ATOTOLO PPEVOPIGLLOTA
Kot T1G amdTopeg emtayvvoels. To cuvoro dedopévav, mov tepiidpfave 73.869 owadpopég and
175 06my0vg avtoKIviTOV Y10 Stdetnue. 21 pnvev, Tpocépepe Lo 1oyvpn Paon dedopévov yua
™ povteronoinon. Ta aroteréspota tov MAE evidmicay 600 AovOdvovses HeTafAnTéc, dniadn|
™V avatpoPoddTnomn Kot TV £kbeon ¢ kpiotpeg emppoés. To povtédo mapovsiace GploTa LETPa
KOANG TPOGOPUOYNG, He Ogiktn cvykprtikng mpocsoppoyng (CFI) = 0,940, deiktn Tucker-Lewis
(TLI) = 0,944, péoo tetpaywvikd opaipa tpocseyyions (RMSEA) = 0,049 kot tomomompévo péco
teTpoy@vikd vroiouro (SRMR) = 0,025, vrodeikviovtag pia 1oyvpn Kot KOAG KoBopiopévn doun.

Metalh TV YOpOKTNPIOTIKOV avaTpoPoddTnons mov avaivdnkav, N Kapta amoteieopatov
avaoEly0NKe MG TO MO EMOPOCTIKO YOPUKTNPLOTIKO, LE TV VYNAOTEPN OeTikn| extipunon (B=
2.076, p < 0.001), amodewkvooviag tov 1oYLPO TOL POAO CTINV TPOM®ONCT ACPUAESTEPWV
ovvnBeidv 0dMyNoNG HEGM NG Apeong Tpomonoinong emkivovvov cvureprpopmv. Tlapopoinmg,
TO YOPOKTINPIOTIKO TV YapTtdv £5€1Ee 1oyvpn| emidpaocn (P = 1.646, p < 0.001), tovilovtag
onuacio g YWPIKNG emtyvoong yw 1t Peitioon tov mpoktikdv odnynons. H Aesttovpyia
oLYKPLONG He AAAOVG 001 YOG (peer comparison) exnpéace Betikd ) cvpneprpopd (B = 1.215, p
<0.001), evd T0. YOPOKTNPLOTIKA TOV OLOYOVICUOV KOl TPOKANGEMV 0.T0dEiyOnKay 1d1aitepa
amotereopatikd (B =2.053, p <0.001) evicyvovtag Toug 0d1y0oHS va VI0BETHGOVY CPAAESTEPES
00N YIKEG CLUTEPLPOPES LEGM TOLYVIOOTOINOTC.

e 6,TL 0QOpE TIG LETPIKES OO YIKNG CUUTEPIPOPES, 1] AVATPOPOIOTNOT LEG® TNAEUATIKNG NELMGE
SNUOVTIKA TOV Ypévo vaepPoikns tayvtnrog (B = -0.214, p < 0.001) kor Ta améTopo
opevapiopato (= -0.027, p < 0.001). Qotdéc0, pra avénon otig amdtopueg emrayvveelg (P =
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0.026, p < 0.001) vrodnAdver v avdykn wepoutép® PeEATIOONG TOV  CLOTNUATOV
avVOTPOPOSOTNONG YO TNV OVIILETOTION anpOfrentomv cvvemelidv. Ot mapdyovieg €kBeong
dwdpapdticay exiong onUAvTikd pOAO 0T SWUUOPP®CT] TNG CLUTEPLPOPAS TOV 0ONYAV, LLE TNV
gkBeon otV mpwv x| va cvoyetiletan pe avénpévn avainym kwvdvvoo (f=2,473,p <0,001),
mlavotato Adym g mieong Tov xpdvov Kot TG dpeg petaxkivnong. Avtifeta, n €kbeon oty
OTTOYELUATIVI] aLyUn GLoyETioTNKE He Ayodtepo embBetikn cvunepipopd (B= -1,360, p < 0,001),
TOPEYOVTOG TANPOPOPIEG GYETIKA LE TIC YPOVIKES SIOUKVILAVGELS GTO TPOTLTTO, 00T YNONG.

H avéivon molvopdunong emiPepfaince avtd o e0pMUATO, OVAIEIKVIOVTOG TNV GAAAETIOpaON
ReTAED TOV peTafANTOV £KOEONS KUL TOV JUPUKTPLETIKAV AvVATPOP0ddTII6NGS. Evd 1 éKBeon
emmpéace Oetwkd Vv vmepPoikn Toydvtmro (B = 0,326, p < 0,001), ot umyavicuoi
avaTPOPOdOTNONG UeTplocay OmOTEAECUATIKA avT TN ocvunepipopd. To yopaktmploTikd
«OVTOYOVICUOG KOl TPOKANGEISY, E€10IKOTEPO, £0€1EE VTOGYOUEVO VO UETPLACEL TIC OITTOTOMEG
emtayovoelg (B =-0,001, p <0,001). Ta teproTatiKg amdTOHOL EPEVAPICUATOS Let®OnKay eTiong
OTNUOVTIKA 070 TNV OVOTPOPOOATNOT|, EVICYLOVTAG TO POAO TNG BVATPOPOOATNONG GTNV TPpodOnom
ACQUAESTEPOV OONYIKAOV TPAKTIKAOV. H avdAvon cuvilakdoveng amokaAvWeE TEpaLTEP® 1GYVPEG
aAANAemdpdoelg petalh emKivouvemV CUUTEPIPOPAOV, OTTWG 1 VREPPOAIKY| TOYDTNTO KOl TO
amotopo  epevdpiopa, vroypoppuiloviog TV avaykn Yo OAOKANPOUEVE  GUGTHUOTO
avVATPOPOSOTNONG TOV OVTILETOTILOVV TOAAATAEG TTTVLYES TG GLUTEPLPOPAS TOL 001 Y0D.

Ol TPOKTIKEG EMMTOGELS OVTOV TOV EVPNUATOV &ivol ovolaoTikeS. Ta  yopoKIpPloTIKA
avaTpoPOdOTNoNG, Wimg ekeiva mov aflomolobv £EATOMKEVUEVOVS TIVOKES OMOTELECUATOV,
YOPIKE epyareio Kot oToryeio moryvidomoinomng, vTdGyovTon TOALA Yo T PEATimon TG AGPAAELOG
TV ooNy®v. Ot eEatopkevpéves TapEUPAGEIS TOV GTOXEVOVY GE GUYKEKPIUEVES GUUTEPLPOPES
Kol OPES TNS NUEPOS Bl LITOPOVGAY VO EVIGYDGOVY TEPULTEP® TNV ATOTEAECUATIKOTITO QLTOV TV
cvotnpdtev. QoT060, TEPLOPIGHOT OTMG O UTOKAEIGUOG TNG YPNONS KIVNTOV TNAEPDOVOL Amd TO
TEMKO HOVTELO Kot 01 TBOVEG LEPOANYiEg EMAOYNG AOY® NG 0EAOVTIKNG PVONG TNG GLUUETOYNS
Oo TPEMEL VO OVTILETOMIGTOVV G LEAAOVTIKES EPEVVEC.

Meta tnv Avarpoeoootnon Emopacsic otn Mokpormpofsoun Xoureproopd tTov Odnynv

O tgyvikéc Avarvong EmpBioong epoppootnkay oe Eva 6Uvoro dedopévov 24.904 swadpopdv
a6 31 001 Y00¢ avToKIVIITOV, e KAOE 00N Y0 Va £xel VAOTOM GEL TOVAAYIGTOV 20 dLadPOUES KOTA
™ Ao HETA TNV OVATPOPOSOTNOT|, Yo TN OlEPEVVIOT TV HOKPOTTPODEGU®OV EMOPACEDV TNG
TNAELOTIKNG AVATPOPOSOTNONG OTN GLUTEPLPOPA Tov 0dNYyoV. H avdivon emikevipdbnke oe
potifo VTOTPOTNG OGOV APOPA GTN YPNON KWWNTOV THNAEPOVOL, TNV VREPPBOAIKT TayVTNTO, TO
andtopo Gpevapicpato kol TG amotoueg emtayvvoels. Ot pébodor mov ypnoyomomonKay
neplapuPavav kapmvieg Kaplan-Meier, povtéla Cox-PH pe frailty, povtého Weibull AFT pe
etepoyéveln. o opadeg, kot Random Survival Forests. To svprjpoto kotadeucvoovy v
OTOTEAECUATIKOTNTO TV  TOPEUPACE®Y  avaTPOPOdOTNONG OtV €MITELEN  ONUAVIIKOV
BpoyvrpoBeopumv PEATIOCEDMV GUUTEPLPOPAS KATA TN (AT TNG AvATPOPoddTNoNS. 26t000, 1
QG0N NETd TNV AvVATPOPOIOTNGT UTOKAAVYE TTOIKIAES TAGELS VTOTPOTIS, LIToypappilovtag
mv avaykn vy cuveyllopeveg TapeUPACELS Yo T OTNPNOT OVTOV TOV PBEATIOCEOV LE TNV
TéPodo TOV YPOVOUL.

H avaivon empioong Kaplan-Meier 16vice TIG TAGELS VTOTPOTNG, OEIXVOVTOG L0l CTOOLOKT)
peiwon g PeATIOPEVNG COUTEPIPOPAS OTIS SLOOOYIKEG OLOPOUEG KATO TN (Ao HETd TnV

32



Appipa Kovtaé&n | Mnyaviopog Avatpo@odotnong e Zvumepipopds tov Odnyod Méow Trniepotikng

avaTpo@odotnon. o Tig andtopeg emtoyvvoels, ot mOavotTnTes emPimong per@Onkav amnd
84,8% o1ic 50 dwadpopés 610 49,2% otic 150 dwdpopés. Iapopoleg tdoeic mapoatnpnOnray
v to. amdTopo Ppevapicpata Kot tnv vrepPoikn tayxvtnta, pe Tig mhavotnrteg emiPiowong va
uewwvovtar mepinov oto 40,3% Ko 46,8%, avtictoyo, £mg ™ Swdpoun 150. Avtd ta potifa
vroypappifouv  peTafaTiKi QUGN TOV EMOPAGE®V TNG AVIETPOPOIOTNONG KL TNV AVAYKN
Yoo UMYOVIoHOUG cuvexovg evioyvong. H ypnon kivntod tiepdvov mapovcioce lappdg
peyardtepn avhektikdtnta, pe tig mbavotnteg eniPiowong va tapapévoovy tave and 80% otig 100
SLOPOUES, AALA 1) GTOSIOKT VITOTPOTH NTAV ELPOVIG LLE TNV TAPOSO TOL YPAVOV.

Meto&d tov poviéhov avaivong emPioons mov epapuodctnkay, 10 povrého Emrayvvopevov
Xpovov Arotoyiog (Weibull AFT) pe etepoyévera avadeiydnke og 10waitepa 1oyvpo epyoaieio
YL TV OVOADGT] TV OLUVOULIK®OV VITOTPOTNG, IGOPPOTAOVTIOS TNV TPOPAETTIKY axpifeia Kot TV
epunvevopomnta. Ot Tipég C-index kopdavOnkov petad 0.677 kar 0.773, pe to poviéAo va
EMTLYYAVEL TN HEYOAVTEPT TPOPAENTIKN KOVOTNTO YO TNV VLTOTPOM] OTN YPNOTN KvnTov
miepadvov (C-index = 0.773), vwodewkviovTog 1oYvVPN OOKPITIKY KAVOTNTO GTOV EVIOTICUO
odnyov pe owénuévo kivovvo vrotpomne. Koprot mpoPrentikol mapdyovieg dnwg n nAkiokn
opdoa [35-54] (B = 0.165, p = 0.041), n dwpxewn dwdpoung (B = -0.022, p < 0.001), o n
AVTOOVOPEPOUEVT] EMOETIKOTNTA (TANGLALOVTOG TN OTATICTIKY onpovtikotnto oto p = 0.089)
avadelyOnkayv, TapEyovtog YPNOIUEG TANPOPOPIES Yo TN CLUTEPLPOPA VITOTPOTNS. To HOVTEAO
eMionc KOTEYPOWE ETEPOYEVELD PETAED 00N YAV PHECH EVEOUATOCNS TUYCIOV TAPAPUETPOV, LIE
TO, AOTEAEGILATO ETEPOYEVELOG VO OELYVOLY ONUAVTIKY LETOPANTOTNTA GTOVS XPOVOLS EMPiwong.

['a v vrotpony) oty vaepPorkn tayvra, to povrédo Weibull AFT nétvye C-index = 0.700,
LE ONUOVTIKOVS TPOPAETTIKOVG TAPAYOVTES, OTMG N dtdpketa dadpouns (B = -0.022, p < 0.001)
Kot o1 TpOwES wpeg atyung (B = -0.096, p = 0.004). H dwdpkero dradpoprg avadeiydnke og o
KUPLopyog TPOoPAETTIKOS TAPAYOVTAS, HELOVOVTOS 6TAOEPA TOVS YPOVOLS emMPimONGS 6€ OAOVG
TOVG OEIKTES VAOTPOMNGS, LIOYPOUMloVTOC TOV POAO TNG TOPATETOUEVIG OONYNONG Ot
CUUTEPUPOPIKT VTOTPOTT|. AVTIGTOLYO, GTNV AVAAVGT VITOTPOTNG TMOV ATOTOUWDV QPEVAPICUATOV,
T0 povtédo étuye pETpro TpoPrentikn) akpifero (C-index = 0.724) pe onUOVTIKES GUVEICPOPES
amd petaPAntéc Ommg n nAkiokn opdoda [35-54] (B = 0.360, p = 0.010) kot n yopNTIKOTNTA
kwvnmpa (>1400cc) (B =-0.508, p=0.012). Avtd Ta evppaTa delyvovv OTL 01 VETEPES NAKIOKES
OLLAdES Kot 01 00N Y0l OYNUATOV LE LEYOADTEPOVS KIVIITIPES EIVOL TTLO EMPPETEIS GE LTOTPOTN.

To povrého Tvyaiov Aacdv Empioong (Random Survival Forest) mapovoiace avotepn
ApoPrenTIKI] 000061 GE OPIGUEVOVG EEETOLOUEVOVS OEIKTEG, SUKPIVOLEVO GTIV KOTOYPOPY| 1N
YPOUUUK®OV CAAAETIOPACE®Y KOl TOADTAOK®V GYECEMV HETOED TPOPAENTIKMOV TTapaydviwy. Me
Tipég Root Mean Squared Error (RMSE) éwg 85.87 kot cpdipata mpdPreyng extdg delypotog
(OOB) ¢ T4ENG Tov 24,3% Yo TNV VIOTPOTY GTN ¥PNOT KvnTov ThAepdvov, T0 RSF evtomice
KPIGIHOVE TPOPAETTIKOVG TOPAYOVTEG, OTTMC 1) SLAPKELN S1AOPOUNG, O1 TAGELS EMOETIKNG 00N YNONG,
Kot T0 péyebog Tov KivnTpa Tov oyfuatos. H gveMéia Tov povréhov oty emelepyacia
TOWKIAMV TPOPAENTIKAOV TAPAYOVTOV KOL 1] ATOKAAVYT] AETTOUEPDV SLVOLIK®V TO KOO1GTOVV
TOAVTIHO EpYOieio Yo TPOPAETTUKES AVOADGELS. 26TOGO, 1) «ULOPO KOVTD PVOT) TOL LOVTEAOL Kot
N e€apon Tov amd peyohvTepa GHVOAD OEOOUEV®V TEPLOPILOVV TNV EPUNVEVGILATITA TOL Kol TN
YPNOLOTNTA TOV Y10 ENEENYNLATIKOVS GKOTOVG.

Yvvolikd, ovykpivovtag to poviéha, 1o Weibull AFT ECegyopiler Yo v 1coppomia
EPUNVELGILUOTNTOS Kol TpoPrenTiKig akpiferlos, kKabiotdvtag 10 1dwitepa KATAAANAO Yo
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TEPPAALOVTO OV ATTOUTOOV EQPAPUOCULES YVAGES OYETIKE He TN Ovvapkn e emPioong.
Avtifeta, 10 povtého Tuxaiov Aacov EmPioong etvor mo katdAAnio yio kaBopd tpoPArentikode
oTOYOVG OOV 1 KOTAYPOUPY) U1 YPOUUIKAOV CYECEDV Kol TOATAOK®V OAANAETOPAGE®V £ivat
Kkpioym, av kot 1 EAlewyn dwedavelag meplopilel ™ ypNOWOTNTA TOL GTNV KATOVONGT TOV
VIOKEIUEVOV UNYAVICU®V GLUTEPLPOPAS. AVTE To. gvpMHaTo LIOYpaupilovy T onpacio TG
guBuypappiong TG €mAOYNG MOVTEAOL PE TOVG EPELVNTIKOVS 6TOY0vG. ['o pehéteg mov
EMIKEVIPMVOVTOL OTNV KOTAVONGON TOV OLVOUK®OV TNG CULUTEPUPOPAS KOl OTOV GYEOUGUO
napepPacewv, to povtého Weibull AFT mapéyer a&iomoteg nAnpogopiec. Avtifeta, otov m
axpipela mpoPAeyng elval mpotapyikng onuaciag, 1o RSF anotelel avatepn evarhoktiky AOo.

[Tapodro mov M datpPn TapEyel TOAVTILES YVMOGELS Y1 T1 SUVOULIKNY TNG AVATPOPOSOTNONG KOl TNG
VIOTPOTNG TV 0dNYADV, TEPLOPIGHOT OTMOC TO GYETIKA KPS delypa, 1 amovcio dEdOUEVMV
KUKAOQOPLOKAOV GUVONK®OV KOl 1) LOKPOCKOTIKY €0Tioom Pémel vo, onpelwfovyv. MeAlovtikn
épevva Ba pumopooe Vo EVOOUATMOGEL MO AENTOUEPT OdOUEVA, OMMG TIG KLKAOQOPLOKEG
SLVOUIKEG KOL TIS OTTOPACELS TOV 0ONY®OV KATA TN SIPKEWL TNG 0ONyNons, Yo TtV mopoyn
Babitepng kaTovONONG TOV CLUTEPIPOPIKOV potifov. H epappoyr mponypévev texvikov
povtelomoinong, 6mmg o1 Tuaieg TAPAUETPOL e ETEPOYEVELDN-UEDT), Bal pmopovoe va evicyOoEL
TEPALTEPM TNV AVAAVOT), Aapdvovtag voyn T HETOPANTOTNTO HETAED 0ONYDV.

Kawotopeg Emotnpovikéc Xoveto@opéc
Ot KovoTOUES GLVEIGPOPEG TNG TOPOVGAS OOAKTOPIKNG OaTPIPNS OMOTEAOVVTOL OO TEVTE

TPOTOTLTES EMGTNUOVIKEG GUVEICPOPES, OGS TEPTYPAPOVTOL TAPUKAT® Kot amekovilovtol 6To
Zyfpo II.

ExteTropévy

Yvilhoyn Asdopévov Hoivtporuc Ilposéyyion

Pvoucrig Odfynons Avalveng
QO&I‘[‘{IKI’]Q Xopmepreopdc

Mnyoviopog
Avorpogodotneng Oényoev Oloxinpopévy Xovitae
o¢ OheTiko Xvotnua TpretpopoTikov
Movtéhov

O

Ye Bafog Availvon tov
Emnartocsov Metd v
ITopoyj AvatTpog@odotTnong

Ewxova Il: Karvotoues coveicpopés ths o10aKTtopikis olaTpifiis
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Exteropivn Xviloyn Asdonévov Pvoiknc Oonynonc

H nmapovoa dwatpipn amoterel Evo onpavtiké Pipa mTpog Ta epmpos oTNV £PEVVO TEPUNATOV
ovoikng oonynong (Naturalistic Driving - ND), aiomowdvrog pun mapepPoticés pebddovg
ovLALOYNG dedopévav Tov Paciloviat oe aucOnTpeg smartphone. Ze avtifeon e TIG TOPASOGIUKES
npooeyyicels, avt M peBodoroyio elayiotomolel TG TOPEUPACELS GTOVG GULUUETEXOVTEG,
EMTPEMOVTOG TNV OVEUTOJIOTH KOTOYPOPY] TPOYLATIKOV 00NYIKOV cvumepipopav. To cvvoro
0£00pPEVOV KOADTTEL £va peyaro dgiypa 00nyav (230), og mowkiia 00NYIKE TepLpailovta Kot
TOTOVG  OYNUATOV, GULUTEPIAAUPAVOUEVOY  0dNYDOV  OVTOKIVIT®V, HOTOCIKAETIOTMOV Kol
EMOYYEALOTIOV 00NYDV Pav. Avt) 1 mowiMa duc@ariler 0Tt Ta gupnpata givor Oyt povo
AVTUTPOCMOTEVTIKA, OALL AapPavouy emiong voyn TiG O0POPOTOMGELS UETOED dNUOYPAPIKAOV
YOLPOKTPLOTIKMOV 00N YOV KOl KATNYOPLDV OXNUATOV.

H vyn\) ygpovikn avdivon tov O0e00UEVOV TPOGPEPEL AENTOUEPELS TANPOQOPIES Yo N
CLUTEPLPOPE 001 YNONG OE EMIMEDO O1AOPOUNG, TapExovTas pia fadid Katavonon g SLVVOUIKNG
™G 0dNYIKN G cvumeppopds. EmmAéov, n pokporpdBesun cuiroyn dedopévav yia 21 pinveg, mov
KOAOTTEL TOAAEG QACELS OvVOTPOPOOOTNONG KOl OPOPETIKA 0d1kd mepBdAiovta, TPOocdidel
povoadikn a&lo ot pekétn. Kotaypdpovtag aAlayég 6T cCuUTEPLPOPAE LE TNV TEAPOSO TOL YPOVOV,
1 owTpiPr] YEQuUpAVEL éva Kpioo Keve oty vadpyovcsa Eépegvva ND, 1 onoia cuyvd Pacileton
o€ BpayurpdOecec TapaTnpoeS. AVTN 1 LOKPOTPOBEGUN TPOOTTIKT EMTPEMEL TV AELOAOYNON
™G STNPNGIUATNTOS TOV CAAAYDV GTN GUUTEPIPOPE KOl TV TAGEWMY VITOTPOTNC, TPOCPEPOVTUG
pa woyvpn Péon yo v avantuEn TPOCAPUOCTIKAOV Kot BLOCIH®V TapepPacemy yia T Pedtioon
™m¢ odwng acpdielns. H peBodoroyio avtiy 0éter véa mpotume yw to mewpapote ND,
avoiyovtog Tov dpOO Yo o KAUOKOVUEVES, OLKOVOUIKA OTTOO0TIKES KO TEYVOAOYLKEA TPOT|YLLEVEG
HEAETEC OONYIKNG CLUTEPLPOPAC.

Holvtpormikn HpocEyyion Avarvonc Oonyikne JOnumepLoopac

Avt n owtpiPr] viobetel o TOALTPOTIKY] TPOGEYYIoN, Olvovtog EUeacn oTn onuocio g
KOTAVONGONG TNG 001 YIKNG GUUTEPLPOPAS GE SLUPOPETIKEG OULADES YPNOTMV 030V Kol SLLPOPETIKE
nepifailovia.  Xvpmeprhiopupfdvoviag  001y00g  CVTOKIVT®V, HOTOGIKAETIGTES KO
enayyehpotieg 001yovs Pav, n pguva avayvopilel TV avaykn HEAETNG ELAAMTOV YPNOTAOV
0000, TOLG Ol HOTOGIKAETIOTEG, Ol Omoiol OVTIUETOTILOVY aVENUEVOLS KIvOHVOLS, KaOMG Ko
EMOYYEALOTIOV OOMYDV, Ol OTOI0l TEPVOLV EKTETAUEVES MPEG OONYDVTOC. AVTH 1 TEPLEKTIKY
npocéyyion owuc@arilel po AP aEloAdynon TS avaTPOPOOOTNGNS HECHO TNAENATIKIG,
OVOLOEIKVVOVTOG T1) OTLLOGT0 TNG G€ SPOPETIKEA TPOPIA Ktvdhvou Kot enimeda EkBeomg.

H épevva e€etdler v emidpacn TV OGTIKOV KOl VIEPACTIKMOV TEPPUALOVI®OV, OALL Kol
QLTOKIVNTOOPOL®V, AAUPAEVOVTAG LITOWYT TIC SUPOPETIKES TPOKANGELS TOV BETEL KAOE TOTOG 050V.
AV 1 TEPUNTTIKT TPOGEYYIGT] OAMOKOAVTTEL OTL 1] ATTOTEAEGPUOTIKOTITA TI|S AVATPOPOIOTIONG
ogv givar opotopopP: SLUTEPLPOPES OGS M ¥PNOoN Kwntoh TNAEQPOVOL N M VIEPPOAIKY|
TOYOTNTO AVTIOPOVV SAPOPETIKE GTIG mapeUPAcels, avaioya pe 10 00KO mepiffdriov. To
TOPBAOELY LA, Ol LOTOGIKAETIOTEG Umopel var et@einBovv meplocdTePO amd avaTpoPOdHTNOT TOV
OTOYXEVEL OTNV EMLYVMOOT] TOVG KOTAGTAONG, VM Ol EXAYYEAUATIEG 001 YOl EVOEYETOL VAL OTONTOVV
eCatopukevpéveg mopeUPaoelg mov avTIHETOTILOVY THV KOTMON Kol TNV EXAVIAQUPAVOLEVT
ékBeon o€ KATAOTAGELS LYNAOD KIVODVOU.
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Evooupatdvovtog avtv v mokidio opddmv ypnotav Kot cupepalopévev, n dtatpiPn mapéyet
TPUKTIKEG TTANPOPOPies Yo vAeDOVVOVS YAPAENS TOMTIKNG, VTOGTNPIKTEG TOVUG OOIKNG
ACPAAELNG KOl TPOYPOUUUATIOTEG OTOV KAAOO NG TeYXVoAoyiag. Tovilel Tn onuacio TG avaTTLENG
eCOTOUIKEVIEVOV GUOTNUATOV OVOTPOPOSOTNONG IOV OVTOTOKPIVOVTOL GTIG LOVUOIKEG AVAYKEG
ELOAMTOV YPNOTOV 0000, TOVS HOTOGIKAETIOTEG, KOl EMAYYEAUATIEG 00MYOVS, Ol Oomoiot
SUUPBEALOVY CNUAVTIKA GTN OPacTNPLOTNTA 001K KUKAOQOPING. AVTY| 1 TEPIEKTIKN TPOCEYYIoN
vrootpiler T OMpovpyic TPOCOPUOCTIKAOV, evaichntwv oto mAaiclo moapepPdcemy,
BeAtidvovtog TeAKA TNV 001KT AGPAAELL Y100 OAOVS TOVG XPNOTEGS.

Oloxkinpouévn Aécun Movtéiov Tprov HHviovev

Avty n owTpiPn ypNoYonolEl Ho OAOKANPOUEVY] GEPE TPONYUEVOV GTUTICTIKOV KOL
TEYVIKAOV UNYOVIKNG RHaONoNns, TPOCOPUOCUEVOV Y0 TNV OVIHLETOTICN TNG TOAVIAGTATNG
@VOMG TNG avAAVoNG 00NYIKNG cvumepipopdc. Evoopoatdvovtag IN'evikevpéva Tpappkd Miktd
Movtéda (GLMMs), Movtéha Aopkav E&lowoewv (SEMs) kot Teyvucég Avaivong EmPioong
(6nowg kapmvieg Kaplan-Meier, povtélo Cox-PH pe mopayoviikn toyoidtnto, HOVIEAQ
Emrayvvopevov Xpovov Amotuyiog (Weibull AFT) pe etepoyévera, ko Tuyaio Adon EmBimong),
1N o TpIPn mapéyet £va avaTNPO aVOAVTIKG TAOIG10 KAV VO OTOKOADYEL TOGO YPaUKEG OGO Kot
un ypoppkés oxéoelg petalh tov petafintav. Kabe poviédo emiéyetal mpoceKTikd dote vo
evBuypappiletar pe TOVG EPELVNTIKOVG GTOXOVS, EEIGOPPOTAOVTAS TNV TPOPAENTIKY akpifela e
TNV EPUNVEVCIUOTNTA Y10l VO SIUGPAAGEL TPAKTIKES TANPOPOPIES.

Avt n oéoun pHovTEA®V emTpénel TV EEEPEVVNION TOAVTAOK®MV QUIVOREVMY, OTOG 1
aAMNAETIOpOON HETOED YOPOKTNPIOTIKAOV OVATPOPOOATNONG, OONYIKOV GULUTEPIPOPDOV KOl
TOPAYOVTOV TAGI0V, O 1 dPO TG NUEPAS N 0 TOTOG dpduov. [ Tapdaderypa, To HovTEA
emPlwong Kataypdeovy Lovadikd Tr SVVOIKY TNG VTOTPOTNG, TPOCPEPOVTOS VEEG YVAOGCELS Yo
TIC TACELS CLUTEPIPOPAS UETA TNV aQaAipeon NG avaTpoPodotnons. Ot TeEXVIKEG UNYOVIKNG
pnanong evioydovv TEPAUTEP® TNV AVAALGY, CLAAGUPAVOVTOG AEMTEG, UM YPOLLUKEG
aAAnAemdpdoets, dtacearilovtoc Ot To. HovTEAD €lval EEOMMGUEVA Y10 TNV OVIIUETOTICN TNG
TOAVTAOKOTNTOG TV TPAYLLATIKOV dedopévev 0dnynons. To kavotépo avtd avarlvtikd Thaiclo
Oyt uovo av&avel T neBodoAoyikn avaTNPOTNTA TNG EPEVVOC OALA KOl KATAOEIKVOEL TO OLVOLKO
NG GLVOVACTIKNG YPNONG TAPOUIOCIUKMY CTATICTIKGOV HEBOI®V Kol TEXVOAOYIDV HUNYOVIKIG

paOnong yo LEAETEG 00N YIKNG CLUTEPLPOPAG.

g BaOoc Availvon Metd tnv Avotpoodotnon Emopdacsov

Avt n SwrpiPn eivor amd T TPAOTES OV OvOAVEL o€ PaBog TS emOploels perd TV
avaTPOPOOOTI|GT GTI] GUUTEPLPOPU TOV 0ONYOV, YPTCLOTOUDVTOS TPONYUEVES GTATIOTIKEG KOl
TEXVIKEG UMYOVIKNGC Labnong, avtipetomilovtog £vo Kpioo KeVO oty vdpyovca £pevva. Mécm
nefddwv avaivong emPioong, 6mwg tao Weibull AFT kot Random Survival Forest, n peAétn
a&loloyel pokpompdOeceg 0ALAYES GT CUUTEPIPOPE KOl LOTIPO LITOTPOTNG UETE TNV ATOGVPGT)
NG AVATPOPOJOTNONG. AVTEC Ol TEYVIKEG EMTPENOLY T AETTOUEPY] ££EPEVYNON TOV TTAPAYOVTOV
oL ENNPEALOLY TNV VIOTPOTN GE EMKIVOLVES GUUTEPLPOPES, OTTMOC N VIEPPOAIKT TaLTNTA, TO
AmOTOUN YEYOVOTA KOl 1] YPNOT KVNTOV TNAEQPOVOV, TOPEXOVTOS TPAKTIKES TANPOPOPIES Y10 TOV
OYEOCUO PLOCIL®V CTPATNYIK®OV TopEUPaong.
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To gvpNpoTo ATOKAADTTOVY TN CNUAGIO TPOGUPUOGTIKOV GLUGTNUATOV OVOTPOPOOATNONG TOL
UTOPOLV VoL SoTNProovy TIG PEATIOCELS GTI GLUTEPLPOPE HE TNV Tdpodo Tov yxpovov. o
mopdoetypa, n avdivon emPioong £0€iEe OTL N ddpKeLD TNG SLAOPOUNG KL 1| DPOL TNG NUEPUG
emnpealovy oNUAVTIKA TN SLVOIKT VTOTPOTNG, VIOYPUUUILOVTOS TV OVAYKN Yol UNYOVIGLLOVG
avaTPOPOdOTNONG TOL VO AAUPAvoLV VITOYN TO TAOIG10. AVTH M KAVOTOUOG £GTIOGT GTN (PACN
LETE TNV aVOTPOPOSOTNOT| TAPEXEL £VOL VEO TAAIGLO YO TNV KATOHVON G TI|S 10T pnopndTnTOg
TOV PEATIAOGEMV TOV TPOKVTTOUVY UTO TNV AVATPOPOIOTN O, EMTPENOVTAG O AVOEKTIKEG Kol
OTOTEAECUATIKEG TTaPEUPAGEL 00KNG aocpaiewnc. EmmAéov, kabopiler éva mpdTumo yio )
HEALOVTIKY] €PELVO (DOTE VO EVOOUOTOOCEL HOKPOTPOOesueg TPOoOTTIKEG otV a&loAdynon
OTPATNYIK®OV TPOTOTOINGNS 0ONYIKNG GUUTEPLPOPHS.

Mnyoviepoc Avatpo@odotnone Oonyov og OMeTikd XvoTnuo

H napodoa dwatpipn npoceyyilel Lovadikd Tov pnyovicpé avatpo@odotnons og £va oAoTIKG
ovotnuo, &££etdlovrag 0AOKANPO TOV KUKAO (M1G TOL NEC® EVOS TOAVTUPUUETPLIKOV
OVOAVTIKOD TAAIGTI0V. AVOADOVTOG GUGTNUOTIKG TIG PAGELS TPV TNV AVATPOPOSOTNOT|, KOTA TN
OWPKEL TNG AVOTPOPOdOTNONG KOl UETE TNV OAOKANP®ON NG, M OwTpPn mopéyel o
OAOKANPOUEVT KATAVONOT TOV TG 1) OVOTPOPOSOTNOT| EMNPEALEL TN CLUTEPIPOPA TMV 0ONYDV
pe Vv mépodo Tov xpovov. H evoopudtmon d1apopmv yapakTnpioTIKOV avaTpopodotTnons, 0mmg
ot BaBporoyieg, o ydpteg, Ta epyoreio GVYKPIONG Kot TO GTOLYELD TOLYVIOOTOINGNG, EMTPENEL TNV
a&loA0YNoN TOV EMUEPOVS KOl GUVOVACTIKMOV TOVG EMWOPACEDV GTNV TPOTOTOINCN TNG
GUUTEPLPOPALG.

AV M TOAVPAGIKY TPOOTTIKY| OeV €0TIALEL LOVO OTIC AUECES OALNYEG OTN) CLUUTEPLPOPE OAAL
piyvelr pmg kol ota pokporpdbespa potifa Ko Tig tdoelg vrotponns. o mapdderypa, evd ot
Babuoroyieg kot To otoryein darywviopoy givor Wdwaitepa amOTELECUATIKA o1 peimomn Tng
VIEPPOAKNG TAYOLTNTOG, 1] EXIOPACT] TOVS GE AAAEG CLUTEPLPOPES, OTMG O1 ATOTOUES EMLTAYVVOELS,
anortetl Ttepoatépo Peitioon. To cuom KO aVTO TAAIGIO TPOXWOPA TEPQ A0 TIG OTOUOVMUEVEG
aEOAOYNOELS TNG AVATPOPOSOTNONG, TPOGPEPOVTAS EVH KMUAKOVUEVO, POCIOUEVO GE OEOONEVA
TAOIO10 OYEOLOONOD KOl EQUPROYNS Topepfdocmv péc® TnAgpatikis Tov oonyov. Ta
gupnuaTa Toviovv 10 SVVAUIKO TPOCAUPUOGTIKOV GUCTNULATOV OVOTPOPOOOTNONG Y10 TN Prdoiun
BeAtioon G OOMYIKNG OCLUTEPIPOPAS, GLUPAAAOVTOS TEAMKO O OCQOAESTEPO OOKA
nepParlova.
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1 Introduction

1.1 Road Safety Overview

1.1.1 Road safety statistics

Road safety is a critical public health and societal issue, as road traffic crashes claim millions of
lives and cause severe injuries globally every year. Beyond the tragic loss of life, these incidents
impose immense emotional and economic burdens on families and communities. Vulnerable road
users, such as pedestrians, cyclists, and motorcyclists, are particularly at risk, necessitating the
implementation of comprehensive safety measures, infrastructure improvements, and awareness
campaigns.

Over the last decade, although substantial advances have been made in enhancing road safety, road
crashes continue to pose a significant public health challenge worldwide. Road crashes, resulting
in injuries and fatalities, are the 12th leading cause of death globally across all age groups, with
young people aged 5-29 being at the greatest risk. In 2021, road crashes led to approximately 1.19
million fatalities globally (World Health Organization; 2023.), equating to a mortality rate of 15
deaths per 100,000 people, while the European Commission published that in 2023, the fatal
crashes in Europe were 20,400 (European Road Safety Observatory, 2024).

In 2022, Greece experienced a total of 10,487 road crashes resulting in death or injury, marking a
0.3% increase compared to 2021, when 10,454 such incidents were recorded (Figure 1.1).
Specifically, the casualties in 2022 included 654 fatalities, 664 serious injuries, and 11,961 minor
injuries, reflecting increases of 4.8%, 8.9%, and 1.8%, respectively, compared to 2021 (624
fatalities, 610 serious injuries, and 11,746 minor injuries).

Road Safety Statistics by Year (2021 vs. 2022)
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2022 - Fatalities
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2022 - Seriocus Injuries
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Figure 1.1: Numbers of road crashes in Greece during 2021-2022
[Source: Hellenic Statistical Authority, 2024]
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Notably, of the 654 fatalities, 257 (39.3%) were in passenger vehicles, 212 (32.4%) involved two-
wheel vehicles (including mopeds), and 112 (17.1%) were pedestrians. These figures underscore
the significant risks faced by vulnerable road users and highlight the urgent need for targeted safety
measures to protect them.

1.1.2 Human risk factors

There are a significant number of risk factors identified in literature, which affect accident
probability. The most important risk factors recognized in literature are human factors (speeding,
distracted driving, driving under the influence of alcohol and other psychoactive substances etc.),
unsafe road infrastructure, unsafe vehicles and inadequate law enforcement of traffic laws (WHO,
2023). Human factors are likely to be the most important cause of road traffic fatalities and injuries
every year and therefore the importance of quantifying the influence of driver’s behavior on crash
risk is extremely high. It has been observed that a large percentage of crashes is due to human error
(exclusively or not), a percentage cited to be as high as 95% (Singh, 2015).

Distracted driving, as one of the most important human factors that influence crash risk, has been
attracting the attention of researchers in the past decades. Mobile phone use (handheld or hands-
free) and complex conversation (at mobile phone or with passengers) appear to be the most critical
in-vehicle distraction factors (Papantoniou et al., 2017). Given that mobile usage is an inevitable
part of the everyday driving process and is expected to increase over the years (Charlton, 2009),
its impact on driving behavior in traffic and road safety is particularly crucial and merits further
investigation. The literature so far has shown that when drivers are using mobile phones while
driving, several impacts manifest on their behavior expressed in terms of loss of control, response
to incidents, or crash occurrence (Bellinger et al., 2009; Fitch et al., 2015).

Speeding has also been the subject of extensive research in the transportation field. Excess and
inappropriate speed are responsible for a high proportion of the mortality and morbidity that result
from road crashes (Elvik et al., 2004; Nilsson, 2004). In high-income countries, speed contributes
to about 30% of deaths on the road, while in some low-income and middle-income countries, speed
is estimated to be the main contributory factor in about half of all road crashes (ITF, 2018). Elvik
et al. (2019) engaged in relevant research by first questioning whether speed is still as important
for road safety as it was in the past, taking into account the penetration of constantly evolving
vehicle safety systems in the global automotive market. After reviewing recent research studies
regarding the impact of speed on road safety, they conclude that speed remains an important risk
factor both for crash occurrence and for injury severity.

Furthermore, apart from speeding and distracted driving, more recent studies highlight the
importance of investigating the phenomenon of harsh events in greater detail, as they have been
associated with driving risk assessment, risk level correlation and classification (Bonsall et al.,
2005; Giindiiz et al., 2018; Vaiana et al., 2014). This is because harsh driving events, such as harsh
accelerations and harsh brakings, indicate an overall aggressive and unsafe driving behavior,
unsafe distance from adjacent vehicles, possible near misses, lack of concentration, increased
reaction time, poor driving judgement or low level of experience. From a research scope, during
recent years harsh or safety-critical events have been adopted as crash surrogate measures and the
understanding of related opportunities and challenges in their interpretation is under increased
examination (e.g. Tarko, 2018; Johnsson et al., 2018).

39



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism

Although both harsh accelerations and harsh brakings are associated with unsafe driving behavior,
they constitute two different types of events and should therefore examined as such. More
specifically, harsh acceleration events may reveal high levels of anxiety and anger while driving
(Stephens et al., 2009; Roidl et al., 2014) leading to a risky driving behavior characterized by
drivers’ involvement in situations of high risk. Harsh brakings may indicate driver struggle to
anticipate the occurrence of a critical situation, which most of the time would not have occurred
at the first place if it were not for driver’s inattention, high speed development, inadequate
distances from adjacent vehicles and other unsafe behavior indicators. As a result, harsh breaking
events harsh are often used to locate safety critical events in Naturalistic Driving (ND) data
(Hanowski et al., 2005; Jansen & Wesseling, 2018).

Additionally, given the strong correlation between harsh events and driving risk, it is not surprising
why harsh accelerations and harsh brakings have been investigated by insurance industry in the
context of usage-based motor insurance (UBI) schemes (Boquete et al., 2010; Paefgen et al., 2013),
allowing for more behavioral parameters being used in UBI models. Harsh events, in combination
with other driving behavioral indicators such as speeding and distracted driving are being
increasingly used by Pay How You Drive (PHUD) Usage Based Insurance schemes as the critical
risk factor indicators in terms of driving behavior (Tselentis et al., 2017).

1.1.3 Smartphone data exploitation

Technological advancements during recent decades have led to the development of a wide array
of tools and methods in order to record driving behavior and measure various aspects of driving
performance. The most common methodology applied included driving simulators (Papantoniou
et al. 2014), questionnaires (Matthews et al., 1998) combined with simulators and naturalistic
driving experiments (Toledo et al., 2008; Birrell et al., 2014), while the most common method of
monitoring driving measures included recorders that relate to the car engine (Zaldivar et al., 2011;
Backer-Grendahl & Sagberg, 2011) and smartphones (Vlahogianni & Barmpounakis, 2017). As
shown from previous research (Ziakopoulos et al., 2020), smartphones and their sensors are
increasingly used as informative devices for monitoring driver behavior because they present many
advantages due to high market penetration rates, Internet of Things (I0OT) connectivity as well as
low cost and ease of use in data collection. The exploitation of the various sensors for the purpose
of transport and safety research allows for continuous, inexpensive and fast data collection, with
plenty of studies confirming and even improving the reliability of smartphone measurement data
implementing state-of-the-art machine learning and big data algorithms (Ghose et al., 2016,
Tselentis et al., 2018).

In that environment, the high penetration rate of smartphones and social networks nowadays
provide new opportunities and features to monitor and analyze driver behavior. Apart from the
wide smartphone application capabilities and the low cost and ease of use in data collection,
experiments under naturalistic conditions with the use of smartphones allow for drivers to be
recorded under normal driving conditions and without any influence from external parameters,
resulting in being considered as one of the most appropriate methods for the assessment of driving
behavior.

Smartphones are equipped with a variety of sensors, such as motion sensors (e.g. accelerometer
and gyroscope), position sensors (e.g. magnetometer), global navigation satellite system (GNSS)
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receivers, environmental sensors (barometers, photometers, and thermometers), microphones,
cameras, etc. As a result, the exploitation of the various sensors for the purpose of transportation
and road safety research allows for continuous, inexpensive and fast data collection, with plenty
of studies confirming and even improving the reliability of smartphone measurement data
implementing state-of-the-art machine learning and big data algorithms (Ghose et al., 2016;
Tselentis et al., 2018). Vlahogianni and Barmpounakis (2017) examined the use of smartphones as
an alternative for driving behavior analysis and they concluded that the smartphone-based
algorithms may accurately detect four distinct patterns (braking, acceleration, left cornering and
right cornering) with an average accuracy comparable to other popular detection approaches based
on data collected using a fixed position device.

Many studies have shown promising results using data collected through smartphone sensors under
naturalistic driving conditions. By conducting naturalistic driving experiments by means of mobile
phone, researchers aim either at examining the effect of various driving behavior indicators on
driver performance and cash risk (Tselentis et al., 2018, Yannis et al., 2017) or analyzing and
modeling driver profiles (Castignani et al., 2015; Mantouka et al., 2019). These studies also
investigate unsafe behaviors such as speeding (Kontaxi et al., 2023; Richard et al., 2013), mobile
phone use (Papantoniou et al., 2021; Ziakopoulos et al., 2023), harsh driving events and driver
aggressiveness (Frantzola et al., 2022; Precht et al., 2017) and driver fatigue (Dingus et al., 2006;
Wang et al., 2022). Additionally, researchers have developed technologies and machine learning
algorithms to detect these behaviors (Shahverdy et al., 2020; Shi et al., 2019; Zhang et al., 2022)
and technologies that provide feedback to drivers (Braun et al., 2015; Gu et al., 2019).

1.1.4 Driver feedback in road safety studies

Feedback to drivers has been shown to be a highly effective method for enhancing road safety.
Feedback itself has long been acknowledged as a powerful tool for shaping behavior in diverse
areas, including education, healthcare, and human resource management (Archer, 2010; Hattie &
Timperley, 2007; London & Smither, 2002). In traffic and road safety, the importance of feedback
can be highlighted through several key points such as behavior modification, enhanced awareness,
reduction in crash rates, stress and fatigue management, integration with advanced technologies
and promotion of a road safety culture.

Many studies have examined the effect of feedback, however there is very little research that
quantify the exact effect on driver behavior, as in many cases the drivers were recorded after the
feedback system/mechanism had been applied, without monitoring a baseline period. A naturalistic
driving experiment (Meuleners et al., 2023) was conducted for 57 car drivers with a control and
intervention group for 11 weeks through a smartphone application and the drivers received a text
message after the completion of the trip with personalized feedback about the participant’s risky
driving behavior. Four separate Generalized Estimating Equations (GEE) linear regression models
were developed for each driving indicator and the results showed that the treatment effects for
feedback were consistently in the expected positive direction. Another recent study (Chen &
Donmez, 2022) conducted a 16-week ND experiment including 3 phases (i.e. baseline, different
types of feedback, follow-up without feedback) and provided real-time and post-drive feedback to
drivers.

41



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism

Results showed that real-time feedback alone and in conjunction with financial incentives were
effective in raising speed limit compliance. It is also interesting to note that the effects did not
sustain when feedback and incentives were removed. The post feedback effect is an aspect that
should be further investigated as the few studies that have dealt with the matter have not come to
conclusive results (Peer et al., 2020; Soleymanian et al., 2019), while some showing both positive
(Ghamari et al., 2022a) and negative (Merrikhpour et al., 2014) effects.

The methods used in studies examining the effect of driver feedback vary widely. After
establishing the context and research questions, methodologies employed in these studies, are also
important to be discussed. Many studies (Hari et al., 2012; Husnjak et al., 2015; Mazureck &
Hattem, 2006) initially focus on basic correlation tests, presenting critical summary statistics that
compare the feedback and non-feedback phases or groups. These basic statistical comparisons
serve as a foundation for understanding the immediate effects of driver feedback.

However, relying solely on basic correlation tests can be limiting, as these methods do not account
for the complexity and multifaceted nature of driving behavior. As a result, several studies employ
these basic methods as a preliminary step before moving on to more advanced statistical modeling.
For instance, (Kontaxi et al., 2021a; Toledo & Lotan, 2006) use initial correlation analyses as a
data exploration phase. This phase is crucial for identifying key patterns and relationships, which
then inform the development of sophisticated statistical models that can better capture the nuances
of driver behavior and the impact of feedback.

Advanced methodologies, such as multivariate regression models, machine learning algorithms,
and time-series analyses, are increasingly being used to understand the effects of driver feedback
in a more comprehensive manner (Aidman et al., 2015; Bell et al., 2017a) . These methods allow
researchers to control for various confounding factors, explore interactions between multiple
variables, and predict outcomes based on complex data patterns. For example, the use of machine
learning techniques like supervised learning algorithms (e.g., XGBoost) has proven effective in
modeling the contributions of different driving features to the decision to engage in risky
behaviors, such as mobile phone use while driving (Ziakopoulos et al., 2023).

1.2 Objectives of the Dissertation

Taking the previous into consideration, the primary objective of this dissertation is to examine the
driver behavior telematics feedback mechanism. The dissertation adopts a comprehensive
approach to explore feedback's role in modifying driving behavior, with a focus on three key
pillars:

1. Assessing the impact of feedback on driving behavior of different road user groups (car
drivers, professional van drivers, and motorcyclists) in various road environments.

2. Investigating the effects of different feedback features across the experimental phases.

3. Analyzing the long-term, post-feedback effects on driving behavior.
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To achieve these objectives, a 21-month naturalistic driving experiment was thoroughly designed
and implemented, involving 230 drivers across six distinct feedback phases. High-resolution data
were collected using precise, non-intrusive smartphone sensors, complemented by self-reported
data to provide a holistic understanding of driver perceptions and behavioral changes. A
multiparametric analytical framework was employed to comprehensively examine the function of
the feedback mechanism, encompassing the pre-feedback, feedback, and post-feedback phases
during the naturalistic driving experiment. This approach provided valuable insights into the entire
feedback mechanism, while also exploring the sustainability of feedback-induced improvements
over time.

A variety of advanced statistical methods are employed to address the research objectives,
including Generalized Linear Mixed Effects Models, Structural Equation Models, and Survival
Analysis Models. Specifically, survival analysis techniques such as Kaplan-Meier curves, the Cox
Proportional Hazards Model with Frailty, the Weibull Accelerated Failure Time Model with
Clustered Heterogeneity, and Random Survival Forests are used to examine feedback effects over
time. By leveraging these methods, this dissertation aims to enrich academic understanding while
offering practical applications for enhancing road safety. The findings from this thesis have the
potential to inform the development of more effective driver feedback systems that could
significantly improve safety outcomes and enhance the overall road safety and insurance domains.

1.3 Methodology of the Dissertation

To achieve the scientific objectives of this doctoral dissertation, a series of methodological steps
were carefully implemented. These steps are outlined in this subsection and visually depicted in
Figure 1.2. The methodological framework provides a structured approach to achieving the
objectives of this dissertation.

The methodological framework began with an extensive literature review, which explored key
aspects of driver feedback systems under naturalistic driving conditions. This review focused on
experimental design, feedback types, modeling approaches, and key indicators for evaluation. This
phase guided the formulation of research questions, including the impact of feedback on behavior
and safety, the effects of feedback features, and the post-feedback influence on long-term driver
behavior.

Building on the findings of the literature review, a comprehensive methodological background was
developed, combining theoretical modelling approaches and experimental design principles. This
included the application of advanced modeling techniques, such as Generalized Linear Mixed
Effects Models (GLMMs), Structural Equation Models (SEMs), and Survival Analysis Models,
alongside the design of a naturalistic driving experiment. The experimental setup involved a cohort
of 130 drivers, encompassing car drivers, van professionals, and motorcyclists, evaluated over six
feedback phases using a within-subjects design.

The research utilized data from the BeSmart Research Project, focusing on key driving indicators

such as speeding and mobile phone use as measures of risky behavior, and harsh accelerations and
harsh brakings as proxies for safety-critical events. The analysis unfolded in three key pillars:
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1. Impact of feedback: This phase assessed the immediate effects of feedback on driving
behavior (e.g., speeding, mobile phone use, harsh events frequency) across the three driver
groups.

2. Effects of different feedback features: A Structural Equation Model (SEM) was developed
to explore the relationship between feedback features and driving behavior factors,
revealing the differential impact of feedback elements.

3. Post-feedback effects: A survival analysis was conducted to examine the long-term
influence of feedback mechanisms. Models such as Cox Proportional Hazards, Accelerated
Failure Time (AFT), and Random Survival Forests (RSFs) were applied and compared to
identify the best-fitting model.

By employing this comprehensive methodology, the driver behavior telematics feedback
mechanism is effectively achieved. The integration of an extensive literature review, advanced
modeling techniques, and a well-structured naturalistic driving experiment provided a robust
framework to investigate the impact of feedback on driver behavior. The research focused on
critical driving indicators such as speeding, mobile phone use, harsh accelerations, and harsh
braking events, ensuring a holistic assessment of the impact of driver feedback on critical driver
risk factors. The systematic analysis of immediate feedback effects, the different influence of
feedback features, and the long-term impact of feedback mechanisms culminated in actionable
insights for designing and implementing telematics feedback systems. These findings lay the
foundation for a scalable and data-driven feedback mechanism aimed at improving driving
behavior, reducing risky behaviors, and enhancing road safety.
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Figure 1.2: Graphical representation of the overall methodological framework
of the doctoral dissertation
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1.4 Structure of the Dissertation

The remainder of this doctoral dissertation is organized in nine sections which are briefly described
within this subsection.

Section 2 provides a review of the scientific literature of naturalistic driving studies that investigate
the effect of feedback on driving behavior. The review synthesizes the different types of feedback
utilized in naturalistic driving studies and the technologies employed to deliver driver feedback.
Subsequently, the methodologies used by researchers to design and evaluate the effectiveness of
driver feedback (i.e. experimental design and statistical analysis) are examined, and finally
evidence-based findings on the impact of feedback on driver behavior are discussed.

Section 3 describes the overall methodological framework employed to achieve the objectives of
this doctoral dissertation and delves into the theoretical foundations of the analytical methods and
models utilized throughout the dissertation. Specifically, it provides an in-depth overview of
descriptive and inferential statistical approaches and advanced modeling techniques, such as
Generalized Linear Mixed-Effects Models (GLMM), Structural Equation Models (SEM) and
Survival Analysis methods. These methods are complemented by discussions on interpreting
coefficients and evaluating model goodness-of-fit.

Section 4 outlines the naturalistic driving experiment conducted to achieve the objectives of the
dissertation. It begins by detailing the experimental design, including the recruitment process of
participants and the sample distribution and characteristics of participants drivers. The six distinct
experimental phases during the naturalistic driving process are also presented. Following this, the
section introduces the smartphone application used in the experiment, covering its data collection
system, data processing and feature engineering, and the metadata and driver behavior indicators
generated for analysis. Additionally, the structure and content of the carefully designed
questionnaire are discussed, accompanied by statistical summaries of the responses. Lastly, the
section addresses big data processing, focusing on data integration, organization, and the structure
of the developed database.

Section 5 investigates the impact of feedback on driver behavior, focusing on speeding among
motorcyclists and distraction using mobile phone use while driving in car drivers. Both analyses
begin with an introduction to the respective topics, followed by descriptive statistics and
preliminary analysis to provide a comprehensive understanding of the datasets. Generalized Linear
Mixed-Effects Models are then employed in both cases to assess the effects of feedback on
speeding and distraction, leveraging their ability to account for variability among participants and
contextual factors. The findings from these models are then discussed, highlighting the shared
insights into how feedback mechanisms influence driver behavior, while also addressing the
specific nuances of each case.

Section 6 examines the impact of feedback on driver safety, specifically focusing on harsh braking
and harsh accelerations among car drivers and professional drivers on highways. Generalized
Linear Mixed-Effects Models are applied in both analyses to evaluate the effects of feedback on
the frequency of harsh driving events, accounting for individual differences and contextual factors.
The results from these models are discussed, emphasizing the effectiveness of feedback
mechanisms in reducing unsafe driving behaviors for both driver groups.
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Section 7 investigates the effects of different feedback features on driver behavior, providing a
comprehensive analysis of how different feedback characteristics influence driving outcomes. The
section begins with an introduction to the topic, followed by descriptive statistics and preliminary
analysis to establish the context and key trends in the data. Structural Equation Models (SEMs)
are then employed to explore the complex relationships between feedback features, driver
behavior, exposure metrics and safety outcomes, allowing for the simultaneous analysis of multiple
variables and their interactions. The results are discussed in detail, highlighting the critical
feedback features that most significantly impact driver behavior.

Section 8 focuses on the post-feedback effects on long-term driver behavior, with a particular
emphasis on understanding the relapse of driving behaviors following the withdrawal of feedback
phases. Survival analysis methods are employed to investigate relapse patterns across various
indicators, including harsh accelerations, harsh braking, speeding behavior, and mobile phone use
while driving. These analyses leverage Kaplan-Meier curves, Cox-PH models with frailty, Weibull
AFT models with clustered heterogeneity, and Random Survival Forests to evaluate and compare
the predictive power and insights offered by each model. The results provide a detailed
understanding of the sustainability of feedback-induced behavior improvements and highlight key
factors influencing relapse.

Section 9 presents the conclusions of the thesis and discusses the contribution to knowledge, the
limitations as well as the recommendations for further research.

Lastly, a complete list of the bibliographical references is provided.
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2 Literature Review

2.1 Introduction

Over the last decade, substantial advances have been made in enhancing road safety, yet road
crashes continue to pose a significant public health challenge worldwide. In 2021, road crashes led
to approximately 1.19 million fatalities globally (World Health Organization; 2023.), equating to
a mortality rate of 15 deaths per 100,000 people. Numerous studies have explored the key factors
contributing to traffic crashes, consistently identifying human behavior as the leading cause.

Research indicates that human error is responsible for approximately 95% of road crashes (Singh,
2015) highlighting the crucial role of driver behavior in accident prevention. Understanding these
behaviors allows for the development of tailored interventions that address common risky
practices, such as distracted driving, speeding, and driving under the influence, which are critical
to improving road safety. In this context, driver feedback appears to be an essential tool for
improving driver behavior, ultimately reducing road crashes. Additionally, considering that drivers
generally perceive their performance to be better than they actually drive, feedback seems a
required tool that can lead to proper self-assessment on the part of the drivers (Amado et al., 2014).

2.1.1 Definition of driver feedback

Feedback has long been recognized as an effective method for influencing behavior across various
fields such as education, health interventions, and human resource management (Archer, 2010;
Hattie & Timperley, 2007; London & Smither, 2002). This technique has proven to be instrumental
in advancing learning, enhancing task performance, and fostering positive behavioral changes
(DiClemente et al., 2001; Thurlings et al., 2013).

But what exactly is meant by driver feedback? In the context of driving, driver feedback refers to
information provided about driver performance, typically focused on the status of the driver-
vehicle system (Donmez et al., 2007). However, the concept of feedback extends beyond merely
presenting information; it inherently includes an evaluative dimension. This evaluative aspect is
crucial because it provides a benchmark against which the receiver can measure their actions or
performance. For example, driver feedback does not merely inform drivers about their actions,
such as speeding or harsh braking patterns, but also evaluates these actions against safe driving
standards or performance benchmarks.

Driver feedback can be distinguished in terms of delivery method, context and timing. Feedback
may be delivered through smartphones, in-vehicle devices, dashboards, etc., providing drivers with
personalized information on their driving behavior, score ranking, comparison with peers,
instructions and recommendations on safe driving, as well as motivations and rewards (Feng &
Donmez, 2013). Moreover, a common separation is between real-time vs. post-trip feedback
(Choudhary et al., 2021; Zhao & Wu, 2012). When providing drivers with real-time feedback, they
can correct their behavior instantly, e.g. get complied with the speed limits when the speed warning
is activated inside the vehicle. On the other hand, post-trip feedback typically concerns a summary
of the overall driving performance after the trip, allowing drivers to reflect on their behavior and
gradually improve it. In the following sections, driver feedback will be thoroughly explored,
through the analysis of the reviewed studies.
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2.1.2 Background and knowledge gaps

Many studies have been carried out on driving behavior and naturalistic studies which mainly: (i)
examine the recording of behavior and proceed to analyses and models for driver profiling
(Castignani et al., 2015; Mantouka et al., 2019) or (i1) examine specific unsafe behaviors such as
speeding (Kontaxi et al., 2023; Richard et al., 2020), mobile phone use (Akritidou et al., 2023;
Papadimitriou et al., 2019; Papantoniou et al., 2021), aggressiveness (Precht et al., 2017), harsh
events (Frantzola et al., 2022; Ziakopoulos et al., 2022a) and fatigue (Dingus et al., 2006; J. Wang
et al., 2022). Additionally, an array of technologies and machine learning algorithms have been
developed to identify such behaviors (Shahverdy et al., 2020; Shi et al., 2019; X. Wang et al., 2022)
and provide feedback to drivers (Braun et al., 2015; Gu et al., 2019), although these studies often
lack baseline comparisons.

The landscape of naturalistic driving studies has been shaped significantly by several key review
papers, each contributing unique insights into driver behavior, technological integration, and
psychological aspects of driving safety. A thorough systematic review on analyzing driver behavior
under naturalistic driving conditions was conducted by (H. Singh & Kathuria, 2021a), in which
the authors laid the groundwork for understanding driver behavior outcomes derived from
naturalistic driving studies, contributing to outlining broad patterns in driver behavior. Another
systematic review using the PRISMA method was conducted by (Ahmed et al., 2022) highlighting
that driver behavior is the most studied topic using naturalistic driving concluding that naturalistic
studies could be effectively utilized to refine driving behavior enhancement.

It is worth noting that, despite growing interest from automotive manufacturers and transportation
researchers in driver behavior, limited research exists on quantifying the direct impact of driver
feedback on road safety by comparing driver performance before and after receiving said feedback.
A study focusing on the impact of telematics on road safety and the transformative effects it has
had on driver safety behavior through different methods of incentives (Ziakopoulos et al., 2022b).
While feedback was considered, it was not the exclusive focus of the study. On a related note,
(Boylan et al., 2024) in their more recent review, highlight that while telematics has been effective
in monitoring driving behavior and assessing insurer risk through variables like speeding, braking,
and distance, the effects of telematics-based feedback on driver behavior remain largely unknown.
Despite the dominance of machine learning in analyzing telematics data, there are still gaps in
understanding how different types of feedback influence behavior change.

In (Michelaraki et al., 2021) a critical overview was conducted on the advancements in online
gaming platforms and tools that provide safety support to drivers after their trips using different
modes of transportation, such as cars, trucks, buses and trains. The research indicates that offering
feedback through methods like alerts, game-like features, guidance and introducing consequences
or incentives could improve driver performance and reduce the likelihood of road crashes. (Koppel
et al., 2019) reviewed studies that have investigated mindfulness interventions, as potential
behavioral prevention strategies among risky drivers, while other studies reviewed the role of
feedback in promoting safe and eco-friendly driving behaviors (Rios-Torres & Malikopoulos,
2016; H. Singh & Kathuria, 2021b).

Similarly, (Feng & Donmez, 2013) and (D. Tselentis et al., 2020) reviewed driver feedback
contextually using research from both naturalistic studies and driving simulators, with the first
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study proposing a cognitive model for driver-feedback interaction, offering a framework for future
feedback design and empirical research, although lacking a comprehensive review on driver
feedback and its impact on driver behavior and safety.

Building on this background, the current review focuses specifically on the effect of driver
feedback. Addressing the research gap identified in a recent bibliometric analysis by (Yang et al.,
2023), which highlighted the need for more robust evaluation of interventions in real driving
conditions, this review aims to contribute to a deeper understanding of driver behavior.

Despite considerable contributions in the existing literature, no review to date has thoroughly
examined the impact of feedback within naturalistic driving studies, making this review both
innovative and essential. By merging insights from various research domains, the present research
aims to enrich academic understanding while offering practical applications for enhancing road
safety. The findings from this review have the potential to inform the development of more
effective driver feedback systems that could significantly improve safety outcomes and enhance
the overall road safety and insurance domains.

2.1.3 Review objective

Due to the widespread inclusion of driver feedback devices in naturalistic driving studies, a need
remains in the literature for empirical and systematic investigation regarding their effects in driver
safety. This review aims to:
e Synthesize the different types of feedback utilized in naturalistic driving studies and the
technologies employed to deliver driver feedback.
e Examine the methodologies used by researchers to design and evaluate the effectiveness
of driver feedback (i.e. experimental design and statistical analysis).
e Present evidence-based findings on the impact of feedback on driver behavior and safety.

Following the Introduction section, this section is organized as follows. Section 2.2 presents the
methodology used for the synthesis of this systematic review employing the PRISMA approach.
Section 2.3 showcases the results from the reviewed studies in terms of feedback types,
experimental framework, modelling approaches, and ultimately the impact of driver feedback on
behavior and safety. In section 2.4 the main findings are elaborated and the implications for road
safety and current practices are pinpointed. Furthermore, limitations of current research alongside
the directions for future research are discussed. Finally, in section 2.5 key conclusions of the
current section are drawn.

2.2 Review Methodology

To gain a deeper understanding of the impact of driver feedback on road safety and considering
the extensive range of studies in this area, the method of systematic review was chosen to
effectively consolidate the existing literature. The present review was conducted in alignment with
the Preferred Reporting Items for Systematic Reviews And Meta-analyses (PRISMA) statement
guidelines (Moher et al., 2015; Page et al., 2021).

2.2.1 Search strategy and selection criteria
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The sources of information for the current study were ScienceDirect, TandFonline, IEEExplore.
IEEE journals, Google Scholar, and TRID. These databases were searched using keyword variation
of {“(driving OR driver) AND (behavior OR safety) AND (feedback OR intervention)”} and
“{(naturalistic OR telematics OR UBI OR “real conditions”)}.” Only peer-review academic
journal and conference articles were selected for the authors to maintain control over quality of the
inputs. From all the selected studies identified in the final search (n =29), backward referencing
was applied to check for any other available literature that was missed during the initial search,
leading to 34 studies in conclusion.

The selection of studies for inclusion in the systematic review is illustrated in Figure 2.1. A total
of 597 records were identified from all the database sources using the combined keyword searches.
42 duplicate records were screened out, and the remaining articles (n = 555) were screened based
on the titles and abstract, to determine whether each study fulfils the criteria to further be examined
for the review. After the exclusion of 402 records that were not in the criteria list (which is shown
below), 153 full text articles were assessed for eligibility. A full-text review of each included study
was conducted and the following data items were extracted into a prepared data extraction sheet:
reference, country of the study, sample size of the experiment, driver demographics (gender and
age), experimental design including experimental groups, feedback phases and experiment
duration, data collection method, means of feedback provided, timing of feedback, feedback
content, monitored risk indicators, analysis method, feedback effects and post-feedback effects.

2.2.2 Inclusion and exclusion criteria

The main reasons for exclusion from the systematic review were the following:

Driving simulator studies

Qualitative studies / self -reported studies

Studies focused on the technical aspects of a feedback or intervention driver system
Advanced Driver Assistance Systems (ADAS) studies

Autonomous driving or automated/autonomous vehicles

The scope of the present review is cautiously restricted to studies examining driver feedback under
naturalistic driving conditions, in other words, real-world driving scenarios. As a result, driving
simulator studies were excluded, with the review focusing exclusively on naturalistic driving
studies. To elucidate, naturalistic driving studies are specifically designed to capture driver
behavior under real-world conditions, eschewing any form of experimental manipulation. These
studies are invaluable in providing insights into the interaction between drivers, their vehicles, and
the surrounding environment during routine driving (Ziakopoulos et al., 2020). In simulated
environments, drivers often behave differently than they would in real-world settings (Caird et al.,
2018; Zoller et al., 2019), and it was critical to ensure that possible discrepancies would not
compromise the accuracy of present findings.

There are many reasons why drivers behave differently in a driving simulator experiment; reduced
risk awareness, making participants less cautious, and the unfamiliarity with simulator controls,
which can feel unnatural. Psychological factors like lower arousal and the artificial environment
also contribute, leading to behavior that does not fully reflect real-world driving, resulting in
different results between the two study methods (Wijayaratna et al., 2019). For similar reasons,
qualitative studies and self-reported data were also excluded from this review, as they lack the
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objective, real-world behavioral data necessary for a comprehensive assessment of the impact of
driver feedback on road safety.

Additionally, the current review emphasizes a critical distinction: Since the primary objective
presently is to understand the impact of driver feedback on human factors, several studies were
excluded as they predominantly centered on the technological aspects of driver assistance
applications or car systems. Studies focusing on Advanced Driver Assistance Systems (ADAS)
tend to be more oriented towards technological details, primarily aiming to evaluate the efficacy
and interaction of specific driver assistance technologies in enhancing safety. Often, they use
naturalistic driving experiments to assess the impact of the driving context parameters on the
design, development and evaluation of ADAS (Fleming et al., 2019; Orlovska et al., 2020). As a
result, these two approaches are frequently found together in literature. By distinguishing between
these two types of studies, this review fosters a more nuanced comprehension of driver interactions
and responses to feedback in various contexts. Nonetheless, the reader can refer to (Furlan et al.,
2020; Moujahid et al., 2018) for studying the mechanisms and effects of ADAS on road safety.

Lastly, a group of studies that was also excluded were studies regarding autonomous driving or
self-driving cars. The primary reason for this exclusion is the fundamental difference between
human-driven and autonomous vehicles in terms of overall behavior, driving adjustments and
safety interventions. Feedback systems designed for human drivers focus on modifying behavior,
while autonomous driving studies primarily investigate the technological capabilities of vehicles
to operate independently of human input (Fleming et al., 2019), therefore the two groups are not
directly comparable.
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Figure 2.1: Flowchart for articles selection for systematic review
2.3 Review Findings

The findings from the systematic literature review reveal several interesting aspects of driver
feedback, including the different types of driver feedback systems, the experimental frameworks
used in the studies, the various analysis methods applied, and finally and most significantly, the
impact of feedback on driving behavior and safety. The details of the examined studies are
summarized in Table 2.1 (ordered from newest to oldest).
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2.3.1 Types of driver feedback systems

The reviewed studies utilized a variety of feedback systems to examine the effect on driver
behavior and road safety, each differing in how the feedback was delivered and when it was
provided to drivers in relation to their trips. As illustrated in Table 1, the most widespread systems
used in the experiments include (i) smartphone applications, (ii) in-vehicle systems, (iii) text
messages, and (iv) personalized websites and platforms (Figure 2.2). Each type of feedback system
is designed to encompass different contexts, ranging from real-time alerts to post-trip summaries,
often tailored to the specific driving behavior parameter(s) being monitored during the naturalistic
driving experiment.

25%

@ Written reports

0,
@ Websites and platforms 20%
& In-vehicle devices 15%

In-vehicle and websites/written reports 10%

Telematics devices
5%

Smartphone applications

0%

Figure 2.2: Types of driver feedback systems utilized in the reviewed studies

Furthermore, it can be observed that the types of driver feedback systems appear to evolve over
time, largely driven by progress in technology, access to new platforms, and the increasing
sophistication of data collection methods. In the early 2000s, feedback systems were relatively
simple, focusing on in-vehicle devices and written reports, reflecting the technological restrictions
of that period. Subsequently, as internet connectivity became more advanced, web-based
applications started to lead at the driver feedback concept, allowing drivers and fleet managers to
access detailed driving performance reports online, while more recent studies have adopted even
more sophisticated feedback mechanisms utilizing smartphone applications, telematics, and
machine learning algorithms, providing personalized, data driven insights. In the following
paragraphs, the various types of feedback used in this review will be discussed.
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Table 2.1. Systematic review table of reviewed studies
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2.3.1.1 Smartphone application

Most of the reviewed recent studies utilized smartphone applications to deliver feedback to drivers
(Kontaxi et al., 2021b; Meuleners et al., 2023; Peer et al., 2020; Stevenson et al., 2021;
Ziakopoulos et al., 2023). Smartphones are equipped with a wide range of sensors like
accelerometers, gyroscopes, GNSS receivers, and cameras, and thus provide an effective way to
collect driving data for analysis and feedback. Once driving is detected, sensors data are collected,
processed using advanced machine learning and big data techniques, and meaningful driving
indicators are generated and subsequently analyzed. After this procedure, smartphone applications
typically provide personalized scorecards or driving performance information after trips regarding
safety indicators such as speeding, harsh events and mobile phone usage while driving.

The design of these applications may vary; for example, (Meuleners et al., 2023) and (Stevenson
et al., 2021) used an existing telematics application with a 0-5 scoring system, featuring a color-
coded scale, namely green code for safe (no-risk driving), amber for some at-risk driving and red
for at-risk driving. From a different perspective, (Kontaxi et al., 2021b) implemented a customized
app with a score range of 0-100, alongside a 5-star system.

One of the key advantages of using smartphone-based feedback in driving behavior experiments
is the accessibility and convenience it offers. This method is low-cost once the back-end is
established, and it enables the easier engagement of participants in the study. While smartphone
applications do have limitations — such as noisy camera-based indices or high battery consumption
— ongoing advancements in technology (e.g. real-time edge computations) can significantly
enhance the use of smartphone-based naturalistic driving studies in research (Grimberg et al.,
2020). Context-wise, smartphone applications used in the examined studies included a variety of
feedback features; from personalized scorecards and map-based overviews to gamification and
comparison with peers. In particular, (Ziakopoulos et al., 2023) found that the variety of feedback
context across different experimental phases significantly influenced mobile phone use, with each
different feature of feedback having a distinct impact on driver behavior. The present finding
suggests that further investigation into the impact of different feedback features is necessary.

2.3.1.2 In-vehicle devices

Feedback delivered through in-vehicle systems was another widely used method. These devices
have become an integral part of modern driver behavior monitoring systems, also offering real-
time and post-trip feedback aimed at enhancing road safety. In-vehicle feedback systems typically
use in-vehicle data monitors/recorders or OBD (I or II) for driver data collection (Amarasinghe et
al., 2016; Pérez et al., 2010). Equipped with sensors and advanced communication technologies,
they track various aspects of driving behavior, such as speed, braking, acceleration, and seat belt
use. Over the years, in-vehicle systems have evolved from simple alert mechanisms to more
sophisticated tools that offer detailed visual, auditory, and sometimes even haptic feedback. The
devices vary in the manners in which they provide drivers with feedback in terms of both timing
and content. For example, (Chen & Donmez, 2021) used an in-vehicle visual feedback device for
driver speed compliance, while other studies employed auditory feedback; either through verbal
prompts via the in-vehicle device (G. Toledo & Shiftan, 2016) or alerts when drivers engaged in
risky behaviors such as speeding, harsh events, seat belt use, etc. (Sullman, 2020). Some in-vehicle
devices combined auditory and visual signals to alert drivers to unsafe behaviors (Aidman et al.,
2015; Reagan et al., 2013).
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It is noteworthy that in-vehicle feedback devices primarily focus on delivering real-time feedback,
which is one of the main advantages of in-vehicle data monitors, particularly when compared to
smartphone applications (Grimberg et al., 2020). However, in many studies, feedback was also
provided post-trip in the form of written reports or websites, offering summary reports on driving
behavior indicators in various formats, i.e. histograms (Stromberg & Karlsson, 2013), via mapping
of the location and nature of each event (Farmer et al., 2010), personalized score/reward points
(Farah et al., 2014; Mazureck & Van Hattem, 2006; Merrikhpour et al., 2014) or even comparison
with peers (Toledo & Shiftan, 2016).

2.3.1.3 Websites and platforms

Other studies have utilized a variety of platforms to deliver personalized feedback to drivers,
including websites (Bolderdijk et al., 2011; Ellison et al., 2015; Takeda et al., 2012; Toledo et al.,
2008; Toledo & Lotan, 2006), a dashboard online portal (Husnjak et al., 2015), and written reports
(Newnam et al., 2014; Rolim et al., 2016). The website used in (Ellison et al., 2015) and the
dashboard online portal in (Husnjak et al., 2015) were similar in terms of logging, feedback
display, and providing participants with information about their driving behavior, as well as
tracking their remaining incentives, as both studies also examined the effects of monetary
incentives on driving behavior alongside driver feedback. An interesting aspect of these websites
was that researchers could use the number of logins as a proxy for participants' exposure to the
provided information (such as frequency of risky behaviors and remaining incentives), allowing
for safer and more accurate analysis results.

In some cases, feedback was provided in graphical form, directly from researchers, allowing
drivers to visually assess their driving behavior (Molloy et al., 2023). Additionally, certain
feedback systems offered recommendations or instructions on how to improve driving behavior
(Camden et al., 2019). More precisely, in (Camden et al., 2019), apart from providing feedback to
the participant, a Geotab device wirelessly transmitted data on risky driving behaviors to the
Predictive Coach program, which automatically assigned educational courses targeting specific
behaviors once a driver exceeded a predefined threshold. For example, if a driver exceeded the
speed limit three times in a single day, they were assigned an online course designed to reduce
speeding, with alerts sent to both the driver and their manager to ensure course completion within
seven days.

2.3.1.4 Telematics devices

Furthermore, telematics devices have also been used for delivering driver feedback and examining
its impact on driver safety. Both (Soleymanian et al., 2019) and (Ghamari et al., 2022) leveraged
telematics for looking deeper to understanding the role of feedback through score ranking and
Usage Based Insurance (UBI) score, aiming to understand how feedback influences driver
behavior. As noted in the introduction, driver telematics have been extensively employed over the
past two decades, yet only a small number of studies have quantitatively examined the impact of
feedback on driver safety through telematics systems (Boylan et al., 2024). Data protection issues
are a frequent reason why insurance companies are reluctant to give researchers access to large
datasets collected from their customers (McDonnell et al., 2021). The lack of access makes it
difficult to examine feedback mechanisms in-depth or perform more comprehensive patterns
analyses on the broader demand upon driver safety. Consequently, many telematics studies require
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collaboration with the insurance industry or are limited to small custom-built systems and findings
can be more difficult to generalize across larger populations.

2.3.2 Experimental framework

The importance of the experimental framework of each feedback-oriented study has been
emphasized in scientific research, as it serves the foundation for producing valid, reliable and
interpretable results (Cash et al., 2016; Leik, 1997). In the context of naturalistic studies, a well-
constructed experimental framework allows researchers to isolate the specific effects of various
feedback mechanisms on driving behavior (van Schagen & Sagberg, 2012). In the present review,
the experimental framework of considered studies is examined across the following key aspects:
sample characteristics (size, gender balance and age), experimental design, risk indicators,
feedback phases (i.e., number and content of phases), and the experimental duration.

2.3.2.1 Sample characteristics

The sample size is crucial in an experiment for ensuring reliability and generalization of the results.
The reviewed studies varied widely in terms of the sample size, including samples from small
groups of 15 drivers (Aidman et al., 2015) to large-scale studies with over 40,000 drivers
(Soleymanian et al., 2019). This variation seems logical for two main reasons: first, the recruitment
in such experiments can be challenging and second, because each study has its own objectives,
research questions and often target groups. Nevertheless, larger sample sizes, such as (Pozueco et
al., 2017) with 158 drivers, offer a higher statistical power and potentially more reliable
conclusions.

As for driver characteristics, the reviewed studies demonstrate a wide range of gender
representation and age groups. More precisely, the gender composition varies, with some studies
having a balanced representation of both males and females, such as (Ziakopoulos et al., 2023)
with 55% of the participants being female, and (Ellison et al., 2015) with 58% female participants,
while others focus entirely on male drivers (Farah et al., 2014; Ghamari et al., 2022). This
variability could affect result generalizability, as male and female drivers may respond differently
to feedback interventions. It is worth noting that the representation of female drivers seems to be
inconsistent among the studies, ranging from as low as 1% in (Aidman et al., 2015) to 67% in
(Stevenson et al., 2021).

In terms of age, many studies are related to a specific age group, mostly young drivers who remain
a group that is globally linked with a higher probability of crash risk (A. F. Williams, 2003). For
example, (Farmer et al., 2010; Meuleners et al., 2023) investigated the impact of feedback on
young drivers aged 13-22, while other studies, like (Hickman & Hanowski, 2011) examined older
drivers (mean age of 47-year-old). The variety in both gender and age makes it possible to draw
conclusions regarding the way different demographics respond to feedback, but further analyses
with more inclusion of sample characteristics would improve understanding of how generalizable
these findings are across a diverse population of drivers.

2.3.2.2 Experimental design

Two primary experimental designs emerge from the reviewed studies: within-subjects design and
between-subjects design. Within-subject design is frequently used in studies where all participants
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experience multiple phases of feedback and act as their own control group (Birrell & Fowkes,
2014; Hari et al., 2012; Kontaxi et al., 2021b; Merrikhpour et al., 2014; Newnam et al., 2014;
Toledo & Shiftan, 2016; Ziakopoulos et al., 2023). The key advantage of this design is the reduced
variability and increased statistical power due to each subject acting as their own control. In other
words, since each driver is exposed to both baseline (pre-feedback) and feedback phases,
researchers can directly detect the effects of the feedback mechanisms on driving behavior,
reducing the variability related to individual differences. However, these studies are not without
concerns that must be addressed. For instance, carryover effects and fatigue effects pose significant
risks. In longer studies, behavior in one phase might influence behavior in subsequent phases
(carryover), while fatigue can cause participants to become tired over time, impacting their
performance in later phases (Nichols & Maner, 2008).

Certain studies (Farah et al., 2014; Reagan et al., 2013; Rolim et al., 2016; Stevenson et al., 2021)
adopted the between-subjects design, where different groups of drivers received different types of
feedback or no feedback at all (control group) through one experimental phase, allowing
researchers to examine and analyze driving behavior across different conditions of feedback
influence. The main advantage of this design is the reduced risk of carryover effects, as each
participant is exposed to only one condition, allowing for clearer comparisons across feedback
conditions without the cofounding influence of multiple phases. However, this design comes with
some concerns as well, the most critical being the fact that the design requires a larger sample size
to ensure that the differences across the groups are not due to chance, as variability across
individuals can musk true effects (Charness et al., 2012).

However, most of the studies in the reviewed literature utilized a combination of both within-
subjects and between-subjects designs to maximize the strengths of each approach (Bell et al.,
2017; Bolderdijk et al., 2011; Chen & Donmez, 2021; Farmer et al., 2010; Ghamari et al., 2022;
Hickman & Hanowski, 2011; Molloy et al., 2023; Pozueco et al., 2017; Stromberg & Karlsson,
2013). The combination can range from simple control/intervention group or baseline/feedback
phase distinctions to more complex designs. For example, Chen & Donmez (2021) compare three
feedback types: (i) real-time only, (ii) real-time with financial incentives, and (iii) real-time
combined with post-drive feedback, across three phases: (i) baseline, (ii) feedback, and (ii1) no
feedback, enabling the evaluation of the effects of various feedback mechanisms on driver
behavior. Such a design allows researchers to control for individual differences (as in within-
subjects designs) while at the same time avoiding risks like carryover effects and fatigue through
the use of between-subjects design.

In addition, this mixed type of approach allows for more sophisticated analyses, enabling
researchers to capture both group-level differences and individual changes over time, providing a
more comprehensive understanding of feedback mechanisms. There are additional nuances as
well. Indicatively, (Molloy et al., 2023) took a quite different approach, aiming to examine the
effect of feedback frequency. The experimental design utilized a 5 x 6 mixed repeated measures
structure. The feedback variable was the only between-groups factor, consisting of five levels: (i)
a control group with no feedback, (ii) feedback provided once, (iii) feedback provided twice, (iv)
feedback provided three times, (v) feedback provided four times. Results revealed an interesting
finding: that the most effective feedback frequency was when it was provided once or twice.
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2.3.2.3 Monitored risk indicators

According to the reviewed studies, the most common monitored indicators include speeding, harsh
braking, harsh acceleration, and use of mobile phone while driving. These driving parameters are
frequently selected in road safety studies, as they constitute some of the most critical risk factors
contributing to road crashes that can be measured in real-time and serve as basis for feedback
provision. For example, speeding (both considering the time spent driving above speed limits and
the degree to which those limits were exceeded) has been highly correlated with not only the
frequency of road crashes, but their severity as well (Aarts & Van Schagen, 2006). Harsh events
are also linked with aggressive and stressful behavior (Stephens & Groeger, 2009), while they have
also been used as surrogate safety measures in historical crash investigations (Nikolaou et al.,
2023). The literature has also pinpointed mobile phone use as a major cause of distracted driving,
which can lead to a high likelihood of involvement in road crashes (Caird et al., 2008). Apart from
being critical risk factors, these behaviors can be also effectively monitored via naturalistic driving
experiments and potentially improved through driver feedback.

A few studies also track more specific behaviors, such as seatbelt use (Farmer et al., 2010; Sullman,
2020) and drowsiness levels (Aidman et al., 2015). This diversity in monitored indicators ensures
that a broad spectrum of risky driving behaviors has the potential to be addressed, from aggressive
driving to minor traffic violations. However, core behaviors like speeding and harsh events (e.g.,
acceleration, braking) remain a priority across most studies due to their strong correlation with
crash risks.

2.3.2.4 Feedback phases

As shown in Table 1, feedback is often administered across multiple phases, which can range from
baseline only to more complex designs with personalized scorecards, competitions or financial
incentives. As per the aforementioned, between-subjects design studies used only one phase and
examined feedback between different groups of participants. Apart from those studies, other
studies utilized two phases: baseline and a single phase of feedback (Farmer et al., 2010; Rolim et
al., 2016). These studies typically focused on immediate behavior changes post-feedback without
considering how prolonged feedback or multiple interventions affect long-term behavior.

In that context, (Meuleners et al., 2023) created two phases in their experiment: (a) a three-week
baseline period with no intervention and (b) an eight-week intervention period for the intervention
group, while the control group did not receive any feedback on their driving behavior throughout
the study. However, the majority of reviewed studies used multiple feedback phases from three to
six phases. For instance, (Ziakopoulos et al., 2023) included phases such as scorecards, maps and
highlights, peer comparisons, and competitions to measure cumulative effects on driving behavior.
These phases allow for a more nuanced understanding of how different types of feedback affect
drivers' behaviors over time and under various contexts.

Furthermore, it should be noted that about a third of the total studies introduced a final phase with
no feedback, returning drivers to the baseline phase, as they started. The inclusion of this phase
makes it possible to examine the post-feedback effect on drivers, 1.e. whether there is a sustained
positive impact (if any) on their behavior after receiving feedback for one or more phases in the
experiment. Did the participants maintain their shift to safer behavior with reduced risks, or did
drivers regress back to risky behaviors after an initial improvement phase? Studies with no
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feedback phase at the end of the experiment are crucial for determining the long-lasting effects of
feedback mechanisms and whether they need to be periodically refreshed to maintain their
effectiveness.

2.3.2.5 Experimental duration

Regarding the duration of each experiment, it is observed that the length of the experiment varies
widely across studies, ranging from just a few weeks to several months or even years. For instance,
(Aidman et al., 2015; Hari et al., 2012; Hickman & Hanowski, 2011) only provided feedback over
a few weeks. It is important to underline that all these studies examined real-time feedback and
did not examine post-feedback effects. This means that feedback duration appears to be correlated
closely with the structure of the experiment design, and thus influenced by researcher limitations.
Short-term studies are ideal for examining immediate reactions to feedback. A significant number
of the studies, such as (Toledo & Lotan, 2006) and (Rolim et al., 2016), used feedback periods that
spanned several months. These studies are better suited to understanding behavior changes that
evolve over a longer time span, as they provide insights into how drivers adapt to feedback beyond
the initial phase. On the contrary, studies like (Ziakopoulos et al., 2023) (21 months) and (Wouters
& Bos, 2000) (24 months) showed the most extensive feedback periods, being able to determine
the long-lasting effects of feedback mechanisms.

Nevertheless, the length of a naturalistic driving experiment surely depends on a variety of factors,
such as study objectives, intervention style and evidently practical constraints that are not in the
researchers’ direct control. On that note, an interesting finding from the reviewed studies is that
the baseline period is usually shorter than the feedback phase(s), giving the participants enough
time to adjust their behavior and observe any differences between the phases.

2.3.3 Modelling approaches

The reviewed studies utilized various modelling approaches to assess the impact of driver
feedback, as shown analytically in Table 1. In summary, it can be observed that most analytic
methods focus on assessing the correlations between driving-related factors before and after the
feedback is provided, in order to draw some conclusions on the effect of driver feedback, following
methods established in traffic psychology. The employed methods include both simpler
approaches, such as correlation tests and more complex statistical methods that delve deeper into
the driver feedback mechanisms.

2.3.3.1 Choice of analysis method

It is important to note that the choice of analysis method used in each study depends on the
experimental design (within-subjects design vs. between-subjects design). For example, within-
subjects design studies (Birrell & Fowkes, 2014; Hari et al., 2012; Kontaxi et al., 2021b;
Merrikhpour et al., 2014; Newnam et al., 2014; Toledo & Shiftan, 2016; Ziakopoulos et al., 2023)
frequently use repeated measures and mixed-effects models to account for the multiple
measurements taken from the same subjects, employing techniques such as ANOVA, mixed
ANOVA, Generalized Estimating Equations (GEE), Wilcoxon signed-rank tests, and paired t-tests.

In contrast, between-subjects design studies (Farah et al., 2014; Reagan et al., 2013; Rolim et al.,
2016; Stevenson et al., 2021) often use methods that compare means or distributions between two
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independent groups, such as T-tests, Mann-Whitney U-Tests, ANOVA, ANCOVA, logistic
regression, and Poisson regression (for binary and count data, respectively).

Certainly, most of the studies (Bell et al., 2017; Bolderdijk et al., 2011; Chen & Donmez, 2021;
Farmer et al., 2010; Ghamari et al., 2022; Hickman & Hanowski, 2011; Molloy et al., 2023;
Pozueco et al., 2017; Stromberg & Karlsson, 2013) utilize a mix of both within-subjects and
between-subjects designs depending on the specific setup of feedback phases using linear and
logistic regression models, mixed-effects models, and cluster analysis.

2.3.3.2 Basic and exploratory analysis methods

Having established the experimental designs, the methodologies used in the reviewed studies can
be explored. In terms of analysis, it is evident that several studies focus solely on basic correlation
tests, displaying the critical summary statistics between the feedback and non-feedback phase or
groups to assess the impact of driver feedback. Although these methods are relatively simple,
several earlier studies relied on descriptive statistics for a clear understanding of the effects of
feedback on driver behavioral indicators or safety (Hari et al., 2012; Husnjak et al., 2015;
Mazureck & Van Hattem, 2006; McGehee et al., 2007; Rolim et al., 2016; Takeda et al., 2012;
Wouters & Bos, 2000). For instance, (Mazureck & Van Hattem, 2006) examined speeding and
headway during a baseline and a feedback phase comparing the two phases to observe any change
due to driver feedback, concluding to quantified portions of the percentage of kilometers travelled
within the speed limit and the number of kilometers driven a safe distance from the car in front.

In contrast, in other studies, these methods are often used as an initial data exploration phase
preceding the creation of more sophisticated statistical models (Kontaxi et al., 2021b; Toledo &
Lotan, 2006). Simple statistical summaries between feedback and non-feedback phases or groups
can highlight trends, to be later examined more rigorously using advanced statistical techniques.

2.3.3.3 ANOVA and test hypothesis

The Analysis of Variance (ANOVA) and hypothesis testing are well-known techniques involving
the comparison of means and variances between groups to test hypotheses. Within studies
concerning driver feedback, ANOVA tests are used to compare multiple groups (Ellison et al.,
2015; Molloy et al., 2023; Sullman, 2020; Toledo et al., 2008), while t-tests compare two groups
(Hickman & Hanowski, 2011; Kontaxi et al., 2021b; McGehee et al., 2007; Rolim et al., 2016;
Toledo & Shiftan, 2016). Advancing one step further, Post-hoc tests like Tukey HSD and Huynh—
Feldt tests are performed following ANOVA to adjust for multiple comparisons and sphericity,
respectively (Bolderdijk et al., 2011; Molloy et al., 2023). In that context, (Reagan et al., 2013)
implemented a series of 3 x 4 mixed factorial ANCOVA, a type of ANOVA with controlling linear
effect of covariate variables by using regression analysis in the aim of examining the different
types of feedback provided. The covariates were used to control for driving exposure, included
measurements of miles driven over the 4-week trials, considering the respective speed limit zones
in the study analysis.

On the other hand, non-parametric tests are used when data does not meet the assumptions of
parametric tests, such as normal distribution. Tests like the Mann-Whitney U test were used by
(Ghamari et al., 2022) to compare feedback phases in terms of score ranking, while Wilcoxon
signed-rank were employed to examine the differences of speeding (Newnam et al., 2014) during
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the different experimental phases, or other monitored risk indicators, e.g. harsh braking and
cornering (Camden et al., 2019). In addition, (Pozueco et al., 2017) applied the Kruskal-Wallis test
to compare performance between sub-groups in terms of gender and age, providing interesting
findings regarding the effect of demographics on driver feedback. (Stromberg & Karlsson, 2013)
used a Kolmogorov— Smirnov two-sample one-tailed test to examine comparisons of the effects
of feedback in terms of idle time (%), over speed (%), harsh decelerations/100 km, time using bus
momentum to roll out (%) and fuel consumption (liter/100 km). In this case, the researchers used
the non-parametric test, because of the small number of data points.

2.3.3.4 Regression and Machine Learning approaches

Regression analysis methods are often used to understand relationships between variables, to
accommodate different data structures, and to handle repeated measures or correlated data. Many
of the reviewed studies have implemented regression models varying of course in the form of
regression depending on the data distribution or even the response variable and the research
questions. From simple regression models, such as ordinary least squares (OLS) in order to
determine the factors affecting the score differences among the 4 different experiment phases (Peer
et al., 2020); linear regression to calculate the individual risk index (Toledo & Lotan, 2006), to
more complex regressions like linear mixed effects models to examine the effect of feedback as
well as demographic characteristics on driving indicators (Chen & Donmez, 2021; Merrikhpour et
al., 2014).

Within a regression framework, (Soleymanian et al., 2019) deployed fixed-effects regression
analysis to explore the number of daily hard brakes and capture the effect of negative signal on
driving performance, while (Aidman et al., 2015) developed univariate linear mixed models to
investigate drowsiness and performance metrics across the two different experimental conditions
and identify whether there were any improvements during the feedback phase. Additionally,
Poisson regression, often used for count data, has been selected as an appropriate analysis method
when the dependent variable has been treated as rare unsafe driving behaviors or incidents in terms
of rates, like in (Farmer et al., 2010). While (Kontaxi et al., 2021b) deployed Generalized Linear
Mixed-Effects Models to model the frequencies of harsh events during baseline and feedback
phase and examine the differences. It is critical to note that regression methods often face caveats
such as endogeneity, multicollinearity and the assumption of normalcy, which researchers must
anticipate and mitigate, to the extent that is possible within their study designs.

Generalized Estimating Equations (GEE) are typically used when analyzing repeated measures
with non-normal response variables. Linking that asset with the determined studies, studies that
examined risk indicators in terms of driver performance scores/levels employed GEE models (Bell
et al., 2017; Ghamari et al., 2022; Meuleners et al., 2023; Stevenson et al., 2021). For example,
(Bell et al., 2017) used GEE to identify the differences between groups accounting for the same
vehicles over time, while (Stevenson et al., 2021) used GEE models to account for repeated
measures at the participant level. In the same context, (Meuleners et al., 2023) employed GEE to
control for driving exposure. After conducting the GEE models, many studies also used binary
logistic models to investigate the overall effect/score of feedback in a yes/no form of context.

Finally, a recent study by (Ziakopoulos et al., 2023) applied supervised Machine Learning
methods, namely XGBoost algorithms, to create classifiers for predicting drivers” decisions related
to the use of mobile phone while driving as function of naturalistic driving parameters,
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questionnaire features and the variable of feedback phase. Additionally, SHAP values were
computed to highlight for the most relevant features, increasing that way the model explainability.

2.3.4 Impacts of driver feedback on driving behavior and road safety

The reviewed studies reveal that feedback has a generally positive impact on driving behavior and
safety, particularly when targeting specific risky driver behaviors like speeding, harsh events, and
mobile phone use or when calculating driver crash risk based on the monitored driving behavior
parameters.

2.3.4.1 Impact on speeding behavior

Speeding was the most monitored and analyzed risk indicator in the reviewed studies. Feedback
resulted in reductions in speeding behavior, specifically in terms of the overall duration of time
spent speeding during the trip, with values ranging from 5% as much as 74%. For example,
(Mazureck & Van Hattem, 2006) reported a 26% reduction, (Kontaxi et al., 2021b) found a 40%
decrease in the feedback phase where participants received a scorecard regarding their behavior,
and (Camden et al., 2019) observed a remarkable 74% reduction in speeding instances. Some
studies, such as (Ellison et al., 2015), did not quantify the reduction in percentages but did ascertain
via statistical modeling that feedback reduced the speeding risk scores that participants received
via personalized websites.

An interesting finding from the reviewed studies is that feedback combined with financial
incentives further enhances these positive effects. For example, (Chen & Donmez, 2021) reported
that real-time feedback with financial incentives significantly improved speed limit compliance,
particularly in the highway where typically higher speeds are observed, and consequently higher
speeds above the speed limit. Similarly, (Bolderdijk et al., 2011) demonstrated that when
participants received financial incentives in the form of discounts, along with post-trip feedback
on their behavior, speeding was reduced by 14%. Moreover, (Reagan et al., 2013) found that
incentive system resulted in significant reductions in speeding in comparison with the feedback
system alone, which led to more modest changes.

2.3.4.2 Impact on (harsh) acceleration and braking behavior

Harsh braking and harsh acceleration are also frequently monitored behaviors, especially given the
recent rise of surrogate safety measures as a prominent venue in road safety research. Within the
studies examined, the impact of feedback on harsh braking ranged from a 10% reduction to as
much as a 52% reduction. Camden et al. (2019) reported a 52.17% reduction in harsh braking and
a 51.35% reduction in harsh cornering. (Kontaxi et al., 2021b) and (Soleymanian et al., 2019) also
reported reductions in average harsh braking frequency, ranging between 10% and 52%. Similarly,
(Stromberg & Karlsson, 2013) also investigated whether real-time and post trip feedback would
have a positive impact on eco and safe driving behavior, resulting in reduced frequency of harsh
decelerations.

Some studies, such as (Stevenson et al., 2021), reported improvements in overall risky driving

behaviors, but no reductions were shown to reported measures such as harsh acceleration or
braking. These mixed overall results of the studies highlight that feedback positively induced
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braking and acceleration, but factors including the type of feedback provided to participants, means
of delivery and timing might also influence the effectiveness of such interventions.

Fewer studies have focused directly on harsh accelerations as an individual risk factor and mostly
these were nested within analyses focusing on the overall crash risk. Both (Hari et al., 2012) and
(Kontaxi et al., 2021b) assessed the direct impact of feedback on harsh accelerations, reporting
positive results, with the latter study finding a 12% reduction during the feedback phase compared
to the baseline. Other studies however found no statistically significant improvements in harsh
acceleration when compared to other risky behaviors such as speeding and harsh braking (Camden
et al., 2019; Farmer et al., 2010; Pozueco et al., 2017). A plausible explanation of this discrepancy
is that drivers may consider harsh acceleration to be weakly linked to risky driving behavior,
meaning that their response to feedback on this particular behavior may lack a connection to safe
driving and the related motivation.

2.3.4.3 Impact on distracted driving behavior

Mobile phone use while driving was another monitored risk indicator impacted by driver feedback.
Although it was not examined as much as speeding and braking, both (Ziakopoulos et al., 2023)
and (Camden et al., 2019) found a notable reduction in mobile phone use following feedback
interventions, highlighting the importance of well-structured feedback systems in addressing
distracted driving behaviors, which are closely linked to crash risk. However, some studies, such
as (Stevenson et al., 2021), reported improvements in composite measures of risky driving but did
not find significant effects on distracted driving or mobile phone use specifically.

Nevertheless, mobile phone use while driving has traditionally been studied through driving
simulators, where participants were instructed to text, talk, or browse on their phones while
receiving real-time feedback (Backer-Grendahl & Sagberg, 2011; Papantoniou et al., 2015). Again,
this allowed for investigating the effects of distractions on driving behavior in safe but controlled
environments, as well as the effects of immediate feedback on distracted driving. However, a series
of recent advances in technology and use of Internet-of-Things (IoT) have opened new
opportunities, i.e. sensors that can detect mobile phone usage while driving nearly continuously
and without direct intervention (Camden et al., 2019; Stevenson et al., 2021). These developments
allow researchers to measure distracted driving in the real world and identify how feedback affects
mobile phone use behind the wheel.

2.3.4.4 Impact on Crash Risk/ Safety incidents

Several studies focused on the impact of feedback on crash risk in the form of a calculated rate of
safety incidents. (Hickman & Hanowski, 2011; Husnjak et al., 2015; Takeda et al., 2011; Toledo
& Shiftan, 2016), found reductions in safety incidents ranging from 8% to 52% following feedback
interventions. Additionally, an earlier study by (Wouters & Bos, 2000) conducted during a two-
year span reported an estimated 20% reduction in accident rates after professional drivers received
feedback on their driving behavior.

In the same context, (Ghamari et al., 2022), recruited 1,289 bus drivers and 104 taxi drivers to
examine the effect of peer comparison and performance feedback on their behavior. The primary
outcome of the research was a driver score changing pattern throughout the study period,
calculated by a neuro-fuzzy scoring system composed of four factors: speed violation, harsh
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acceleration, harsh braking, and harsh turning. The researchers used the score as an overall
performance safety score and found a significant positive effect for both groups during the
feedback phase.

(Peer et al., 2020) extends previous work by examining whether intrinsic motivation to change
risky driving behavior is sufficient for feedback-driven improvements, or if higher effects depend
on a further boost of extrinsic motivation through incentives that reinforce behavioral recurrence.
This study conducted using a smartphone application collecting multiple safety-related driving
behaviors (speeding, phone use, cornering and brake/acceleration events) aimed to evaluate the
transferability of earlier findings from (Reagan et al., 2013) and (Mullen et al., 2015) — the latter
using a driving simulator — to novice drivers and a broader range of driving behaviors. The study
reported that feedback led to significantly enhanced driving behavior in terms of safety, but the
effect was at its maximum when in addition to providing people with awareness regarding their
violations and errors (e.g., informing them about numbers of exceedance through provision only),
some type of incentive for safe driving were provided.

2.3.4.5 Post-feedback effects

The post-feedback effects of interventions vary significantly across the studies. In some cases, the
behavioral changes resulting from feedback were sustained after the intervention period. For
example, (Ghamari et al., 2022) found that bus drivers maintained their reformed behavior even
after feedback was removed, indicating a lasting effect. Similarly, (Merrikhpour et al., 2014)
reported that, although behavior indicators slightly decreased post-intervention, they remained
better than the baseline, reflecting some persistence of the positive effects. (Molloy et al., 2023)
also reported a sustainable improvement in speed compliance, but only for low-speed zones (i.e.
50 km/h).

However, some studies show that once feedback is withdrawn, drivers tend to revert to their
previous behaviors. (Bolderdijk et al., 2011) observed that the incentive group increased their
speeding once the financial incentives were removed, suggesting that the impact of feedback
combined with incentives might not be sustained without continuous reinforcement. Likewise,
(Toledo & Lotan, 2006) found that the initial reduction in driving risk indices disappeared after
five months, with indices returning to or even exceeding their original levels. (Mazureck & Van
Hattem, 2006) also noted that most drivers reverted to old habits after the feedback phase ended.

Conversely, other studies (McGehee et al., 2007) that included formal follow-up in the form of
coaching or ongoing monitoring, reported maintainable reductions in the number of safety-critical
events per mile; high-frequency drivers receiving feedback through continuous reinforcement
mechanisms such as training and performance improvement plans demonstrated continued ability
to sustain behavioral change post-feedback.

Certain studies indicate that feedback interventions yielded durable benefits (Soleymanian et al.,
2019; Takeda et al., 2011; Toledo et al., 2008), but these findings were deemed to be of low
certainty due to limited data and/or attrition bias in the data. This illustrates one of the major
challenges concerning experiments over long periods, as attrition due to study dropout before a
formal end point is quite common. With repeated interventions or a drop-off in motivation
stemming from long participation, drivers can lose engagement over time, potentially skewing the
results and undermining the statistical power of the findings. This drop-off may not only affect the
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reliability of the data but could also mask the true long-term effects of feedback, leaving open the
question of whether behavior changes could have been sustained with continued participation.

2.4 Discussion

2.4.1 Elaboration of main findings

The results of this systematic review demonstrate a positive overall effect of driver feedback on
modifying driving behavior and enhancing road safety. Measuring the quantifiable impact of driver
feedback, it appears that when drivers receive feedback during naturalistic driving studies, they
may decrease speeding from 5% up to 74%, harsh events from 10% up to 52%, safety incidents
from 8% to 52% and also reduce road crashes up to 20%.

However, it is worth noting that the impact of driver feedback depends on several important
contextual factors. Specifically: how is feedback provided, when it is delivered (timing), and what
is the content of the feedback. Studies consistently indicate that real-time feedback results in the
most immediate change at a behavior level; especially when it comes to reducing higher risk
driving behaviors such as speeding or harsh braking (Camden et al., 2019; Chen & Donmez, 2021).
Post-trip feedback also demonstrates effectiveness, particularly when combined with personalized
reports or peer benchmarks (Peer et al., 2020). More precisely, only two of the reviewed studies
compared the impact of post-trip and real-time delivered feedback, and the results are inconclusive
with (Chen & Donmez, 2021) finding that only real-time feedback had a significant impact on
speeding, while (Bell et al., 2017) found that risky driving behaviors reduced significantly less
when drivers received only in-vehicle real-time feedback.

The timing of feedback is undoubtedly a crucial factor to consider when designing an effective
feedback mechanism and certainly warrants further research. An interesting study by (Dijksterhuis
et al., 2015) used a driving simulator to examine the issue, concluding that both systems improved
driving performance, though the initial advantage of the real-time feedback group diminished
substantially over time. Nevertheless, the answer lies in the type of feedback that is provided;
specific and actionable insights about safe driving tend to lead to more positive changes than
general, non-specific assessments of unsafe behavior (Merrikhpour et al., 2014).

In addition to how, when and what feedback to provide, another notable observation is the varying
effectiveness of feedback depending on the frequency of its delivery. For instance, studies like
(Molloy et al., 2023) found that driver feedback was more effective when provided only once or
twice compared to multiple times. It is highly likely that the feedback mechanism suffers a
reliability loss by reporting too frequently to drivers. This outcome underscores the need to find
the optimal frequency of feedback to sustain the acquired improvement in driving behavior, but
without triggering drivers with overload or desensitization.

Another interesting finding from the review process is the high correlation of incentives to the
effectiveness of feedback. Studies report that the provision of financial incentives can substantially
increase behavioral gains when used in conjunction with real-time or post-trip feedback
(Bolderdijk et al., 2011; Stevenson et al., 2021). Systems based on motivation incentives, such as
price reductions in insurance premiums for safe driving or monetary rewards for absence of
hazardous driving phenomena persuade drivers to continue their improved behavior in the long
term. Nevertheless, it is also observed that when incentives are withdrawn, behavior can relapse
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and some participants will revert to their old habits, such as in the case of (Bolderdijk et al., 2011).
This highlights the need to create feedback and incentive mechanisms that incentivize persistence
and sustainable behavioral change over time.

In the context of experimental frameworks, findings suggest that most of the reviewed studies
combine within-subjects with between-subjects design by examining feedback effects both on
individual drivers and broader groups. This combination allows researchers to alleviate the
concerns of carryover and fatigue effects, while guaranteeing valid and generalizable study results.
Many studies explore the post-feedback effects as well (Bell et al., 2017b; Farmer et al., 2010;
Ghamari et al., 2022b; Mazureck & Van Hattem, 2006; Molloy et al., 2023), revealing that in some
cases, improvements in terms of driving behavior carry on even after the finishing point of the
feedback phase. Yet, the permanence of these effects is inconsistent as some drivers return to
unsafe behaviors when feedback is removed (Toledo & Lotan, 2006). The long-term effects of
driver feedback are a common topic discussed in most of the reviewed studies, often emphasized
as a challenging issue. The need for repeated experiments that are conducted sometime after the
initial study is underlined in order to effectively examine the sustainability of the impact of
feedback over time.

As for the analyses used in the reviewed studies, most of the reviewed studies used conventional
statistical models such as Generalized Estimating Equations (GEE), linear and logistic regression,
and Analysis of Variance (ANOVA) to evaluate the impact of driver feedback on behavior and
safety. Although these methods are useful and provide valuable insights, especially for hypothesis
testing and group-level analysis, they are limited in capturing complex non-linear behaviors or
patterns when dealing with larger datasets or several feedback phases. Particularly, there is a
limited application of Machine Learning methods that may provide more advanced predictive
modeling and a comprehensive understanding of specific driver behavior patterns. Such methods
as random forests or gradient boosting may facilitate real-time personalization and feedback
mechanism optimization. This gap suggests a future research opportunity to employ ML methods
for greater adaptability and individuality in feedback systems.

2.4.2 TImplications for road safety and current practices

The previous passages reveal the benefits of driver feedback on enhancing road safety, which in
turn provides potential guidance for both policy and technological development. Feedback systems
serve as a powerful instrument to impact driving behavior, especially when focusing on critical
risk factors like speeding. Driven by new technological advancements, feedback systems are
becoming more broadly viable, offering tools for deployment across different settings, from urban
networks to rural roads. Integrating driver safety programs based on real-time and post-trip
feedback creates a shortcut for transportation authorities and fleet managers to enhance driving
performance. In addition to reducing risky driving behavior, these systems promote safer road use
and facilitate advanced sustainable development goals.

Given that smartphone applications and telematics devices provide a cost-effective way for
continuous data acquisition, it is an appropriate method to monitor and make necessary
modifications in various driving behaviors by insurance companies, particularly under the Usage-
Based Insurance (UBI) models (Tselentis et al., 2017). The systems enable insurers to better
understand the risks associated with each driver and to price policies according to an individual's
actual driving behavior. However, these research efforts are challenged by issues like privacy and
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the availability of large datasets for analysis (Reimers & Shiller, 2019). The timing of feedback,
its content, and incorporating financial incentives to support safety outcomes are important insights
for insurers, stemming from this review. Focusing on these factors, car insurance companies can
create a feedback mechanism that not only encourages sustained behavioral change and solves the
engagement problem for the driver, but also promotes safe driving.

Another promising emerging area for improving feedback processes is the integration of connected
vehicles (CVs). Communications between vehicles (V2V) and infrastructure (V2I), collectively
known as connected vehicle technology, can transform an individual vehicle into a node within a
real-time information network. This connectivity has the potential to revolutionize driver feedback
by exploiting near real-time updates on road conditions, historical and predicted hazards, as well
as surrounding traffic behavior (Abdelkader et al., 2021). For example, feedback systems can be
enabled in connected vehicles with predictive analytics to provide proactive alerts and customized
instructions for drivers that leverage the knowledge of an entire network, thus not limited in their
own driving behavior. Indeed, the input of feedback might play a far more extensive role in such
systems and is expected to be increasingly simplified as connected vehicles will require more
advanced feedback mechanisms that adapt to new forms of shared data and road interactions.

Regardless of automation, the adoption and higher market penetration of feedback schemes will
lead to the acquisition of more voluminous driver behavior data, which will lead to the refinement
of feedback in turn. This course will initiate a virtuous circle that is well-placed to enhance the
acceptance and feasibility of driver feedback as part of everyday driving. Within the research field,
feedback and the related data have the potential to provide a broader and more accurate overall
image of safety data within the transport network. Automated feedback data will be completely
automated and as such will not suffer from delays, misclassifications, compatibility requirements
and other issues such as underreporting.

2.4.3 Limitations of current research and directions for future research

The investigation of the impacts of driver feedback has revealed some valuable insights; however,
this review additionally highlights several limitations in the existing literature that should be
addressed in future research. An important gap in the reviewed studies is the lack of consideration
of traffic conditions and how they may affect the effectiveness of driver feedback. There are a few
studies that consider the type of the road, i.e. urban, rural or highway in their analyses (Birrell &
Fowkes, 2014; McGehee et al., 2007; Stromberg & Karlsson, 2013). However, traffic data such as
volume, speed, density etc. should also be incorporated into future naturalistic driving experiments
for a more comprehensive and contextual understanding of how driving behavior and the
effectiveness of driver feedback may be affected by external factors. In that context, weather
conditions should also be accounted for in future studies when exploring the effectiveness of driver
feedback.

Another significant limitation in many of the reviewed studies is the reliance on self-selected
participants who voluntarily chose to take part in such research experiments, except for a few
studies that offered monetary incentives to participants (Chen & Donmez, 2021; Ghamari et al.,
2022). This approach may introduce selection bias, as these individuals might already possess
higher levels of safety awareness or be more technologically apt compared to the general driving
population. As a result, the outcomes of such studies may not fully represent the broader
population, leading to potential overestimation of feedback effectiveness. Exploring this aspect
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further in future studies could improve the design and interpretation of experiments by offering a
more comprehensive view of how feedback impacts a wider, more diverse driving population.

Furthermore, in one line of current research, a variety of intervention systems (e.g., context-
sensitive distraction warning systems (Kujala et al., 2024) require further development and
comparison. The rapid advancements in artificial intelligence, mobile internet, and big data, have
introduced an innovative approach to active driving behavior intervention through warning
systems and workload generation tools (Yang et al., 2023). However, questions remain about their
efficacy, including the extent to which drivers might rely too heavily on these systems and how
they may affect driver’s workload and situational awareness. Future research should investigate
these impacts to determine the proper division of labor between technology and drivers.

A particularly overlooked area is the feedback provision for two-wheeler drivers, who are
considered vulnerable road users. While some studies have explored feedback for motorcyclists
under naturalistic conditions (Kontaxi et al., 2021a; Will et al., 2020; V. Williams et al., 2016),
there remains a gap in understanding how feedback could better support safety among these
drivers. Two-wheeler drivers face unique risks, such as reduced visibility to other road users and
greater vulnerability in crashes, which require tailored feedback mechanisms. Future research
should focus on developing and testing feedback systems specifically designed for two-wheelers,
potentially incorporating real-time alerts and adaptive safety interventions to help mitigate their
elevated risk. Comparable considerations can also be given to the provision of feedback for
professional drivers as well, who face their own challenges and particularities. Given that the
operation of in-vehicle information systems has very low safety impacts for professional drivers
(Ziakopoulos et al., 2019) the development of related feedback systems is a promising, yet
unexplored venue.

Lastly, although data-driven methods such as machine learning algorithms have been widely used
to identify dangerous driving behaviors, few innovative approaches have investigated how
feedback itself can be beneficial for improving safety. Research often focuses on recognizing
patterns without considering how feedback can alter driving behavior (Elamrani Abou Elassad et
al., 2020; Lattanzi & Freschi, 2021). A critical avenue for investigation involves applying machine
learning to better understand the mechanisms by which feedback works, leading to more
individualized, data-driven approaches for driving behavior change. Future work could combine
machine learning with driver feedback systems to produce dynamic, personalized feedback
tailored to specific driving styles, enhancing long-term road safety.

On that note, it is important to anticipate, or at least stay on track with, technological developments
regarding new driver interaction venues that are being opened. These venues can be novel in terms
of both the manner of feedback and the device itself. Indicative examples include smartwatches
and similar wearables, which provide a very direct interaction manner with their wearer, which
could open the possibility of tactile real-time driver feedback nudges. Moreover, and in parallel
with automation, vehicle connectivity is ever increasing, and offers integration capabilities for
many devices which can calculate and provide feedback. With the aforementioned developments
in edge-computing applications, driving feedback can be provided on the spot, under real-time or
almost real-time conditions, and can also be paired with related services such as e-call or rapid
crash reporting as well.
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2.5 Research Questions

Based on the findings of the comprehensive literature review conducted within the framework of
this Dissertation, several gaps and challenges in the existing body of knowledge have been
identified. These gaps have informed the development of the following research questions, which
aim to address critical aspects of the study and contribute to advancing understanding in this
domain:

1. How does feedback influence driver speeding and distracted behavior in terms of the
percentage of trip time during which the speed limit was exceeded and mobile phone was
used while driving?

2. How does feedback influence harsh driving events, in terms of the number of harsh
accelerations and harsh brakings?

3. Do different feedback features (e.g., scorecards, maps, peer comparisons, motivations,
gamification, rewards) have different effects on driver behavior? Which feature
demonstrates the most significant impact?

4. How does the post-feedback effect influence long-term driver behavior, and to what extent
are the changes sustained after the feedback is removed?

5. How can advanced statistical techniques be applied to understand the mechanisms of driver

feedback and develop more individualized, data-driven approaches for driving behavior
change?
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3 Methodological Approach

3.1 Overall Methodological Framework

This section outlines the methodology employed to investigate the impact of driver feedback on
driver behavior through a naturalistic driving experiment. The overall framework is visually
represented in Figure 3.1, providing a structured approach to achieving the objectives of this
dissertation. Subsequent sections delve deeper into the theoretical and experimental methods
utilized.

The methodological framework began with an extensive literature review, which explored key
aspects of driver feedback systems under naturalistic driving conditions. This review focused on
experimental design, feedback types, modeling approaches, and key indicators for evaluation. This
phase guided the formulation of research questions, including the impact of feedback on behavior
and safety, the effects of feedback features, and the post-feedback influence on long-term driver
behavior.

Building on the findings of the literature review, a comprehensive methodological background was
developed, combining theoretical approaches and experimental design principles. This included
the application of advanced modeling techniques, such as Generalized Linear Mixed Effects
Models (GLMMs), Structural Equation Models (SEMs), and Survival Analysis Models, alongside
the design of a naturalistic driving experiment (ND Experiment Design). The experimental setup
involved a cohort of 130 drivers, encompassing car drivers, van professionals, and motorcyclists,
evaluated over six feedback phases using a within-subjects design.

The research utilized data from the BeSmart Research Project, focusing on key driving indicators
such as speeding and mobile phone use as measures of risky behavior, and harsh accelerations and
harsh brakings as proxies for safety-critical events. The analysis unfolded in three key pillars:

1. Impact of feedback: This phase assessed the immediate effects of feedback on driving
behavior (e.g., speeding, mobile phone use, harsh events frequency) across the three driver
groups.

2. Effects of different feedback features: A Structural Equation Model (SEM) was developed
to explore the relationship between feedback features and driving behavior factors,
revealing the differential impact of feedback elements.

3. Post-feedback effects: A survival analysis was conducted to examine the long-term
influence of feedback mechanisms. Models such as Cox Proportional Hazards, Accelerated
Failure Time (AFT), and Random Survival Forests (RSFs) were applied and compared to
identify the best-fitting model.

By employing this comprehensive methodology, the driver behavior telematics feedback

mechanism is effectively achieved. The integration of an extensive literature review, advanced

modeling techniques, and a well-structured naturalistic driving experiment provided a robust

framework to investigate the impact of feedback on driver behavior. The research focused on

critical driving indicators such as speeding, mobile phone use, harsh accelerations, and harsh

braking events, ensuring a holistic assessment of driver risk factors. The systematic analysis of
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immediate feedback effects, the influence of different feedback features, and the long-term impact
of feedback mechanisms culminated in actionable insights for designing and implementing
telematics feedback systems. These findings lay the foundation for a scalable and data-driven
feedback mechanism aimed at improving driving behavior, reducing risky behaviors, and
enhancing road safety.

Methodological Framework

Theoretical Framework Naturalistic Driving Experiment

Generalized Linear Mixed Effects Models 230 drivers (car, van, motorcyclists)
Structural Equation Models A within-subjects design experiment
Survival Analysis Models 6 different feedback phases

Large-Scale Data Collection and Processing

Comprehensive Suite
of Advanced Statistical and Machine Learning Models

Impact of feedback Effects of different Post-feedback
on driving behavior feedback features effect via
indicators via via advanced Survival Analysis
GLMMs SEM model methods

The driver behavior telematics feedback
mechanism

Figure 3.1: Overall methodological framework of the doctoral dissertation
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3.2 Theoretical Framework

To address the objectives outlined in this PhD thesis, a robust theoretical framework was
developed, leveraging both foundational and advanced statistical methodologies. This theoretical
background builds upon existing statistical tools while incorporating innovative approaches
tailored to the complexities of analyzing driver behavior and performance. The methodologies
were selected and refined based on a comprehensive review of the relevant literature, as discussed
in earlier chapters. This ensures that the selected approaches address the limitations and gaps
identified in previous studies.

A key finding from the literature review was that most studies rely on traditional statistical
techniques, such as repeated measures ANOVA, descriptive statistics, or linear regression models.
While these methods provide valuable insights, they are often limited in addressing the intricate
dependencies and latent relationships inherent in driver performance data. The review also
revealed that advanced techniques, such as Structural Equation Modeling (SEM) and Survival
Analysis, remain underexplored in the field, despite their potential to address complex
relationships and time-dependent variables.

To build a comprehensive and innovative methodological foundation, the theoretical background
of this thesis incorporates both conventional and advanced techniques. Descriptive statistics form
the basis of the analysis, offering fundamental insights into the data distribution and relationships.
Inferential tests, such as paired samples t-tests and Wilcoxon signed-rank tests, provide robust
comparisons between experimental conditions, especially in cases where parametric assumptions
are violated.

The statistical modeling framework further expands into regression models, including General
Linear Models (GLMs) and Generalized Linear Mixed Models (GLMMs), which accommodate
the hierarchical structure of the data and enable the analysis of fixed and random effects. These
models are enhanced by variations such as random intercepts and random slopes, which capture
the heterogeneity of driver behavior across individuals and conditions. Structural Equation Models
(SEMs) are introduced to explore latent relationships between exposure indicators and different
features of driver feedback, providing a deeper understanding of their direct and indirect impacts
on driving performance and safety.

The methodological approach also incorporates advanced Survival Analysis techniques to examine
time-to-event data, such as relapse of driving behavior after the end of feedback period. Kaplan-
Meier curves and Cox Proportional Hazards models with frailty terms assess survival probabilities
under varying conditions, while Weibull Accelerated Failure Time (AFT) models and Random
Survival Forests allow for more flexible modeling of time-dependent risks. A systematic model
comparison ensures that the most appropriate techniques are applied for the respective research
questions, contributing to the reliability and validity of the findings.

This theoretical background not only integrates a wide range of statistical tools but also emphasizes
their sequential and complementary application, ensuring that the analysis is comprehensive,
robust, and capable of addressing the multifaceted nature of the feedback mechanism and its effect
to driving behavior and safety. The following sections provide a detailed explanation of each
methodological approach and its application within the context of this thesis.
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3.2.1 Descriptive Analysis

Descriptive analysis is a fundamental step in data analysis that provides a solid foundation for
advanced statistical modeling. Before diving into complex models, it is crucial to understand the
underlying structure and behavior of the data through summary statistics and visualizations. Key
components of descriptive analysis include measures like the five-number summary (minimum,
first quartile, median, third quartile, and maximum), which helps to capture the range, central
tendency, and spread of the data. These metrics give an overview of the data's variability and
highlight potential outliers that could skew the results of subsequent analyses. Additionally,
calculating the standard deviation quantifies the degree of dispersion around the mean, offering
insight into how tightly or loosely data points are distributed.

3.2.2 Inferential statistical tests

Inferential statistical tests are used to draw conclusions about a population based on sample data.
These tests help evaluate hypotheses, determine relationships, and assess differences between
groups or conditions. Unlike descriptive statistics, inferential tests use probability theory to
determine whether observed patterns are statistically significant or could occur by chance. Two
commonly used inferential tests for comparing paired data are the Paired Samples t-test and the
Wilcoxon Signed-Rank Test, which are both designed to assess differences between two related
groups.

These tests are particularly useful in scenarios where the same subjects are measured under
different conditions, such as pre-treatment and post-treatment measurements in clinical studies.
The choice of test depends on whether the data meet assumptions of normality or require non-
parametric methods for analysis.

3.2.2.1 Paired Samples t-test

The Paired Samples t-test (also known as the Dependent Samples t-test) is a parametric test used
to compare the means of two related groups. It assumes that the differences between paired
observations are normally distributed.

The test calculates the t-statistic as follows:

d
== (3.1)

Where:

e d is the mean difference between the paired observations,
e 5,4 is the standard deviation of the differences,
e 1 is the number of pairs.

The resulting t-statistic is compared against a critical value from the t-distribution table based on

the degrees of freedom (df=n-1) and the desired significance level (a, typically 0.05). If the p-
value is below a, we reject the null hypothesis (Ho), which states that the mean difference is zero.

81



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism

Paired Samples t-Test Visualization
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Figure 3.2: Schematic diagram of a paired samples t-test
In the above schematic diagram:

e Each gray line represents a pair (before and after values for the same subject).
¢ Blue and red markers show the mean for the "Before" and "After" groups, along with error
bars indicating standard error.

3.2.2.2 Wilcoxon signed-rank test

The Wilcoxon Signed-Rank Test is a non-parametric alternative to the Paired Samples t-test, used
when the data do not meet the normality assumption. This test compares the median of paired
differences and is robust to outliers and skewed distributions. For instance, it can be used to assess
whether a mindfulness program affects stress levels, where pre- and post-program stress scores are
ranked and analyzed.

The procedure involves ranking the absolute differences between paired observations, assigning
positive or negative signs based on the direction of the difference, and calculating the test statistic
WWW, which is the sum of signed ranks:

W=y R} (3.2)
Where R; are the ranks with positive differences.

The test statistic is then compared to a critical value from the Wilcoxon Signed-Rank distribution
or converted into a z-score for large samples:

z =YW (3.3)

ow

Where py, and gy are the mean and standard deviation of the rank sum distribution under the null
hypothesis. Like the t-test, if the p-value is below the significance level (o), the null hypothesis
(Ho: no difference in medians) is rejected.
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Both tests provide valuable insights into paired data, with the Wilcoxon Signed-Rank Test offering
a more robust solution when the normality assumption is violated.

Wilcoxon Signed-Rank Test Visualization
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Figure 3.3: Schematic diagram of a Wilcoxon Signed-Rank Test
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In the above schematic diagram:

o The bars represent the ranked differences between paired observations.

e Green bars correspond to positive differences (the first variable is greater), while red bars
represent negative differences (the second variable is greater).

o The heights of the bars indicate the rank assigned to each absolute difference.

o Positive ranks are displayed above the zero line, while negative ranks are below it.

e The sum of these signed ranks is used to compute the test statistic for assessing whether
the median difference is significantly different from zero.

3.2.3 Generalized Linear Models

Generalized Linear Models (GLMs) extend traditional regression methods by allowing the
dependent variable to follow distributions from the exponential family, such as Poisson, binomial,
or Gaussian. For count data, such as the frequency of harsh events (e.g., harsh braking or harsh
acceleration) per trip, a Poisson distribution is typically used.
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Poisson Distribution (A = 5)
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Figure 3.4: Example of a Poisson distribution (A=5)

Following Breslow and Clayton (1993), if y; represents the observed frequency of harsh events
during trip i and A; represents the predicted expected frequency, the GLM is specified as:

yi~Poisson (1;) (4.4)
The log of the expected frequency (4;) is then modeled via a linear predictor:
log(4;) = Bo + Bnxn + € 4.5)

Where S are the fixed-effect parameters (constant and coefficients) for n independent variables,
and ¢ is the error term.

3.2.3.1 Generalized Linear Mixed-Effects Models

Generalized Linear Mixed-Effects Models (GLMMs) extend GLMs by adding random effects to
account for grouping or clustering in the data, such as repeated measures for the same drivers. This
approach accounts for the variability in behavior between drivers that could influence the
frequency of harsh events. The GLMM builds on the GLM framework by adding a random effect
(u;) to the linear predictor:

log (Aij) = Bo + Xn Pnnij +ui + € (4.6)

Here, A;jis the expected frequency of harsh events for trip j by driver i, and u; ~ N (O, asfo)
represents the random effect for driver i, capturing unobserved heterogeneity. This structure
ensures that differences between drivers are modeled explicitly, improving the accuracy of fixed-
effect estimates.

For instance, a GLMM could model harsh braking events by accounting for predictors such as trip
duration or distance, while also incorporating a random effect for each driver to reflect differences
in their driving styles.
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3.2.3.2 GLMM with Random Intercepts

A GLMM with random intercepts models variability in the baseline frequency of harsh events
across drivers while keeping the effect of predictors constant. The model is expressed as:

log (Aij) = Bo + X Brxnij + u; 4.7)

Here, u; represents the random intercept for driver i, distributed as u; ~ N (0, ¢;2). This allows the
model to account for differences in the baseline frequency of harsh events across drivers.

For example, one driver might consistently have a higher baseline frequency of harsh braking,
regardless of trip duration or speed. A random intercept captures this variation, allowing the fixed
effects (e.g., trip duration) to be estimated without bias.

3.2.3.3 GLMM with Random Slopes

A GLMM with random slopes further extends the model by allowing the effect of a predictor, such
as trip duration or distance, to vary across drivers. The model is specified as:

log (Ai;) = Bo + (By + us)x1ij + Tner BuXnij + o (4.8)

Here, uy; is the random intercept for driver i, and u; is the random slope for predictor xy;; (e.g.,
trip duration), with uy; ~ N(0, 62,).

For instance, the impact of trip duration on the frequency of harsh braking events might vary
between drivers. For one driver, longer trips might significantly increase the likelihood of harsh
events, while for another, the effect might be weaker. A random slope allows the model to capture
this variability, providing a more detailed understanding of driver-specific behaviors.

3.2.3.4 Interpreting Coefficients and Goodness-of-fit metrics

Coefticient result interpretation is more intuitive when using relative risk ratios (sometimes called
incidence rate ratios). Relative risk ratios are obtained by transforming the predictor to obtain the
frequency. For an increase of one unit in one specific variable, k, with all other parameters
remaining equal, the predicted original frequency A; is multiplied by: A4;; = exp(Bii) * 4;

As (McCulloch, 2003) mentions, random effect models may use correlated independent variables
as input, circumventing the limitations of traditional GLMs. Furthermore, it should be mentioned
that for computational reasons during the GLMM fitting, the trip data underwent z-score scaling,
a common standardization process which does not affect the obtained coefficients. Mathematically,
for every parameter x with a mean X and a standard deviation S a scaled value is obtained:

Xscalea = (X —X)/S 4.9)
The best-fitting model which contains the more informative variable combination and explains the

highest degree of variance per given dataset is selected as the one with the minimum Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC).
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AIC = —2In (L) + 2k (4.10)

Where:
e L: Maximized likelihood of the model.
e k: Number of parameters in the model.

BIC = —2In (L) + kin (n) (4.11)

Where:
« n: Number of observations.

Finally, it is critical to note that the added value of any random effects is assessed by conducting a
custom ANOVA (log-likelihood test) between the fixed effects GLM and any formulated GLMMs.

3.2.4 Structural Equation Models

Structural Equation Modeling (SEM) is a technique within the family of latent variable analysis.
It is a multivariate method that supports both multiple-input and multiple-output modeling. In this
study, SEM is used to formulate several unobserved constructs as latent variables from different
types of variables collected through the naturalistic driving experiment.

SEM is a widely recognized methodology with numerous applications. It has been employed in
various studies to model complex interrelationships involving unobserved concepts expressed as
latent variables. This includes applications in traffic engineering and road safety. For example,
SEM has been used to model driving behavior and the probability of crash risk (Papantoniou et
al., 2019; Wu & Wang, 2021) Additional examples include the use of SEM to connect task
complexity and coping capacity with driving risk (Roussou et al., 2023) or perception of risk and
driving tasks on road safety attitudes of drivers (Ram & Chand, 2016; Zhao et al., 2019).

The underlying mathematical structure of SEMs can be defined as follows (Joreskog & Sérbom,
2001):

n=Bn+yé+e (4.12)

where 1 is a vector expressing the dependent variables, & expressing the independent variables, €
expressing the regression error term, § expressing the regression coefficients for the dependent
variables, and y expressing the regression coefficients for the independent variables.

3.2.4.1 Path analysis

Path analysis, a subset of SEM, focuses on modeling the structural relationships between variables.
It visualizes these relationships using a path diagram, where arrows represent regression paths. For
example, in a study analyzing driving behavior, latent variables such as "risk perception" (£) might
influence "event occurrence" (1) through observed indicators like average speed, acceleration, or
harsh braking events. Path analysis also allows for mediating effects, where one variable influences
another indirectly through a third variable.
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Path diagrams clarify the roles of explanatory variables, showing whether they act as correlated
causes, mediated causes, or independent predictors. For instance, "trip duration" (X;) and "driver
age" (X,) might have direct effects on "harsh braking" (Y;) while "trip speed" (X3) mediates the
relationship. This structured representation not only simplifies complex models but also facilitates
hypothesis testing, enabling researchers to specify whether certain pathways are significant or not.

y1 X1 X2 X3

y2

y3 [ dem60

v4

v5

y6

y7

y8

Figure 3.5: Example of SEM path analysis created using the lavaan package in R

The diagram represents a structural equation model (SEM) created using the lavaan package in R.
This model combines measurement components (latent variables derived from observed
indicators) and structural relationships (regressions and covariances). Below is a breakdown of the
elements in the diagram:

Latent Variables

e ind60: A latent variable representing an unobserved construct measured by three observed
indicators: x1, x2, and x3. These arrows indicate that the latent variable ind60 is inferred
from the shared variance of these observed variables.

e dem60: A latent variable representing another unobserved construct, measured by the
observed indicators y1, y2, y3, and y4. These arrows suggest that the latent variable dem60
is inferred from these observed variables.

e demo65: A latent variable inferred from the observed indicators y5, y6, y7, and y8.

Structural Relationships
e Regression Paths:
o The arrow from ind60 to dem60 indicates that the latent variable dem60 is regressed
on ind60, meaning ind60 explains some portion of the variability in dem60.
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o The arrows from ind60 and dem60 to dem65 represent a structural relationship
where both ind60 and dem60 jointly explain the variability in dem65.

Residual Covariances
e Correlated Residuals:
o The bidirectional arrows connecting y1 and y5, y2 and y4 and other pairs indicate
residual covariances between the corresponding observed variables.

Observed Variables
e The observed variables (x1, x2, x3 and y1, y2, y3, y4, y5, y6, y7, y8) are directly measured
in the dataset. These are used to infer the latent variables or are part of the structural
relationships. The "x" variables (x1, x2, x3) are indicators for ind60, while the "y" variables
(y1 to y8) serve as indicators for dem60 and dem65.

3.2.4.2 Goodness-of-fit metrics

In the realm of model configuration, Goodness-of-Fit measures play a crucial role in any statistical
model assessment. The goodness-of-fit metrics utilized in the current analysis are listed below.

The Comparative Fit Index (CFI) compares the fit of a hypothesized model with an independence
model. Values range from 0 to 1, with over 0.90 generally accepted as a good fit. The formula is
represented as follows:

max(xi—dfy,0)
max(xf—dfpxt—dfi)

CFlI=1-

(4.13)

where x% and d fyare the chi-square value and degrees of freedom of the hypothesized model, and
x} and df; are those of the independence model.

The Tucker—Lewis Index (TLI) evaluates model parsimony, with values above 0.95 indicating a
good fit. The formula is represented as follows:

2 2
X1 _*H

TLI = ‘ifxl%ﬂ (4.14)
-

The Root Mean Square Error Approximation (RMSEA) measures the unstandardized discrepancy
between the population and the fitted model, with values below 0.08 typically considered a good
fit and values below 0.05 indicating an excellent fit. The formula is represented as follows:

xf—dfy

RMSEA = |71t

(4.15)

where x3 is the chi-square value, dfy is the degrees of freedom, and nnn is the sample size.

The Standardized Root Mean Square Residual (SRMR) is the square root of the difference between
the residuals of the sample covariance matrix and the hypothesized covariance model, with values
below 0.05 indicating an excellent fit. The formula is represented as follows:
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SRMR = [P T Gumou) (4.16)
n(n+1)/2 ’

where s;; is the observed covariance between variables i and j, g;; is the predicted covariance
between variables i and j based on the model and n is the number of observed variables.

3.2.5 Survival Analysis

Survival analysis is a branch of statistics designed to analyze time-to-event data, where the primary
objective is to model the time until a specific event occurs, such as a failure, death, or, in driving
contexts, the time until an adverse event like a harsh braking occurs. Unlike other statistical
methods, survival analysis accounts for censored data, which arises when the event of interest has
not occurred for some subjects during the study period. Survival analysis is widely used across
disciplines, including medical research, engineering, and transportation safety (Klein &
Moeschberger, 2003; Clark et al., 2003; Machin et al., 2006).

Over the years, survival analysis has developed to be one useful technique of driving behavior
investigation through the modeling of time to critical events-such as harsh braking, near-crashes,
or collisions (Parmet et al., 2014; Shangguan et al., 2020; Samani & Mishra, 2024). This method
explicitly allows researchers to consider censored data, such as trips with no adverse events
occurring, while considering the impact of covariates like driver behavior and trip characteristics
on event occurrence.

Basic terminologies for the survival analysis for present study are defined as following
(Washington et al., 2020):

Event: In this study, an "event" is defined as a "relapse" in driving behavior, specifically when the
driver’s harsh accelerations per 100 km exceed a predefined threshold. This threshold is calculated
as the mean harsh acceleration rate observed during the feedback phase, a period of active
intervention. Exceeding this threshold in the post-feedback phase signals a decline in driving
behavior, which is considered an "event" for survival analysis purposes.

Duration Variable (Time to Event): The duration variable in this analysis is represented by the
number of trips taken until a relapse event occurs (i.e., harsh acceleration rate exceeds the feedback
phase threshold). In survival analysis terms, the duration is a continuous random variable T with a
cumulative distribution function F(t) and probability density function f(t). The survival analysis
tracks the probability of a driver maintaining improved driving behavior over successive trips in
the post-feedback phase.

F(t)=P(T <t)= [, f(t)dt (4.17)

Survival Rate (S(t)): The survival rate S(t) gives the probability that a driver will maintain driving
behavior below the harsh acceleration threshold for a given number of trips, denoted by t. This can
be interpreted as the probability of no relapse occurring within that period. Mathematically,

St)=P(T >t)=1—-F() (4.18)
89



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism

where F(t) is the cumulative probability of a relapse occurring by trip t.

Hazard Rate (h(t)): The hazard rate h(t) represents the conditional probability of a relapse
occurring at a particular trip t, given that no relapse has occurred up until that trip. It provides an
instantaneous risk of relapse at each point in time (number of trips). In this study, as the number
of trips increases in the post-feedback phase, the probability of relapse also tends to increase,
indicating a rising hazard rate over time. The hazard function h(t) can be defined as:

_
h() = 2o (4.19)

where f(t) is the probability density function of relapse events.

The key models discussed in this section—Kaplan-Meier curves, Cox proportional hazards
models, and Weibull accelerated failure time models—offer different approaches to understanding
survival data, with extensions to handle heterogeneity and clustered data.

3.2.5.1 The Kaplan-Meier curves

The Kaplan-Meier estimator, also known as the product-limit estimator, is a non-parametric
statistical method used to estimate the survival function from time-to-event data (Kaplan & Meier,
1958). It is commonly applied in fields such as medicine, engineering, and social sciences to
understand the likelihood of an event (e.g., failure, relapse) occurring over time, especially when
data include censored observations (i.e., when the event has not occurred for some subjects by the
end of the observation period).

The Kaplan-Meier survival function S(¢) is defined as the probability that the event of interest has
not occurred by a certain time #:

S(t)=P(T > t) (4.20)

where T represents the time to event. The Kaplan-Meier estimator calculates the survival
probability at each time point where an event occurs, updating the cumulative survival probability
accordingly. The survival probability at each event time tj is calculated by:

d;

NOES| (1 - —,) (4.21)

nj

where:
 d; is the number of events (e.g., relapses, failures) occurring at time ¢;
» n; is the number of subjects at risk just prior to time ¢;
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Figure 3.6: Example of Kaplan-Meier survival curve

The Kaplan-Meier survival curve in the above example visualizes the probability of survival over
time, accounting for censored data. Some key points:

e Stepwise Survival Function: The curve shows the estimated survival probability
S(t)S(t)S(t) as a step function, which decreases only at observed event times. At each event
time, the survival probability is updated based on the proportion of individuals still at risk
who experience the event.

e Censoring: The Kaplan-Meier method accounts for censored observations (instances where
the event has not occurred during the study period). Censored individuals contribute to the
survival probability up to the time they are last observed but do not lower the survival
probability

e Confidence Intervals: The dashed lines represent the 95% confidence intervals around the
survival estimate, providing a range within which the true survival probability is likely to
fall. This helps assess the reliability of the survival estimates at different time points.

3.2.5.2 Cox-PH Model with Frailty

The Cox proportional hazards (Cox-PH) model is a semi-parametric regression method used to
examine the relationship between survival time and explanatory variables (Cox, 1972). The hazard
function h(t | x) is modeled as:

h(t | x) = ho(t)exp (BT x) (4.22)

where hy(t) is the baseline hazard function, x is a vector of covariates, and f is a vector of
regression coefficients. The Cox model assumes the proportional hazards assumption, meaning the
effect of covariates on the hazard is constant over time.

91



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism

To handle heterogeneity in grouped data (e.g., trips by the same driver), the Cox-PH model can
incorporate frailty terms:

h(t | x,u) = hy(t)exp (BTx + u) (4.23)

where u ~ N(0,02) is a random effect capturing unobserved heterogeneity (Wienke, 2011).
Frailty models are particularly useful for survival data with correlated observations or clustered
structures, such as repeated trips by the same driver.

3.2.5.3 Weibull AFT Model with Clustered Heterogeneity

The Weibull Accelerated Failure Time (AFT) model is a parametric approach to survival analysis
that directly models the survival time T as a function of covariates:

log(T)=p"x+¢ (4.24)

where € is a random error term and f represents the regression coefficients. The Weibull
distribution is commonly used due to its flexibility in modeling hazard rates (e.g., increasing or
decreasing over time), with the survival function given as:

S(t) = exp (—AtY) (4.25)
where A and y are scale and shape parameters, respectively.
To account for clustering, the AFT model incorporates random effects (Wang, 2006):

log (Ti;) = BTxi; + u; + & (4.26)

where u; represents cluster-level heterogeneity (e.g., driver-specific effects) and &;; captures

individual-level variability. This extension is particularly suitable for datasets with clustered
survival times, such as trips nested within drivers (Hougaard, 2000).

3.2.5.4 Random Survival Forest

Random Survival Forest (RSF) is a machine learning approach to survival analysis that extends
random forests to time-to-event data. RSF constructs multiple decision trees using bootstrap
samples of the data, and the survival function is estimated as the ensemble average of the survival
probabilities across all trees. Each tree splits the data based on covariates to maximize survival

differences between groups, using a splitting rule such as the log-rank split statistic (Ishwaran et
al., 2008).

RSF can handle non-linear relationships, high-dimensional covariates, and complex interactions
without requiring proportional hazards or parametric assumptions. It is particularly effective in
datasets with heterogeneous risk factors and is robust to censoring. The cumulative hazard function
for an individual i is estimated as:
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Hi(t) =335, H(©) (4.27)

where Hi(b)(t) is the cumulative hazard function from the b-th tree, and B is the total number of
trees.

Figure 3.7: Example of tree structure in Random Survival Forest

Random Survival Forest: Aggregated Survival Curves
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Figure 3.8: Example of survival curves in Random Survival Forest

Some key points from the examples above:

e Tree Structures: The first figure shows the decision paths of three individual trees within
the RSF.
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e Survival Curves: The second figure illustrates survival probabilities estimated by each tree
and their aggregated average curve (dashed line).

RSF is increasingly popular in survival analysis applications, such as identifying high-risk drivers
based on multiple behavioral and environmental factors, offering interpretability through variable
importance measures and partial dependence plots.

3.2.5.5 Model evaluation

Survival models are typically assessed based on their ability to accurately capture the underlying
relationships between covariates and survival times, while also accounting for censored
observations. Model evaluation typically focuses on two key aspects: discrimination and
calibration. Discrimination refers to a model's ability to correctly differentiate between individuals
at higher or lower risk of experiencing the event, while calibration assesses how well the predicted
survival probabilities align with the observed outcomes over time (Harrell, 2015).

For discrimination, commonly used metrics include the concordance index (C-index) and time-
dependent receiver operating characteristic (ROC) curves. The C-index measures the proportion
of concordant pairs, where an individual with a shorter survival time has a higher predicted risk,
and typically ranges from 0.5 (no better than random guessing) to 1.0 (perfect discrimination):

_ Zi,j l(xi>xj)~1(Ti<Tj)
- Zi,j l(Ti<Tj)

C (4.28)

Where:
» x; and x;: Predicted risk scores for individuals i and j,
e T;andT;: Observed survival times,
e 1(+): Indicator function returning 1 if the condition is true, 0 otherwise.

Time-dependent ROC curves provide a more dynamic evaluation of the model’s discriminatory
power at different time points, offering insights into its performance across the study period.
Calibration, on the other hand, is evaluated by plotting predicted survival probabilities against
observed survival probabilities, often using a calibration curve. A well-calibrated model will show
a close match between predicted and observed values along the diagonal line of the plot.

Calibration Curve: Syp; (£) = f (Sprea (1)) (4.29)

Where:

o Spreq (t): Predicted survival probability at time t,

e S,ps (t): Observed survival probability at time ¢t.
Beyond discrimination and calibration, model fit is another important criterion. For parametric
models, such as the Weibull AFT model, Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) (described in GLMM section) are widely used to compare competing
models. Lower AIC or BIC values indicate a better balance between goodness-of-fit and model
complexity. For semi-parametric models like the Cox-PH model, log-likelihood ratio tests are used
to assess the significance of added covariates. Additionally, residual diagnostics, such as
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Martingale residuals or Schoenfeld residuals, are essential for verifying assumptions like
proportional hazards in the Cox model.

Martingale Residuals for testing functional form of covariates:
M; = 6; — A(T)exp (X] B) (4.30)

Where:
e §;: Event indicator (1 if event occurs, 0 if censored),
o A(T)): Estimated cumulative hazard,
o X[ PB: Linear predictor for individual i.

Schoenfeld Residuals for testing the proportional hazards assumption:

Ri=X ica(r,) Xue? CLF) 431
u oy ZIER(Tj) exp (X[ B) (431)

Where:
e R;j: Risk set at time T},
» X;j: Covariate value for individual i at time j.

For machine learning approaches like random survival forests, model evaluation often involves
out-of-bag (OOB) error estimation, which provides a measure of prediction accuracy by testing
each tree on data not used in its construction (Ishwaran et al., 2008).

1
OOB Error = ;Z{Ll L(S‘pred,iistrue,i) (4.32)
Where:

e L: Loss function, often based on a survival-specific metric like integrated Brier score,
o Spreq,i: Predicted survival probability for individual i,

*  Siue,i: True survival outcome for individual i.
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4 Naturalistic Driving Experiment

4.1 Experimental Framework

As already mentioned, the primary objective of this dissertation is to examine the driver behavior
telematics feedback mechanism and its effect on driving behavior. The dissertation adopts a
comprehensive approach to explore feedback's role in modifying driving behavior, with a focus on
three key pillars:

1. Assessing the impact of feedback on driving behavior of different road user groups (car
drivers, professional van drivers, and motorcyclists) in various road environments.

2. Investigating the effects of different feedback features across the experimental phases.

3. Analyzing the long-term, post-feedback effects on driving behavior.

To achieve these objectives, a naturalistic driving experiment was thoroughly designed and
implemented, building on the results of the literature review regarding the experimental framework
of existing naturalistic studies. The importance of the experimental framework of feedback-
oriented study has been emphasized in scientific research, as it serves the foundation for producing
valid, reliable and interpretable results (Cash et al., 2016; Leik, 1997). In the context of naturalistic
studies, a well-constructed experimental framework allows researchers to isolate the specific
effects of various feedback mechanisms on driving behavior (van Schagen & Sagberg, 2012). In
the present Dissertation, the experimental framework is discussed across the following key aspects:
experimental design, recruitment process, sample characteristics (size, type of vehicle), and
feedback phases (i.e., number and content of phases).

Table 4.1: Framework of the naturalistic driving experiment
Experimental design Feedback phases Duration

* baseline

* scorecard

* maps

* peer 21 months
comparison

* competitions

* no feedback

one group / within-subjects
design

4.1.1 Experimental design

Naturalistic driving studies primarily employ two experimental designs: within-subjects and
between-subjects designs. In a within-subjects design, the same participants are exposed to
multiple conditions or interventions, allowing researchers to assess changes within individuals
over time. All participants experience multiple phases of feedback and act as their own control
group (Birrell & Fowkes, 2014; Hari et al., 2012). Conversely, a between-subjects design involves
assigning different participants to separate groups, each exposed to distinct conditions. Studies
where different groups of drivers received different types of feedback or no feedback at all (control
group) through one experimental phase (Farah et al., 2014; Reagan et al., 2013; Rolim et al., 2016;
Stevenson et al., 2021), allowing researchers to examine and analyze driving behavior across
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different conditions of feedback influence. This design eliminates carryover effects and simplifies
the study structure but requires larger sample sizes to account for variability between participants.

The present naturalistic driving experiment constitutes a within-subject experimental design,
which was deliberately chosen to align with the primary objectives of this dissertation. This design
enables the examination of changes in individual driving behavior outcomes as drivers are exposed
to different feedback mechanisms across multiple experimental phases. By using a within-subject
design, each participant serves as their own control, allowing for a more precise assessment of the
direct effects of telematics feedback on driving behavior. This approach is particularly well-suited
for isolating the impact of feedback, as it minimizes the influence of individual differences, such
as baseline driving skills, attitudes, or risk tolerance, which could confound results in a between-
subjects design (Newnam et al., 2014; Toledo & Shiftan, 2016). Furthermore, it ensures that the
observed behavioral changes can be attributed more reliably to the feedback interventions rather
than external factors.

The within-subject experimental design also supports the comprehensive goals of the study, which
include evaluating feedback's effects across various road user groups, phases, and long-term
contexts. This design facilitates a nuanced exploration of how feedback modifies behavior over
time and under different conditions, such as varying road environments and vehicle types. It is
particularly effective in capturing the longitudinal effects of feedback, enabling the analysis of
both immediate and post-feedback impacts.

4.1.2 Recruitment process

The official launch of the naturalistic driving experiment took place on July 1, 2019. The
participant onboarding process was conducted via an automated email system sent to prospective
participants and included the following steps:

e Ist Email to Prospective Participant: An invitation to participate in the BeSmart research
project, along with a brief description of the experiment. The Participant Information Sheet
was attached.

e 2nd Email: After the prospective participant expressed interest in participating in the
BeSmart experiment, they were sent the Participant Consent Form, which they were
required to complete in order to join the experiment.

¢ 3rd Email: Once the prospective participant completed the Participant Consent Form, they
received a unique username and a download link for the app (available in Android and i10S
versions). The BeSmart App User Guide was also attached.

The form of Consent for the participants can be found in Annex II. Additionally, OSeven's team
created an application usage guide specifically for the research team, aimed at providing a more
comprehensive understanding of the application’s functionality to address potential participant
technical questions. It is further emphasized that all principles, requirements, and
recommendations of the General Data Protection Regulation (GDPR) were followed during the
recruitment of prospective participants.

The majority of participants were recruited through the project team's contact networks, which

facilitated effective collaboration and communication throughout the experiment. Regarding the

recruitment of a sufficient number of professional drivers, the team collaborated with "Nea Odos,"
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which agreed to participate by providing its professional drivers as participants, believing that
proper driver education and awareness could play a vital role in road safety.

4.1.3 Sample distribution and characteristics

Data regarding invited prospective participants per mode of transportation, gathered by the
research team at NTUA responsible for sending the invitations, is presented in the following table.

Table 4.2: Invited Prospective Participants by Mode of Transportation

Mode of Transportation

Number of Invited Candidates

Passenger Vehicles 260
Professionals (Car/Van) 80
Motorcycles 55
Bicycles 10
Total 405

Data on application users, provided by OSeven's backend team, is shown in the table Table 4.3.

Table 4.3: BeSmart Application Users

BeSmart App Installations

Tos Android
13 238

BeSmart Environment

Total Users At least one Signin At least one trip
225 225 208

BeSmart Moto Environment

Total Users At least one Signin At least one trip
26 26 22

Finally, the sample of active participants per mode of transportation is shown in the following table

Table 4.4.

Table 4.4: Sample Distribution by Mode of Transportation

Mode of Transportation

Number of Drivers

Percentage of Total Drivers

Passenger Vehicles 176 76.5%
Professionals (Car/Van) 27 11.7%
Motorcycles 22 9.6%
Bicycles 5 2.2%
Total 230 100%

4.1.4 Experimental phases

The experiment was divided into six phases, each providing different types of feedback to drivers.
Figure 4.1 displays the different feedback features provided at each phase. As it is shown, Phase 1
served as the baseline phase where drivers were recorded through the smartphone app and only a
trip list was available with no other information about the driver behavior. In phases 2,3,4 and 5
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different feedback features were added, as shown below, while drivers returned to no feedback in
phase 6 for researchers to examine the post feedback effect.

~\

eTrip list and characterization accessible to the application user -
baseline

eScorecard enabling scoring per trip

*Maps and Highlights providing further information per trip

eComparisons between drivers
Phase 4

eCompetitions with prizes for safe driving

*Back to baseline - all additional feedback removed from the
Phase 6 drivers

€€E€E€ELC

Figure 4.1: Description of the experiment phases

The initial plan was to conduct each phase over two months, culminating in a total study duration
of one year. However, the onset of the COVID-19 pandemic required the research team to adapt
to the unprecedented circumstances. Due to government-imposed lockdowns and restrictions on
movement, particularly between March 23, 2020, and May 4, 2020, the number and frequency of
trips made by participants dropped significantly, with up to a 70% reduction in some cases. As a
result, it became necessary to extend the experiment beyond the initially planned twelve months.
The research team decided to prolong Phase 4, allowing participants to resume regular driving
patterns as restrictions eased. Despite the easing of lockdown measures in May 2020, the travel
activity remained lower than anticipated. Consequently, the start of the next phase (Phase 5 -
Competitions and Challenges) was delayed until October 2020. The impact of COVID-19 both on
mobility and road safety has been discussed in recent studies with very interesting insights (Du et
al., 2024; Katrakazas et al., 2021).
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Table 4.5: Naturalistic driving experiment timetable

Date Experiment Phase Feedback Feedback Feedback Feedback Feedback
P feature Nol |feature No2 |feature No3 feature No4 |feature No5
Jul-19 Phase 1 — No feedback
Aug-19 Phase 1 — No feedback
Sep-19 Phase 1 — No feedback
Oct-19 Phase 2 — Feature 1 Scorecard
Nov-19 Phase 2 — Feature 1 Scorecard
Maps and
Dec-19 Phase 3 — Feature 1+2 | Scorecard Highlights
Maps and
Jan-20 Phase 3 — Feature 1+2 | Scorecard Highlights
Phase 4 — Feature Maps and .
Feb-20 14243 Scorecard Highlights Comparisons
Phase 4 — Feature Maps and .
Mar-20 14243 Scorecard Highlights Comparisons
Phase 4 — Feature Maps and .
Apr-20 14243 Scorecard Highlights Comparisons
Phase 4 — Feature Maps and .
May-20 14243 Scorecard Highlights Comparisons
Phase 4 — Feature Maps and .
Jun-20 14243 Scorecard Highlights Comparisons
Phase 4 — Feature Maps and .
Jul-20 14243 Scorecard Highlights Comparisons
Phase 4 — Feature Maps and .
Aug-20 14243 Scorecard Highlights Comparisons
Phase 4 — Feature Maps and .
Sep-20 14243 Scorecard Highlights Comparisons
Phase 5 — Feature Maps and . .
Oct-20 1424344 Scorecard Highlights Comparisons | Competitions
Phase 5 — Feature Maps and . .
Nov-20 14243 +4 Scorecard Highlights Comparisons | Competitions
Phase 5 — Feature Maps and .
Dec-20 1424345 Scorecard Highlights Comparisons Challenges
Phase 5 — Feature Maps and .
Jan-21 1424345 Scorecard Highlights Comparisons Challenges
Feb-21 Phase 6 — No feedback
Mar-21 Phase 6 — No feedback
Apr-21 End of the experiment

Furthermore, Figure 4.2 presents example screenshots from the application features in all
experiment phases, illustrating the progression of feedback mechanisms provided to users. Phase
1 and Phase 6 represent control phases with no feedback, showcasing only basic trip details. Phase
2 introduces the Scorecard feature, offering users a performance score and visual feedback on
driving behavior metrics. Phase 3 highlights the Maps feature, where users can view trip routes
alongside key driving event markers, enabling a spatial understanding of their behaviors. Phase 4
includes the Comparison feature, allowing users to evaluate their performance against past trips or
peer averages. Phase 5 showcases the Competitions and Challenges feature, incorporating
gamified elements like ranking systems, points, and personalized challenges to motivate safer
driving practices.
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Phase 1 — No feedback
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Phase 2 — Scorecard
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Figure 4.2. Example screenshots from the application features in all experiment phases
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4.2 Smartphone Application
4.2.1 Data collection system

For the purpose of the experiment, an innovative smartphone application, developed by OSeven
Telematics (www.oseven.io), was utilized to assess and improve driver behavior and safety. This
application records driver behavior using the smartphone's hardware sensors and various APIs to
collect sensor data.

Smartphones are equipped with a variety of sensors (Bluetooth, GPS receiver, GSM/GPRS
connectivity, 3D accelerometer, gyroscope, magnetometer, proximity sensor, compass, barometer,
etc.). The BeSmart application is designed using the latest software advancements, providing users
with the best possible experience. The app is activated periodically by the Android and iOS
operating systems, collecting position and movement data for a few seconds to determine if the
user is in a vehicle. This process is called "Driving Detection." If the app verifies that the user is
in a vehicle, it begins recording primary data. Otherwise, data collection stops, and the app
deactivates until the system reactivates it next time.

The frequency of data recording varies depending on the type of sensor, with a minimum rate of 1
Hz. It is worth noting that this method enables the collection of a large amount of driving
characteristic data solely through the mobile phone application. The journey recording continues
even if the vehicle is idle for five minutes to account for scenarios where the driver may resume a
trip after a brief stop.

The primary data collected include the following:
e Date and time
e GPS data (longitude, latitude, altitude, speed, horizontal accuracy, altitude accuracy)
e Accelerometer data
e Gyroscope data (Yaw, Pitch, Roll)
e Smartphone orientation data
e Activity data (e.g., walking, driving, stationary)
e Screen status (without access to screen content)

A variety of APIs (Application Programming Interfaces) are used to read the recorded sensor data
and temporarily store it in the smartphone's database before transferring it to the central database.

All additional information collected after driving ends is deleted. Figure 4.3 summarizes the stages
of data flow.

Detect Collect Data Scores &
Driving Sensors Data Processing Analytics

Figure 4.3: The OSeven data flow system
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4.2.2 Data processing and feature engineering

To process the primary data for extracting driver behavior and vehicle usage information (e.g.,
speeding, mobile phone use, sudden accelerations and braking, user scores), specialized software
from OSeven periodically retrieves the Primary Data from the upload area and begins processing
it to calculate driving behavior and vehicle usage data. For this purpose, OSeven has servers
located in the data centers of the aforementioned cloud service providers within the EU where this
software is executed.

Advanced machine learning (ML) and data fusion algorithms are used for processing the recorded
data. The following procedures are carried out:

o Data filtering and cleaning: Detecting outlier values (data deemed unreliable is discarded).
Advanced signal processing techniques remove noise from the raw data, retaining only
information relevant to driving behavior. Data smoothing is also performed for parameters
requiring it (e.g., when abnormal deviations are observed).

e Speeding detection: Speed limits are calculated based on map data from providers such as
Google and OSM. Speed limit violations and their duration are then computed.

e Recognition of sudden events: This includes detecting sudden accelerations, braking, and
turns, accounting for the aggressiveness and intensity of the events.

e Mobile phone use detection: This includes calls, texting, and browsing. A precise detection
algorithm has been developed, measuring phone usage based on data fusion and ML
algorithms. These algorithms use only smartphone sensor data, without accessing other app
activity for data privacy protection.

o Identification of dangerous driving hours: Distance traveled between midnight and 5 a.m.
is tracked, as these hours are considered risky due to potential alcohol consumption and
driver fatigue.

e Driver vs. passenger identification: During the trip, the system detects whether the user is
the driver or a passenger and identifies the mode of transport (car, motorcycle, public
transport, bicycle).

e Scoring model: The primary data is processed and converted into metadata for use in the
scoring model. Calculated metadata includes risk exposure and driving behavior indicators:
total trip distance, driving duration, road type, time of day (peak hours, risky hours), trip
purpose (specified by the driver), speed limit violations (duration and extent), number and
severity of sudden events, driving aggressiveness (e.g., braking, acceleration), and mobile
phone distractions (Figure 4.4).
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Figure 4.4: OSeven Telematics Platform Overview

Additionally, a separate environment was developed within the app for users who primarily use
motorcycles, after identifying sensor limit issues in recording and evaluating motorcycle driving.
Key differences in the upgraded version from the original BeSmart version include a different
weighting factor for the score concerning the frequency of sudden events and the exclusion of
mobile phone use from trip scoring categories. Data is analyzed, and the scoring system is
calibrated based on the overall sample.

4.2.3 Metadata and driver behavior indicators

The metadata is then transferred to the server for statistical calculations per user. The results of
this entire process are accessible via the BeSmart mobile app, enabling users to view all detected
events and their locations on the map. This provides drivers with a user-friendly way to identify
trip segments with risky driving behavior and encourages them to avoid similar behaviors in the
future.

A variety of different metadata are eventually calculated, including the following exposure
indicators:
e Total distance (mileage)
¢ Driving duration
e Type(s) of the road network used (given by GPS position and integration with map
providers e.g. Google, OSM)
Time of the day driving (rush hours, risky hours)
Weather conditions (under development, on the basis of integration
with weather data providers)
Trip purpose (set by the driver himself by using the smartphone app)
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The driving behavior indicators that are also calculated from the data include:
e Speeding (duration of speeding, speed limit exceedance etc.)
e Number and severity of harsh events
e Harsh braking (longitudinal acceleration)
e Harsh acceleration (longitudinal acceleration)
¢ Distraction from mobile phone use (mobile phone use is considered to be any type of phone
use by the driver e.g. talking, texting etc.).

% 50 @ O A

Speeding Mobile Braking & Risky Trip Type of
use Accelerating Hours Duration road

B == =

Driver/Passenger & Mass Transit recognition

Figure 4.5: OSeven Driving Behaviour Scoring

It should be noted that harsh events are calculated via data fusion and machine learning algorithms
and not a rule-based approach using as input the values of the accelerometer as well as values from
additional sensors (e.g. orientation, magnetometer, GPS, gyroscope). Therefore, the determination
of the harsh events is not based on specific thresholds. Yet, some indicative examples of speed and
acceleration data related with specific harsh events from the available dataset are illustrated, so
that harsh events can be better comprehended. Indicative harsh accelerations: (i) speed increase
from 31km/h to 40km/h within one second and (ii) longitudinal acceleration 0.28g; Indicative
harsh brakes: (i) speed decrease from 51km/h to 40km/h within one second and (ii) longitudinal
deceleration 0.30g. It is stressed out that these are four indicative cases of harsh events and the
respective values cannot be considered as thresholds, as the determination of the events is based
on the coevaluation of several time series. In addition, the reliability of the OSeven algorithms has
been extensively evaluated against literature data, OBD data, on-road experiments by certified
experts on the assessment of driving behavior, and experiments on driving simulators (Tselentis et
al., 2019; Petraki et al., 2020). Taking into consideration that the cited studies deal with car drivers,
the authors clarify that the mentioned algorithms have been calibrated based on (i) on-road
annotated experiments, and (ii) the comparison between the car and motorcycle data that quantify
the vehicle dynamics.

These indicators along with other data (e.g. from map providers) can be subsequently exploited to
calculate individual driver statistics, on all road networks (urban, rural, highway, etc.) and under
various driving conditions, enabling the creation of a large database of individual trip/driver
characteristics.
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4.3 Self-reported Questionnaire Data

4.3.1 Structure and content

A Driver Behavior Questionnaire was developed simultaneously (see Annex II). Each participant
is asked to complete a questionnaire about their driving habits and driving behavior. The questions
were carefully selected based on existing literature regarding self-reported driver behavior. The
sections of the questionnaire are as follows:

A. Driving Experience — Journeys
B. Vehicle

C. Driving Behavior

D. Demographic Information

The driving experience section includes questions about participants’ driving experience and
habits, which will be used in the analyses as potential critical factors in evaluating the participants'
driving performance. This section also includes questions about participants’ driving experience
over different time frames, e.g., frequency of trips on a daily, weekly basis, etc., thus providing
more detailed information on their driving experience.

The second section of questions concerns the characteristics of the vehicle driven by participants,
such as the age and engine size of the vehicle, as well as average fuel consumption during trips.
The vehicle is one of the three factors impacting road safety, alongside the road environment and
the human factor.

The driving behavior section consists of two parts: the first addresses the participants' accident
history over their lifetime as drivers, while the second involves the participants' self-assessment of
their driving skills and performance. This section is very important, as the information provided
here will be correlated with the drivers’ performance in the various phases of the driving
experiment.

The final section includes demographic questions that are also relevant for the subsequent analyses
to be conducted throughout the project.

Additionally, it is worth noting that four different questionnaires were developed, one for each
vehicle type (passenger vehicles, professional drivers, motorcycles, bicycles), with corresponding
adjustments in the questions to address the different modes of transportation. After the
questionnaires were created in paper format, it was decided to use the online platform
SurveyMonkey, with OSeven handling the online questionnaire administration.

4.3.2 Statistical summary

The following tables contain descriptive statistics for the questionnaire variables collected from
the exploited BeSmart car driver sample, amounting to 87 drivers in total who completed the
questionnaire: Table 4.6 contains the discrete variables &
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Table 4.7 contains the continuous variables.

The Table 4.6 present descriptive statistics of questionnaire responses.

Table 4.6: Discrete descriptive statistics of the questionnaire responses

Variable

Classes: Responses (Percentage)

days_per_week

km_per week

daily_trips

km_daily avg

km_year

vehicle ownership

CcC

vehicle age

fuel cons avg

tickets 3y

declared_speeding

declared_mbu

declared harsh brk

declared harsh acc

declared harsh_turn

declared aggressive

declared_careful

1:

1
(1.15%)
1:

3
(3.45%)
1:

3
(3.45%)
1:

17
(19.54%)
1:

5
(5.75%)
1:

65
(74.71%)
1:

14
(16.09%)
1:

14
(16.09%)
1:

9
(10.34%)
1:

63
(72.41%)
1:

4
(4.60%)
1:

1
(1.15%)
1:

7
(8.05%)

1:
11
(12.64%)
1:

27
(31.03%)
1:

33
(37.93%)
1:

0

2:

1
(1.15%)
2:

21
(24.14%)
2:

36
(41.38%)
2:

1
(1.15%)
2:

13
(14.94%)
2:

19
(21.84%)
2:

2
(2.30%)
2:

16
(18.39%)
2:

4
(4.60%)

2:
11
(12.64%)
2:

26
(29.89%)
2:

14
(16.09%)
2:

43
(49.43%)
2:

3
(3.45%)
2:

3
(3.45%)
2:

30
(34.48%)
2:

0

3:

2
(2.30%)
3:

29
(33.33%)
3:

25
(28.74%)
3:

27
(31.03%)
3:

30
(34.48%)
3:

0
(0.00%)
3:

17
(19.54%)
3:

37
(42.53%)
3:

32
(36.78%)
3:

5
(5.75%)
3:

43
(49.43%)
3:

13
(14.94%)
3:

30
(34.48%)
3:

44
(50.57%)
3:

44
(50.57%)
3:

19
(21.84%)
3:

14
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4:

6
(6.90%)
4:

19
(21.84%)

4:
13
(14.94%)
4:

17
(19.54%)
4:

14
(16.09%)
4:

2
(2.30%)
4:

31
(35.63%)
4:

20
(22.99%)
4:

29
(33.33%)
4:

3
(3.45%)
4:

13
(14.94%)
4:

31
(35.63%)
4:

7
(8.05%)
4:

29
(33.33%)
4:

13
(14.94%)
4:

3
(3.45%)
4:

44

5:

15
(17.24%)
5:

15
(17.24%)
5:

10
(11.49%)
5:

8
(9.20%)
5:

25
(28.74%)
5:

1
(1.15%)
5:

19
(21.84%)

5:

13

(14.94%)
5:

5
(5.75%)
5:

1
(1.15%)
5:

28
(32.18%)
5:

0
(0.00%)
5:

0
(0.00%)
5:

0
(0.00%)
5:

2
(2.30%)
5:

29

6:
21
(24.14%)

6:
17
(19.54%)

6:
1
(1.15%)

6:
0
(0.00%)

7:
41
(47.13%)

7.
3
(3.45%)
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Variable Classes: Responses (Percentage)
(0.00%) (0.00%)  (16.09%) (50.57%) (33.33%)
1: 2: 3: 4: 5:
education 48 26 3 4 6
(55.17%) (29.89%) (3.45%) (4.60%) (6.90%)
1: 2: 3: 4: 5:
smartphone familiarity 0 3 13 25 46
(0.00%) (3.45%) (14.94%) (28.74%) (52.87%)
1: 2: 3:
gender 48 39 0
(55.17%) (44.83%)  (0.00%)
1: 2: 3: 4: 5: 6:
age 1 7 54 14 8 3
(1.15%) (8.05%) (62.07%) (16.09%)  (9.20%) (3.45%)
1: 2: 3: 4:
marital status 3 24 59 1

(3.45%)  (27.59%) (67.82%)  (1.15%)

From Table 4.6, it is evident that the considered driver sample is quite active, with the majority
using their vehicles 5 to 7 days per week. The majority of driving trips appear to have a non-trivial
length, i.e. more than 6 kilometers daily and more than 20 kilometers weekly, while there is also a
modest representation of other daily and weekly trip lengths. This indicates a well-rounded sample
of both shorter and longer trips for drivers, indicative of moving predominantly within a large
urban environment.

The driver sample has good representation of men and women, while most drivers belong to the
25-34 and 35-44 years old age categories. In combination with modest to full familiarity with
smartphones, this outlines a more technology-oriented driver sample, rather than traditional
drivers. Another interesting insight refers to self-assessment of drivers: While the majority of
drivers self-report that they sometimes or often engage in speeding, harsh accelerations and harsh
turning/cornering, only a minority self-characterize as aggressive (the majority (strongly)
disagrees with the characterization). At the same time, they are mostly inclined to self-characterize
as careful drivers, despite self-reporting a very frequent use of their mobile phones when driving,
though this can also include more passive functions such as GPS-issued directions.
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Table 4.7: Continuous variable descriptive statistics of the questionnaire responses
Variable Min Median Max St. Dev.
licence year

1978 2009 2019 7.758
driving_exp
1 10 42 8.628
crashes_until now
0 1 5 1.344
crashes 3y
0 0 3 0.776

crashes_victims_unt

il_now 0 0 3 0.471
crashes victims 3y

0 0 1 0.255
crashes_pdo_until n

ow 0 0 6 1.270
crashes pdo 3y

0 0 5 1.074
family members

0 3 5 1.368

In addition to the previous, it can be observed from
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Table 4.7 that driving experience was more or less compatible with license year, indicating
practiced drivers that were active after obtaining their licenses. In 2019, when the questionnaires
were completed, the median value for driving experience was 10 years, denoting a driving sample
that is moderately experienced. Most drivers were not involved in crashes of any type, as hinted
by the fact that the median drops to zero when separating property damage only (PDO) crashes
from crashes with victims (i.e. fatalities or injuries).

4.4 Big Data Processing
4.4.1 Data integration and organization

After recording, collection, storage, and processing of data by OSeven's integrated system, as
detailed in the previous chapter, the next step was to organize the large-scale data to be suitably
utilized as the database for statistical analyses conducted by the NTUA research team.

The resulting database was provided in Microsoft Excel files to enable data processing by the
project's research team. Specifically, there were two different types of databases, each referring to
distinct driving characteristics, to be used in various analyses aimed at investigating complex
relationships among different groups of variables, with the ultimate goal of assessing driving
behavior and relevant interventions.

Alongside the integrated data transfer system by OSeven, the Postman platform was utilized by
the NTUA research team to extract a small amount of data for investigation and analysis purposes.

Postman is an API platform for creating and using APIs. The Postman platform simplified and
improved collaboration between the two teams, enabling better and faster data retrieval. In
summary, the NTUA team was able to send requests to the OSeven backend system to retrieve
data from drivers' trips for specific time periods. Additionally, two environments were created: one
for the BeSmart application (car drivers) and one for the BeSmart MotorBike application
(motorcyclists). A snapshot from the Postman platform is shown in Figure 4.6: Snapshot from the
Postman Platform.
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Figure 4.6: Snapshot from the Postman Platform
4.4.2 Database structure

One database focused on drivers’ travel characteristics. Each row represented a driver’s journey,
while each column contained a variable for each journey. Some of the variables included in this
database were as follows:

**tripid**: trip code

**userid**: driver code

**duration**: total trip duration in seconds (s)

**driving_duration®™*: net driving time excluding stops, in seconds (s)
**totaldist™*: total trip distance in kilometers (km)

**ha**: number of harsh accelerations (absolute count)

**hb**: number of harsh decelerations (absolute count)

**hc**: number of sharp turns (absolute count)

**ha _intensity high**: high-intensity harsh acceleration

**ha_intensity low**: low-intensity harsh acceleration

**ha intensity medium**: medium-intensity harsh acceleration

**avaccel**: average acceleration (km/h/s)

**avdecel**: average deceleration (km/h/s)

**smooth_corner**: average turning speed (degrees/s)

**mobileusage™**: percentage of driving_duration where the driver used a mobile phone
**perc_speeding**: percentage of driving_duration spent above the speed limit
**av_speeding™*: average percentage of speed limit excess
**riskyhourdistance**: driving distance between 22:00 and 05:00 (km)

Additionally, for better management of large-scale data, supplementary databases were created for
each experimental phase and vehicle type to enhance their effective use in statistical analyses.
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Finally, the collection and entry of personal data into an MS Excel file was carried out by members
of the research team, with the file being password-protected. Once personal data collection and
entry were completed, only the Project Coordinator and Data Management Officer had access to
this file. Each participant was assigned a unique code with no association to their personal data.
The research team analyzed driving behavior data using these anonymous codes and selected
demographic data that did not allow for identification of the individual. This ensured that driving
behavior data could not be linked to individuals by research team members who no longer had
access to the Personal Data File.

4.5 Descriptive Statistics

Before proceeding with the model development, it is essential to examine the descriptive statistics
of the six experimental phases for the three driver groups: car drivers, professional drivers, and
motorcyclists. These statistics provide a preliminary understanding of the effects of the different
feedback interventions on key driving behavior indicators, including speeding percentage, mobile
phone use, harsh accelerations, and harsh braking. (Table 4.8).

Table 4.8: Descriptive statistics of the per driver values of the recorded driving behavioral indicators
(mean value and the respective standard deviation in parenthesis)

Speeding Phase1 Phase?2 Phase 3 Phase 4 Phase 5 Phase 6
percentage (%)
Car drivers 5.98 3.66 3.63 4.38 3.25 3.88
(0.05) (0.03) (0.04) (0.04) (0.04) (0.04)
Professional - 1.61 0.78 0.96 1.05 2.26
drivers (0.02) (0.01) (0.01) (0.01) (0.01)
Motorcyclists 10.42 791 9.58 9.23 7.86 9.09
(0.09) (0.09) (0.12) (0.09) (0.08) (0.07)
Mobile use Phase1 Phase2 Phase 3 Phase 4 Phase 5 Phase 6
percentage
Car drivers 4.20 3.58 3.89 3.66 3.03 2.83
(0.06) (0.05) (0.06) (0.06) (0.07) (0.04)
Professional - 0.80 0.76 0.82 1.00 1.44
drivers (0.01) (0.01) (0.01) (0.02) (0.01)
Motorcyclists - - - - - -
Harsh
accelerations per Phase1l Phase2 Phase 3 Phase 4 Phase 5 Phase 6
100km
Car drivers 9.31 9.01 10.62 10.51 8.81 8.33
(9.76) (8.21) (9.89) (11.33) (9.49) (5.61)
Professional - 0.58 0.59 1.04 0.42 2.09
drivers (1.07) (0.98) (1.51) (0.65) (1.21)
Motorcyclists 48.38 19.76 28.53 19.26 8.27 12.24
(29.77) (19.66) (28.83) (14.74) (10.30) (13.83)
Harsh braking Phase1 Phase?2 Phase 3 Phase 4 Phase 5 Phase 6
per 100km
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Car drivers 18.04 17.35 18.31 17.35 12.08 13.71
(14.14) (11.94) (10.70) (11.90) (9.94) (8.31)
Professional - 2.57 2.24 2.90 1.37 4.79
drivers (3.39) (2.89) (3.04) (2.13) (1.58)
Motorcyclists 31.36 26.38 39.95 33.81 13.68 18.18
(24.36) (22.27) (41.94) (33.81) (9.77) (9.80)

Speeding Behavior Across Phases

Speeding is a critical indicator of risky driving behavior. Car drivers exhibit a reduction in speeding
percentage during the initial feedback phases, decreasing from 5.98% in Phase 1 (baseline) to
3.63% in Phase 3, where map-based feedback was introduced. However, a slight increase is
observed in later phases, with 4.38% in Phase 4 and 3.88% in Phase 6, suggesting a potential
relapse effect after the feedback interventions were removed. Professional drivers, who entered
the study from Phase 2 onward, demonstrated significantly lower speeding percentages than car
drivers, starting at 1.61% in Phase 2 and gradually increasing to 2.26% in Phase 6. Motorcyclists
initially exhibited a much higher speeding percentage (10.42% in Phase 1), which decreased in
subsequent phases but fluctuated between 7.86% and 9.23% in later phases.

Mobile Phone Use Trends

Mobile phone use while driving is a major distraction and safety risk. Car drivers exhibited a steady
decrease in mobile use, from 4.20% in Phase 1 to 2.83% in Phase 6, indicating a potential positive
impact of feedback interventions in reducing this risky behavior. Professional drivers consistently
showed very low percentages of mobile phone use, starting from 0.80% in Phase 2 and reaching
1.44% in Phase 6. This might be attributed to the nature of their driving behavior, as they may be
more aware of company policies or safety regulations. Motorcyclists had no recorded mobile
phone use, which is likely due to the limitations in measuring phone use while riding a motorcycle.

Harsh Acceleration Patterns

Harsh accelerations per 100km serve as an indicator of aggressive driving tendencies. Car drivers
started with 9.31 harsh accelerations per 100km in Phase 1, which slightly fluctuated but ultimately
decreased to 8.33 in Phase 6. Professional drivers showed much lower values than car drivers,
averaging below 2 harsh accelerations per 100km in all phases, indicating that this driver group
tends to engage in less aggressive acceleration. Motorcyclists displayed significantly higher initial
values (48.38 in Phase 1), which decreased over time but remained relatively high compared to
other driver groups.

Harsh Braking Trends

Harsh braking per 100km is another critical risk factor in evaluating driving safety. Car drivers
demonstrated a relatively stable pattern, beginning at 18.04 in Phase 1 and declining to 13.71 in
Phase 6. Professional drivers had much lower harsh braking values, starting at 2.57 in Phase 2 and
peaking at 4.79 in Phase 6. Motorcyclists initially displayed high values (31.36 in Phase 1), with
significant fluctuations across phases, reaching their highest at 39.95 in Phase 3 before gradually
decreasing.

These descriptive statistics highlight the changes in driving behavior across phases and provide a
foundation for further analysis using statistical modeling.
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S Feedback Impact on Driver Speeding and Distracted Behavior

5.1 Feedback Impact on Speeding Behavior of Motorcyclists of Phases 1 & 2

5.1.1 Introduction

Motorcyclists constitute a vulnerable road user group with up to 30 times higher fatality rates
compared to passenger cars (Johnson et al., 2008). In 2017, motorcyclists accounted for 18% of
the total number of road deaths in the EU countries; specifically, about 3,850 users (riders and
passengers) of motorcycles and about 600 riders of mopeds were killed in EU countries in road
traffic accidents (European Commission, 2018). During 2017, Greece had the highest rate of
motorcycle fatalities per million population in EU-28 Countries, 20.1 deaths, while the EU average
was 7.5 fatalities per 1 million population (European Commission, 2018). Although motorcyclists
represent approximately the 15% of total vehicles in Greece, they were involved in 36% of total
road accidents in 2018 (ELSTAT, 2020).

Specific factors affecting the accident injury severity of motorcyclists have been determined in the
literature: Albalate & Fernandez-Villadangos (2010) identified gender, excess speed, road width,
and alcohol consumption as factors affecting powered two-wheeler (PTW) injury severity.
Theofilatos & Ziakopoulos (2018) determined that traffic and speed variations increase PTW
injury severity, while increased truck proportions in the traffic mix were found to relatively reduce
injury severity, possibly due to behavioral adaptations on behalf of PTW riders.

Behavioral issues are major moderating factors to both frequency and severity of motorcycle
accidents. Speeding, sensation seeking, aggressiveness, perceived risk, errors, violations and
attitudes towards road safety are considered to be crucial behavioral risk factors (Vlahogianni et
al., 2012; Theofilatos & Yannis, 2015). This is corroborated by a related in-depth accident
investigation as well. Using data collected from 500 accidents involving PTWs and bicycles,
Ziakopoulos et al. (2018) found speeding to be a contributing factor to both accident frequency
and severity. Another in-depth accident study using the framework of GIDAS (German In-Depth
Accident Study) investigated the injury protection and accident causation parameters for
motorcyclists, among groups of vulnerable road users, alongside pedestrians and bicyclists. It was
found that in the majority of the cases, motorcycle riders failed to correctly evaluate the
information received from the traffic environment or the situation of their own vehicle (Otte et al.,
2012).

The accurate monitoring of motorcyclist riding behavior is therefore of high importance. Although
motorcycle accidents have been widely investigated by researchers, the lack of detailed naturalistic
riding data remains a persistent obstacle for the scientific community. Several existing studies have
shown promising results on the analysis of motorcyclist riding behavior by means of naturalistic
experiments (Espié et al., 2013). Williams et al. (2016) examined the contributing factors that
influence motorcyclist accident risk, exploiting data from the MSF 100 Motorcyclists Naturalistic
Study (31,000 trips from 100 riders). Their results can be utilized for further investigation of road
safety levels during daily riding. Other recent studies have attempted to develop methodological
techniques to allow either for rider profile detection (Will et al., 2020) or for measuring the lean
angles of motorcycles on a large scale (Stanglmayr et al., 2020). Furthermore, the validity of
approaches based on smartphone applications has been demonstrated in past studies. Using
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applications solely, stopping and dangerous riding events have been detected with a reported
accuracy of 90.1% for scooters (Hsieh et al., 2014) and 86.8% for bicycles (Gu et al., 2017).

However, to the best of the authors’ knowledge, this is the first attempt to understand behaviors
and risks related to rider speeding on the basis of data collected from smartphone sensors.
Additionally, since several studies have correlated speeding with rider aggressiveness (Lin &
Kraus, 2009; Vlahogianni et al., 2012) and with environmental/exposure metrics, as expressed, for
instance, by night-time riding (de Rome et al., 2016), the authors’ aim is to investigate the
respective influence factors and come to conclusions regarding their impact on speeding. More
precisely, rider speeding is expected to increase due to:

e rider aggressiveness
e travelled distance
e nighttime riding

In light of the aforementioned, the objective of the present study is twofold: (i) to explore the riding
behavior of motorcyclists while speeding, based on detailed riding analytics collected by
smartphone sensors, and (ii) to investigate whether personalized feedback can improve rider
behavior.

5.1.2 Rider panel and descriptive statistics

Originally, 20 motorcyclist riders volunteered to participate in the experiment and to allow for
monitoring their riding behavior through the respective smartphone application. However, for the
present analysis it was decided that the final sample should consist only of riders who have
participated equally in both phases on terms of trips. An additional criterion was set; all riders
selected for the analysis were required to have ridden for at least 40 trips. This number
approximately equals the typical monthly number of working trips, assuming that each rider drives
2 trips a day for 5 working days a week. This number is reasonable to filter out riders for which
there are not enough observations, and it is also the 'industrial' criterion set by OSeven to start
providing rider evaluation to clients. As a result, from the 20 motorcyclists, 13 riders (4 female, 9
male) were ultimately selected. All participants possessed a valid driving license while the 11 out
of 13 rode their own motorcycle (the other two rode the motorcycle of a family member). The
participants were aged between 25-34 (n=9) and between 35-45 (n=4). Detailed sample
information is presented in Table 5.1.

Table 5.1: Participant panel description regarding riding and vehicle data (N=13)

Riding parameter Distribution of participants

Riding experience <5 5-10 11-20 >20
(number of years) 7.7% 30.8% 53.8% 7.7%
Driven distance per year <5000 5001-10000 10001-15000 >15000
(km) 15.4% 7.7% 61.5% 15.4%
Motorcycle engine size <251 251-500 501-1000 >1000
(co) 46.1% 7.7% 23.1% 23.1%
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Overall, during the two phases of the experiment a large dataset of 3,537 trips from a sample of 13
motorcyclists were recorded. Before presenting the model development, exploratory descriptive
analysis of the data is implemented, allowing for an overview of the percentage of speeding while
riding, as well as the other three riding indicators that are presented via the application in the
feedback phase. Particularly, the descriptive statistics of values of the respective variables are
shown in Table 5.2 and they reveal some interesting first findings. It is obvious that all risk factors
show a significant reduction when riders receive feedback about their riding behavior, which
constitutes an incentive for modelling the impact of feedback. Additionally, this finding is observed
in all different road types, indicating a smoother performance of the respective riding metrics when
riders are receiving feedback. However, in the case of highways, it is remarkable that the reduction
of the examined riding indicators is much slighter compared to the urban and rural road network.
This seems logical, taking into consideration the riding pattern in highways, as longer distances
are covered and high speeds are developed.

Table 5.2: Descriptive statistics of the per trip values of the variables and the respective standard
deviations (in parenthesis) recorded for Phase 1 (Baseline) and Phase 2 (Feedback)

Road type
Variable Urban Rural Highway
Baseline Feedback Baseline Feedback Baseline Feedback

Average speed 35.82 33.66 50.08 38.28 97.01 77.62
[km/h] (0.30) (0.29) (0.66) (0.48) (0.58) (0.66)

Speeding 13.41 9.84 10.33 3.07 5.60 5.35
percentage [%] 0.41) (0.33) (0.62) (0.34) (0.96) (0.90)

Harsh accel. 2.54 1.70 2.02 1.38 0.81 0.22
[count] (0.08) (0.06) (0.09) (0.06) (0.11) (0.04)

Harsh brakings 1.59 1.14 1.27 0.81 0.45 0.16
[count] (0.05) (0.04) (0.07) (0.04) (0.08) (0.03)

5.1.3 Generalized Linear Mixed-Effects Models for speeding

In order to model the expected percentage of speeding per trip for the participant riders, mixed-
effect models in a GLM framework (GLMMs) were calibrated. Specifically, GLMMs were fitted
in R-studio (with the Ime4 package) via maximum likelihood and using z-factor scaling. A number
of models were tested with different configurations in the collected parameters in both fixed effects
and random effects. Furthermore, it is important to note that the sample consists of driver trips, as
opposed to drivers directly, thus allowing the training of statistically robust models.

The selected variables were chosen after taking into account the following: lowest Akaike
Information Criterion (AIC) for dealing with the trade-off between the goodness of fit of the model
and the simplicity of the model, high statistical significance of variables, low multicollinearity, and
finally rational interpretation of their impact on the dependent variable. After conducting log-
likelihood test ANOVA comparisons, the most informative configuration of random effects was
included both random intercepts and random slopes in the GLMMs to capture unique rider traits.
Table 5.3 provides a description of the parameters of the models.

Table 5.3: Log-likelihood comparison of mixed effect configuration for overall speeding model
Model Model D.f. x2 P(>x?)
Family Configuration AIC BIC logLik
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GLM

GLMM

GLMM

Fixed effects only 7
[baseline]

Fixed effects & 8
Random Intercepts

Fixed effects, 10
Random Intercepts

& Random Slopes

52468 52511

38795 38844

37114 37176

-26227

-19390

-18547

<2e-16
13674.6
<2e-16

1684.9

The final models are presented in Table 5.4, Table 5.5, and Table 5.6. Modelling results reveal
some interesting findings: The parameters of trip duration, the distance driven during risky hours,
morning peak hours and the number of harsh accelerations have all been determined as statistically
significant and positively correlated with the percentage of speeding. In the same context, riding
during the feedback phase of the experiment, as well as afternoon peak hours are statistically
significant and negatively correlated with speeding percentage.

Table 5.4: GLMM overall model for speeding behavior in all road network environments

Random Effects
Group Variable SD Variance
Identifier Intercept 0.9935 0.9870

duration 0.3397 0.1154
Fixed Effects
Variable Estimate Std. Error z value Pr(>|z|)
Intercept 1.898 0.276 6.874 <0.001
Rider Feedback -0.144 0.013 -10.911 <0.001
Trip duration 0.194 0.095 2.030 0.042
Harsh accelerations 0.246 0.005 53.127 <0.001
Risky hours 0.018 0.003 5.161 <0.001
Morning Rush 0.066 0.015 4.356 <0.001
Afternoon Rush -0.287 0.015 -18.826 <0.001
AIC 37114.1
BIC 37175.9
logLik -18547.1 s

Table 5.5: GLMM urban model for speeding behavior in urban environment

Random Effects
Group Variable SD Variance
Identifier Intercept 3.081 <0.001

duration 0.004 <0.001
Fixed Effects
Variable Estimate Std. Error z value Pr(>|z|)
Intercept 1.810 0.351 5.152 <0.001
Rider Feedback -0.031 0.011 -2.801 0.005
Trip duration 0.001 0.000 3.563 <0.001
Harsh accelerations - - -
Risky hours 0.006 0.013 7.279 0.001
Morning Rush 0.093 0.013 -22.969 <0.001
Afternoon Rush -0.303 0.351 5.152 <0.001
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AIC 54460.9
BIC 54516.4
logLik 27221.4

Table 5.6: GLMM rural model for speeding behavior in rural environment

Random Effects
Group Variable SD Variance
Identifier Intercept 3.081 <0.001

duration 0.004 <0.001
Fixed Effects
Variable Estimate Std. Error z value Pr(>|z|)
Intercept - 0.870 -0.689 -
Rider Feedback -0.420 0.019 22014 <0.001
Trip duration 0.003 0.001 2.819 0.004
Harsh accelerations 0.056 0.002 28.986 <0.001
Risky hours 0.019 0.002 8611 <0.001
Morning Rush 0.130 0.020 6.551 <0.001
Afternoon Rush -0.436 0.023 -19.270 <0.001
AIC 34576.3
BIC 34638.0
logLik -17278.2

The aforementioned results could be further interpreted, calculating the relative risk ratio of every
variable and thus measuring the increase in probability of speeding while riding. The exposure
metrics of trip duration, trip distance during risky hours and morning peak hours seem to increase
speeding percentage by a factor of exp(B=0.194) = 1.214, exp(B=0.018) = 1.018 and
exp(B=0.067) = 1.069 respectively for the overall model. The variables are found to have similar
significant effects both in urban and in rural areas. In other words, motorcyclists seem prone to
speeding while riding under circumstances that increase their impatience and/or stress such as long
trip durations, riding during hours of increased traffic conflicts, lane splitting, hurrying while
commuting, etc.

Additionally, the riding behavioral parameter of harsh accelerations increases speeding percentage
by a factor of 1.281 in the overall model, indicating the pattern of a stressful riding style. The
variable is not found statistically significant for the urban road model, but regarding rural riding,
the number of harsh accelerations seem to increase the speeding percentage by a factor of 1.060.

Providing motorcyclists with feedback about their riding performance during experiment Phase 2
led to a remarkable decrease of speeding percentage by 14.5%. Particularly, in the developed
models rider feedback seems to decrease speeding percentage, having a risk ratio of exp(B=-0.145)
= 0.865 for the overall model, and exp(B=-0.031) = 0.970 and exp(B=-0.420) = 0.657 for urban
and rural road types respectively. As explained above, during the feedback phase, riders received
personalized feedback regarding their weak points, namely speeding and aggressive riding (harsh
accelerations and harsh breakings) by means of a scorecard through the smartphone application.
Therefore, the quantification of the positive effect of rider feedback on riding performance
indicates new ways of improving road safety.
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Furthermore, the chart below depicts the random effects estimates for individual participants
(besmartmotousers) in the overall GLMM model analyzing speeding behavior, with "Trip
Duration" as a fixed effect and an intercept for each user. The random intercepts capture the
variability in baseline speeding tendencies among users, while the slopes associated with "Trip
Duration" indicate how the effect of trip duration varies across individuals. The spread and overlap
of the confidence intervals around the estimates suggest heterogeneity in individual driving
behaviors. Participants like besmartmotouser21 show a significant deviation in the intercept and
trip duration effect compared to others, highlighting potential individual-specific factors
influencing speeding behavior. This variability emphasizes the importance of including random
effects in the GLMM to account for individual differences in driver response.

-2 -1 0 1
1 1 1 1 1 1 1 1
(Intercept) Trip duration
besmartmotouser21 * *
besmartmotouserd . #
besmartmotouser!( i *
besmartmotouserf ¥ *
besmartmotousers * +*
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besmartmotouser? * *
besmartmotouser1s * *
besmartmotouseri * £
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besmartmotouser!t A Gz
besmartmotouser24 . -
besmartmotouser2? | —*— o

Figure 5.1: Random Intercepts and Random Slopes for total trip duration
5.1.4 Discussion of results

This section aimed: (i) to explore the riding behavior of motorcyclists while speeding based on
detailed riding analytics collected by smartphone sensors, and (ii) to investigate whether
personalized feedback can improve riding behavior. For that purpose, high-resolution smartphone
data collected from a naturalistic riding experiment with a sample of 13 motorcyclists were
utilized. Using risk exposure and riding behavior indicators calculated from smartphone sensor
data, a statistical analysis was carried out for correlating the percentage of riding time over the
speed limit with other riding behavior indicators, namely by means of Generalized Linear Mixed-
Effects Models. In particular, an overall model was developed for all trips, and additional separate
models were developed for riding on urban and rural roads.

The results from the interpretation of the estimated parameters of the models can be summarized
as follows: Trip length and riding during the morning rush and night-time risky hours are exposure
metrics significantly associated with the odds of speeding while riding. Harsh accelerations are
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also associated with the odds of someone exceeding the speed limits, outlining a pattern of an
overall unsafe riding behavior.

Furthermore, the outcomes of this study entail both scientific and social impacts. The present
research contributes a preliminary example of the quantitative documentation of the impact of
personalized rider feedback on one of the most important human risk factors; speeding. The
ultimate objective when providing feedback to riders is to: (i) trigger their learning and self-
assessment process, thus enabling them to gradually improve their performance and (ii) monitor
the shift of riding behavior as the application provides feedback. The present results capture and
quantify the positive effects of rider feedback, thus providing needed impetus for larger-scale
applications as well as relevant policy interventions. State-of-the-art interventions can include
approaches for driver or rider training and support through innovative rider behavior monitoring
and feedback tools for different types of riders, such as cyclists or motorcyclists.

The current lack of motorcycle instrumentation certainly limits the potential of detailed
multifaceted analysis. Nevertheless, the proposed methodology reaches noteworthy findings, even
though the riding exposure and behavior metrics are solely based on smartphone sensors and no
other methods, e.g. optical sensors. It is important to highlight that there is little or no previous
experience on analyzing and predicting rider speeding behavior through microscopic riding
behavior metrics collected from such a portable and low-cost device, and therefore the results of
the present research cannot be directly compared to those of the existing literature.

Furthermore, as already discussed, the calculation of the harsh events for motorcycles is based on
ML and data fusion algorithms, utilizing data from several smartphone sensors, after the
application of the appropriate filtering and data cleaning algorithms on the raw signals. These
algorithms evaluate the processed time series from the smartphone sensors of the complete trip.
Although the applied algorithms increase the accuracy of harsh events detection; by nature, they
do not include specific threshold values or explicit explanations that could be presented in the
existing section for verification purposes — nonetheless, some practical examples were illustrated.
Harsh events were treated as a given input of rider behavior for the investigation of their speeding
behavior; the examination of their definition or detection falls outside the scope of this research.

5.2 Feedback Impact on Distraction of Car Drivers of Phases 1 & 2

5.2.1 Introduction

Mobile phone use while driving has a significant negative effect on driving behavior in terms of
reaction time (Haque and Washington, 2014), vehicle lateral control (Niu et al., 2019), headway
(Saifuzzaman et al., 2015), speed variation (Wijayaratna et al., 2019). When engaging with a
mobile phone (hand-held or hands-free) drivers’ work load is highly increased resulting in
impaired driving performance. A plethora of studies have examined the impact of mobile phone
while driving on driving performance and some risk compensation behaviors have been observed,
namely lower driving speeds (Choudhary & Velaga, 2017) and increased car following headways
(Li et al., 2019). Nevertheless, the revealed compensatory behaviors do not necessarily result in
lower crash risk (O’Connor et al., 2017), highlighting the high importance of investigating the
distracted behavior due to mobile phone use while driving.
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However, it is also significant to underline that the context and circumstances in which drivers
decide to engage in mobile phone use (i.e. road geometry, presence of lead or following car, line
crossings, etc.) matter considerably. Tivesten & Dozza (2015) used video recordings of 1,432 trips
in order to investigate in which way the driving context influences driver’s decision of engagement
in visual-manual phone tasks. Researchers found that drivers were more likely to initiate a visual-
manual task while standing still (i.e. red traffic lights), and less likely when driving at high speeds.
Similar results occurred by the presence of a passenger. In addition, results showed that drivers
did adjust their task timing to specific driving contexts, such as when the lead vehicle increased
speed or after making sharp turns and lane change maneuvers.

In that environment, a recent study also investigated the relation between driving demands and
distraction using a naturalistic driving study dataset (Risteska et al., 2021). Results implicate the
role of the driving demands and their impact on secondary task engagements. Similarly, Khan et
al. (2021) analyzed driver distraction due to mobile phone use exploiting a multimodal dataset
consisting of vehicle data, drivers’ smartphone activities, and environmental and contextual data.
Going one step further, the researchers assessed existing driver distraction smartphone-based
solutions via maxed mode survey, i.e., questionnaires and interviews from 98 participant drivers.
Results showcase that future smartphone solutions should focus on the identification of driving
context and thus generate context-aware adaptive interfaces enhancing driver safety.

Monitoring distraction by means of smartphone devices is a quite new possibility which is gaining
more and more attraction due to the continuous development of new technologies in the field of
telecommunications industry. So far, many proposed systems have been introduced with the aim
of accurately monitoring driver distraction by exploiting various mobile phone sensors, such as
accelerometer and gyroscope, magnetometer, barometers, photometers, and thermometers,
microphone and cameras, etc. (Paruchuri & Kumar, 2015; Nambi et al., 2018; Papadimitriou et al.,
2019).

As an example, Bo et al. (2013) used personal smartphones by leveraging inertial sensors in order
to detect the engagement of mobile phone use while driving. Particularly, the researchers aimed at
distinguishing drivers and passengers and detecting when the driver is texting through a Hidden
Markov Model (HMM). The results of their study revealed that their proposed system titled
“TEXIVE” had an 87.18% accuracy and a 96.67% precision. Similarly, Streiffer et al. (2017)
proposes a unified data collection and analysis framework, titled “DarNet” which allows the
detection and classification of distracted driving behavior. The proposed system collects two kinds
of data; image data from a facing camera and Inertial Measurement Unit (IMU) data from
smartphone sensors. Implementing deep learning techniques, they achieved 87.02% accuracy in
detecting distracted driving. The smartphone camera has also been used in prior work (Wesley et
al., 2010; Shabeer & Wahidabanu, 2012). Nambi et al. (2018) used both smartphone cameras in
order to monitor distracted driving; the front camera for driver monitoring and the back camera
for driver behavior monitoring.

In that context, the purpose of this study is to examine the impact of feedback on the use of mobile
phone use in different environments.
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5.2.2 Descriptive statistics and preliminary analysis

Overall, during the first two phases of the experiment, 26,619 trips from a sample of 147 car drivers
have been recorded. However, for the present analysis it was decided that the final sample should
consist of drivers who have participated equally in both phases only. An additional criterion was
set; all drivers chosen to be included in the analysis were required to have driven at least for 40
trips. This number approximately equals the typical monthly number of working trips for a driver
assuming that each driver drives 2 trips per day for 5 working days per week. This number is
reasonable to filter out drivers for which there are not enough observations, and it is also the
'industrial' criterion set by OSeven to start providing driver evaluation. As a result, from the 147
car drivers, 65 were ultimately selected creating a large dataset of 21,167 trips. Demographic
information regarding the drivers’ gender and age are shown in Table 6.1.

Table 5.7: Overview of the selected sample

Age groups
<25 25-55 >55 Total%
Male 0 27 3 46%
Female 3 31 1 54%
Total % 5% 89% 6% 100%

The key indicator, and response variable for the purpose of this research is the use of mobile phone
while driving during the two first experiment phases. Additional basic road safety indicators (i.e.
possibly suggesting risky or reckless behavior) are the following: exceeding the speed limit
(percentage of time driving over the speed limits per trip driving duration), and mobile usage
(percentage of driving time using the mobile phone per trip driving duration). On the basis of the
literature review results, it is assumed that the occurrence of harsh events is partly correlated with
drivers’ speeding behavior and mobile phone use, and thus some of its variance may be explained
by changes in those variables.
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Figure 5.2: Average percentage of mobile phone use per road type

Figure 5.2 compares the mean values of mobile phone use across two experimental phases (Phase
1 and Phase 2) and further disaggregates the data by road types: urban, rural, and highway. In both
phases, the overall mean mobile phone use percentage and mean values for urban and rural roads
are substantially higher compared to highway conditions. A notable trend is the reduction in mean
values from Phase 1 to Phase 2 across all categories, suggesting an improvement in distracted
driving behavior over time or due to intervention effects. Urban areas consistently exhibit higher
mean values than rural and highway, indicating more frequent mobile phone use in these
environments, likely due to more stops due to driving. Highway conditions show the lowest mean
value in both phases, which seems logical, taking into consideration the driving pattern in
highways; longer distances covered and high speeds developed.

5.2.3 Generalized Linear Mixed Effects Models for mobile phone use

In order to model the expected percentage of mobile phone use while driving per trip for the
participant drivers, mixed-effect models in a GLM framework (GLMMSs) were calibrated.
Specifically, GLMMs were fitted in R-studio (with the Ime4 package) via maximum likelihood
and using z-factor scaling. A number of models were tested with different configurations in the
collected parameters in both fixed effects and random effects. Furthermore, it is important to note
that the sample consists of driver trips, as opposed to drivers directly, thus allowing the training of
statistically robust models.

The selected variables were chosen after taking into account the following: lowest Akaike
Information Criterion (AIC) for dealing with the trade-off between the goodness of fit of the model
and the simplicity of the model, high statistical significance of variables, low multicollinearity, and
finally rational interpretation of their impact on the dependent variable. After conducting log-
likelihood test ANOVA comparisons, the most informative configuration of random effects was
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included both random intercepts and random slopes in the GLMMs to capture unique rider traits.
Table 5.8 provides a description of the parameters of the models.

Table 5.8: Log-likelihood comparison of mixed effect configuration for mobile phone use while driving
in all road network environments

Model Model D.f. x> P(>x?)

Family Configuration AIC BIC logLik

GLM Fixed effects only 7 - -
[baseline] 267329 267385 -133658

GLMM  Fixed effects & 8 <2e-16
Random Intercepts 193060 193123 -96522  74271.3

GLMM Fixed effects, 10 <2e-16
Random Intercepts
& Random Slopes 191573 191652 -95777 14909

The analysis of mobile phone use while driving reveals critical insights into the effectiveness of
feedback and other predictors across various driving environments. The comparison of models in
Table 5.8 highlights the importance of accounting for individual variability. The baseline fixed-
effects model showed a poor fit (AIC = 267,329), while the inclusion of random intercepts
significantly improved the model (AIC = 193,060). Introducing random slopes for trip duration
further enhanced the model's performance (AIC = 191,573), indicating that the influence of trip
duration varies significantly among drivers. The Table 5.9, Table 5.10, Table 5.11, Table 5.12
present the results of the final models, namely the overall model, urban, rural and highway.

Table 5.9: GLMM overall model for mobile phone use while driving in all road network environments

Random Effects
Group Variable SD  Variance
Identifier Intercept 1.4024 1.9667

duration 0.2827 0.0799
Fixed Effects
Variable Estimate  Std. Error z value Pr(>|z|)
Intercept 0.6528 0.1754 3.7220 0.0002
Driver Feedback -0.4276 0.0081  -52.5660 <2e-16
Trip duration 0.1514 0.0374 4.0440  5.25¢-05
Harsh accelerations 0.0424 0.0034 12.4380 <2e-16
Risky hours -0.0543 0.0046  -11.6940 <2e-16
Morning Rush -0.3390 0.0124  -27.4020 <2e-16
Afternoon Rush 0.1586 0.0089 17.9030 <2e-16
AIC 191573.2
BIC 191652.3
logLik -95776.6

In the overall model (Table 5.9), feedback emerges as a strong and significant factor in reducing
mobile phone use while driving (Estimate =—0.4276, p<2e—16), demonstrating its efficacy in
mitigating phone use during driving. Longer trip durations and harsh accelerations were associated
with increased MBU, while risky hours and morning rush periods reduced mobile phone use while
driving, possibly reflecting heightened caution during these times. The substantial variability in
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random intercepts (SD=1.4024) suggests notable differences in baseline mobile phone use while
driving levels among drivers, while moderate variability in trip duration (SD=0.2827) highlights
differences in how trip length affects mobile phone use while driving behavior.
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Figure 5.3: Random intercepts and random slopes for total trip duration for the overall model

Figure 5.4 presents the random effects estimates from the overall model - analyzing mobile phone
use while driving across all road network environments. The left panel displays the variability in
baseline mobile phone use (intercepts) among participants, indicating substantial heterogeneity,
with some drivers showing consistently higher or lower likelihoods of using their phones while
driving. The right panel illustrates the impact of trip duration (duration.s) on mobile phone use,
with most drivers showing little effect (estimates clustered near zero), though a few participants
exhibit notable increases or decreases in phone use with longer trips. The spread of estimates and
confidence intervals highlights significant individual differences in behavior, underscoring the
importance of modeling random effects to capture variability in mobile phone usage influenced by
personal habits, trip characteristics, or external factors.

In urban environments (Table 5.10), feedback remains a significant deterrent to mobile phone use
while driving (Estimate=—0.3687, p<2e—16), though its effect is slightly reduced compared to the
overall model. Urban-specific dynamics, such as frequent stop-and-go driving, may explain this
reduced impact. Risky hours (Estimate=—0.3298, p<2e—16) showed a stronger protective effect in
urban settings, indicating that drivers might be more vigilant in complex traffic conditions.
Interestingly, harsh accelerations had a slight negative association with mobile phone use while
driving, contrary to other contexts, potentially reflecting heightened attention during abrupt driving
maneuvers.
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Table 5.10: GLMM model for mobile phone use while driving in urban environment

Random Effects
Group Variable SD Variance
Identifier Intercept 1.3711 <0.001

duration 0.0008 <0.001
Fixed Effects
Variable Estimate  Std. Error z value Pr(>|z|)
Intercept 0.4750 0.1721 2.7590 0.0058
Rider Feedback -0.3687 0.0083  -44.2790 <e-16
Trip duration 0.0004 0.0001 3.9160 9¢-05
Harsh accelerations -0.0131 0.0013 -9.8620 <e-16
Risky hours -0.3298 0.0124  -26.6670 <e-16
Morning Rush 0.1533 0.0088 17.3810 <e-16
Afternoon Rush 0.4750 0.1721 2.7590 0.0058
AIC 214914.1
BIC 214985.3
logLik -107448.0

In rural environments (Table 5.11), the effect of feedback is weaker than in urban areas
(Estimate=—0.1180, p<2e—16) indicating that rural drivers may be less responsive to interventions.
Trip duration and harsh accelerations both showed positive associations with mobile phone use
while driving, consistent with overall findings. However, risky hours and morning rush periods
continued to reduce MBU, reinforcing the protective effects of these time-specific factors. The
greater variability in random intercepts (SD=1.6843) suggests that rural drivers exhibit more
diverse baseline behaviors compared to urban counterparts.

Table 5.11: GLMM model for mobile phone use while driving in rural environment

Random Effects
Group Variable SD Variance
Identifier Intercept 1.6843 <0.001

duration 0.0007 <0.001
Fixed Effects
Variable Estimate  Std. Error z value Pr(>|z|)
Intercept -0.2269 0.2102 -1.0790 0.2810
Rider Feedback -0.1180 0.0095  -12.4290 <2e-16
Trip duration 0.0008 0.0001 8.5510 <2e-16
Harsh accelerations 0.0511 0.0044 11.5500 <2e-16
Risky hours -0.0114 0.0012 -9.5000 <2e-16
Morning Rush -0.2634 0.0136  -19.3220 <2e-16
Afternoon Rush 0.1624 0.0104 15.6600 <2e-16
AIC 191416.0
BIC 191495.1
logLik -95698.0

The highway model (Table 5.12) presented an unexpected outcome: feedback was positively
associated with MBU (Estimate=0.5490, p<2e—16). This counterintuitive result suggests that
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feedback mechanisms may inadvertently encourage compensatory behaviors, or that drivers
perceive lower risks on highways. Trip duration had the strongest positive effect on mobile phone
use while driving in this model (Estimate=0.6892, p=0.0049), aligning with the prolonged
exposure to driving conditions. Risky and rush hour periods continued to have protective effects,
consistent with the notion of increased driver caution in these contexts.

Table 5.12: GLMM model for mobile phone use while driving in highways

Random Effects
Group Variable SD Variance
Identifier Intercept 3.536 12.506

duration 1.931 3.731
Fixed Effects
Variable Estimate Std. Error z value Pr(>|z|)
Intercept -4.1676 0.4586 -9.0880 <2e-16
Rider Feedback 0.5490 0.0235 23.4120 <2e-16
Trip duration 0.6892 0.2451 2.8120 0.0049
Harsh accelerations 0.0883 0.0055 16.0250 <2e-16
Risky hours -0.0653 0.0097 -6.7170 0.0000
Morning Rush -0.4071 0.0281  -14.4940 <2e-16
Afternoon Rush -0.4439 0.0285  -15.5990 <2e-16
AIC 59690.4
BIC 59769.5
logLik -29835.2

Overall, the findings emphasize the critical role of feedback in reducing mobile phone use while
driving but also highlight the need for context-specific interventions. While feedback is broadly
effective in urban and rural environments, its limitations on highways underscore the need for
alternative strategies, such as dynamic feedback or stricter enforcement. These insights provide a
foundation for designing tailored policies to enhance road safety and mitigate distracted driving.

5.2.4 Discussion of results

This present research aimed to investigate the impact of mobile phone use on driving behavior and
road safety through the investigation of driving analytics collected by smartphone sensors. In order
to achieve that objective, a naturalistic driving experiment was carried out in order to examine
distracted driving as expressed by the use of mobile phone while driving. Results substantiate
correlations of mobile phone use with specific exposure and driving behavior indicators.

The examination of mobile phone use while driving across different driving environments and
models underscores the importance of tailored interventions to address distracted driving.
Feedback mechanisms have demonstrated consistent effectiveness in reducing MBU in overall,
urban, and rural contexts, but their impact varies by setting, with reduced effectiveness in rural
areas and an unexpected positive association on highways. These findings highlight the complexity
of driver behavior and the influence of environmental factors on feedback efficacy. To maximize
the benefits of such interventions, future policies should focus on refining feedback systems to
account for contextual differences, leveraging dynamic adjustments, and integrating
complementary strategies such as education, enforcement, and technology-based solutions. By
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addressing the unique characteristics of each driving environment, these measures can contribute
to significant reductions in MBU and improvements in overall road safety.
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6 Feedback Impact on Harsh Events

6.1 Feedback Impact on Harsh Events of Car Drivers of Phases 1 & 2
6.1.1 Introduction

Driving behavior is influenced by a range of factors, including individual tendencies,
environmental conditions, and external interventions. Among these, feedback mechanisms have
emerged as a valuable tool for modifying driver behavior and reducing risky driving practices.
Harsh events, such as sudden accelerations, harsh braking, and abrupt maneuvers, are critical
indicators of driving safety (Nikolaou et al., 2023). Understanding the impact of feedback on these
events is essential for designing effective interventions aimed at promoting safer driving habits.
By examining the relationship between feedback and harsh events, this section provides insights
into how targeted interventions can enhance driver safety.

Although both harsh accelerations and harsh brakings are associated with unsafe driving behavior,
they constitute two different types of events and should therefore examined as such. More
specifically, harsh acceleration events may reveal high levels of anxiety and anger while driving
(Stephens et al., 2009; Roidl et al., 2014) leading to a risky driving behavior characterized by
drivers’ involvement in situations of high risk. Harsh brakings may indicate driver struggle to
anticipate the occurrence of a critical situation, which most of the times would not have occurred
at the first place if it were not for driver’s inattention, high speed development, inadequate
distances from adjacent vehicles and other unsafe behavior indicators. As a result, harsh breaking
events harsh are often used to locate safety critical events in Naturalistic Driving (ND) data
(Hanowski et al., 2005; Jansen & Wesseling, 2018).

Additionally, given the strong correlation between harsh events and driving risk, it is not surprising
why harsh accelerations and harsh brakings have been investigated by insurance industry in the
context of usage-based motor insurance (UBI) schemes (Boquete et al., 2010; Paefgen et al., 2013),
allowing for more behavioral parameters being used in UBI models. Harsh events, in combination
with other driving behavioral indicators such as speeding and distracted driving are being
increasingly used by Pay How You Drive (PHUD) Usage Based Insurance schemes as the critical
risk factor indicators in terms of driving behavior (Tselentis et al., 2017).

6.1.2 Descriptive statistics and preliminary analysis

Overall, during the first two phases of the experiment, 26,619 trips from a sample of 147 car drivers
have been recorded. However, for the present analysis it was decided that the final sample should
consist of drivers who have participated equally in both phases only. An additional criterion was
set; all drivers chosen to be included in the analysis were required to have driven at least for 40
trips. This number approximately equals the typical monthly number of working trips for a driver
assuming that each driver drives 2 trips per day for 5 working days per week. This number is
reasonable to filter out drivers for which there are not enough observations, and it is also the
'industrial' criterion set by OSeven to start providing driver evaluation. As a result, from the 147
car drivers, 65 were ultimately selected creating a large dataset of 21,167 trips. Demographic
information regarding the drivers’ gender and age are shown in Table 6.1.

129



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism

Table 6.1: Overview of the selected sample

Age groups
<25 25-55 >55 Total%
Male 0 27 3 46%
Female 3 31 1 54%
Total % 5% 89% 6% 100%

The key indicator, and response variable for the purpose of this research is the frequency of harsh
acceleration and harsh braking events during the two first experiment phases. Additional basic road
safety indicators (i.e. possibly suggesting risky or reckless behavior) are the following: exceeding
the speed limit (percentage of time driving over the speed limits per trip driving duration), and
mobile usage (percentage of driving time using the mobile phone per trip driving duration). On the
basis of the literature review results, it is assumed that the occurrence of harsh events is partly
correlated with drivers’ speeding behavior and mobile phone use, and thus some of its variance

may be explained by changes in those variables.

Table 6.2 provides a description of the variables selected. Regarding the harsh event frequencies,
it is noted that both during Phase 1 and Phase 2 drivers seem to incur more harsh brakings than

harsh accelerations during their trip.

Table 6.2: Description of the variables used in the analysis

Variable Description

Total Trip Duration [s]
Total Trip Distance [km]

Total trip duration [sec]
Total trip distance [km]

Average Speed [km/h] Mean driving speed per trip [km/h]
Maximum Speed [km/h] Maximum of driving speed per trip [km/h]
Percentage of Mobile Use Duration [%] Share of mobile use per trip [%]

Percentage of Speeding Duration [%] Share of time over the speed limit per trip [%]

Harsh accelerations [count]
Harsh brakings [count]

Harsh acceleration events per trip [count]
Harsh braking events per trip [count]

The descriptive statistics of the parameters that were recorded per trip for both experiment phases

are shown in Table 6.3 for Phase 1 and Table 6.4 for Phase 2.

Table 6.3: Descriptive statistics of the per trip values of the variables recorded for Phase 1

Variable Mean Minimum  Median Maximum  St. Dev.
Total Trip Duration [s] 992.55 61.00 696.00 17642 1051.86
Total Trip Distance [km] 10.17 0.50 4.8.00 387.20 20.14
Average Speed [km/h] 37.27 14.00 33.00 59.00 15.35
Maximum Speed [km/h] 68.64 19.00 64.00 206.00 26.68
Percentage of Mobile Use  4.00 0.00 0.00 93.80 10.00
Duration [%]

Percentage of Speeding 5.00 0.00 1.00 70.00 9.00
Duration [%]

Harsh accelerations 0.76 0.00 0.00 19.00 1.52
[count]

Harsh brakings [count] 1.51 0.00 1.00 33.00 2.34
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Table 6.4: Descriptive statistics of the per trip values of the variables recorded for Phase 2

Variable Mean Minimum  Median Maximum  St. Dev.
Total Trip Duration [s] 950.00 61.00 687.00 11349.00 904.81
Total Trip Distance [km] 8.25 0.50 4.30 325.50 14.09
Average Speed [km/h] 34.55 14.00 30.00 56.35 14.07
Maximum Speed [km/h] 64.90 18.00 59.00 228.00 26.42
Percentage of Mobile Use  3.00 0.00 0.00 93.20 10.00
Duration [%]

Percentage of Speeding 3.00 0.00 0.00 65.00 7.00
Duration [%]

Harsh accelerations [count] 0.67 0.00 0.00 21.00 1.36
Harsh brakings [count] 1.36 0.00 1.00 27.00 2.20

For further investigation, the differences between the two Phases were also explored with t-tests
based on the drivers’ trips during Phase 1 and Phase 2, respectively. A t-test analysis, based on the
65 selected drivers’ trips, rejected the null hypothesis that both distributions of harsh events have
an equal mean, demonstrating that the decrease in harsh events to be significant; both harsh
accelerations (t-stat = 4.90, p < 0.001) and harsh brakings (t-stat = 4.82, p < 0.001). Additionally,
results reveal that both the average speed (t-stat = 13.417, p < 0.001) and the maximum mean
speed (t-stat = 10.25, p < 0.001) seem to be statistically significantly reduced during Phase 2 of
the experiment. This also applies to the percentage of time driving over the speed limits per trip
driving duration, taking into consideration the significant reduction of the particular variable,
namely from 5% to 3% (t-stat = 17.63, p < 0.001). Finally, although the percentage of time using
the mobile phone per trip driving duration is also found to be reduced in Phase 2 of the experiment,
from 4% to 3%, the reduction is not statistically significant (t-stat = 1.15, p = 0.248).

6.1.3 Generalized Linear Mixed-Effects Models for harsh events

In order to model the expected frequency of events per trip for the participant drivers, models in a
GLM framework were calibrated, as previously explained. Since the BeSmart application allows
for a high resolution, big-data oriented collection scheme, it was attempted to include random
effects in order to capture the unique driving behavior traits for each driver. This entails having a
critical minimum sample of trips for each driver to achieve a meaningful outcome. Therefore, a
screening was made among participant drivers, as described above, and drivers that had over 40
trips each were selected for the GLMM analysis.

GLMMs were fitted in R-studio (with the Ime4 package) via maximum likelihood and using z-
factor scaling, following Bates et al. (2014). A number of models were tested with different
configurations in the collected parameters in both fixed effects and random effects. The Poisson
function with the log-odds link function was implemented. After conducting log-likelihood test
(ANOVA) comparisons, the most informative configuration of random effects was the inclusion
of both random intercepts and random slopes in the GLMMs to capture unique driver traits (lowest
LogLikelihood and highest y?). It should be noted that conceptually, for harsh event frequencies,
random slope models without random intercepts make little sense and are thus avoided.

Results of mixed effect configuration are shown on Table 6.5 for harsh accelerations and on Table
6.5for harsh brakings:
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Table 6.5: Log-likelihood comparison of mixed effect configuration for harsh acceleration models for

both phases
Experiment Model Model D.f. LogLikelihood x> P>x?) Sig.
Phase Family Configuration
Phase 1 GLM Fixed effects only 6 -11078.6 - - -
[baseline]
GLMM  Fixed effects & 7 -9929.5 2298.34 <2e-16 ***
Random Intercepts
GLMM  Fixed effects, 9 -9860.8 13735 <2e-16 ***
Random Intercepts
& Random Slopes
Phase 2 GLM Fixed effects only 6 -10639.5 - - -
[baseline]
GLMM  Fixed effects & 7 -9787.4 1704.32 <2e-16 ***
Random Intercepts
GLMM  Fixed effects, 9 -9741.7 91.34 <2e-16 ***
Random Intercepts
& Random Slopes

Significance codes: “***’: 0.000 | “**’: 0.001 | “*’: 0.01 | *.>: 0.05|“*: > 0.1

Table 6.6: Log-likelihood comparison of mixed effect configuration for harsh braking models

Experiment Model Model D.f. LogLikelihood x2 Pyx?) Sig.
Phase Family Configuration
Phase 1 GLM Fixed effects only 5 -15634 - — -
[baseline]
GLMM Fixed effects & 6 -14352  2565.04 <2e-16 ***
Random Intercepts
GLMM  Fixed effects, 8 -14158  388.04 <2e-16 ***
Random Intercepts &
Random Slopes
Phase 2 GLM Fixed effects only 5 -15588 - — -
[baseline]
GLMM  Fixed effects & 6 -14045 3086.73 <2e-16 ***
Random Intercepts
GLMM Fixed effects, 8 -13965  159.73 <Q2e-16 ***

Random Intercepts &

Random Slopes

Significance codes: “***’: 0.000 | “**’: 0.001 | “*’: 0.01 | <.>: 0.05] “’: > 0.1

The final models were selected as the ones with the lowest AIC values. Fixed effect results appear
on Table 6.7 for harsh acceleration frequencies and on Table 6.8 for harsh braking frequencies. A
dash sign (') on the tables indicates that the specific variable was not used in the particular model.
Furthermore, taking into account the value range of the examined data, the models do not yield
any negative predictions, thus leading to no concerns for the negative value of the intercept which

describes residual unexplained variance.
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Table 6.7: GLMMs for harsh acceleration frequencies of 65 drivers (fixed effects)

GLMM for Phase 1 GLMM for Phase 2

Trip Relative Relative
characteristic Estimate s.e. p-value Sig. Risk Estimate s.€. p-value Sig. Risk

Ratio Ratio
Intercept -0.927  0.091 0.000  ***  0.395 -1.127  0.085 0.000  *** 0.324
g@i’;ﬁ“m 0321  0.022  0.000 *** 1378 | 0412 0021  0.000 *** 1509
Percentage of
Speeding 0.074 0.013  0.000  *** 1.076 0.035 0.012 0.003 o 1.035
Duration
Percentage of
Mobile Use 0.042 0.011 0.000  *** 1.042 - - - - -
Duration
pos(IOLlTiD g 48 0051 0.000 #2334 | 0729 0050 0000 ** 2,073
uration)
Log(Total Trip 531 0050 0.000 ** 0793 | -0.087 0046 0047 * 0916
Distance)

Significance codes: ‘***’: 0.000 | “**°: 0.001 | “*’: 0.01 | <. 0.05| * *: > 0.1

Table 6.8: GLMMs for harsh braking frequencies of 65 drivers (fixed effects)

GLMM for Phase 1 GLMM for Phase 2

Trip Relative Relative
characteristic Estimate s.e. p-value Sig. Risk Estimate s.e. p-value Sig. Risk

Ratio Ratio
Intercept -0.182  0.067 0.006 **  0.833 | -0313 0.075 0.000 ***  0.731
g/g‘e’;ﬁnum 0327 0016  0.000 * 1387 | 0331  0.015 0000 ** 1395
Percentage of
Speeding 0.097  0.010  0.000 *** 1102 | 0.081  0.009 0.000 *** 1084
Duration
Log(Total Trip  ge5 0,045 0,000 *** 2423 | 0723 0038 0000 *** 206l
Duration)
Log(TowlTrip 598 0036 0000 * 0742 | -0082 0033 0015 * 0921
Distance)

Significance codes: “***’: 0.000 | “**’: 0.001 | “*’: 0.01 | <.>: 0.05| “ *: > 0.1

Modelling results regarding the harsh acceleration frequencies reveal some interesting findings;
the parameters of maximum speed, percentage of speeding duration and total trip duration have all
been determined as statistically significant and positively correlated with harsh acceleration
frequencies for both experiment phases. In the same context, total trip distance is statistically
significant and negatively correlated with harsh acceleration frequencies for both experiment
phases as well. Mobile use duration was found statistically significant only for Phase 1 with a
small positive correlation.

More specifically, the aforementioned results could be further interpreted by calculating the
relative risk ratio of every variable and thus measuring the increase in log-odds of the harsh
acceleration frequencies. Maximum driver speed increases the frequencies of harsh accelerations;
the effect appears to be higher in Phase 2 than Phase 1, as the respective estimates are 0.412 and
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0.321, corresponding to risk ratios (in other words, incidence rate ratios for frequency frequencies)
of 1.509 and 1.378. Exceeding the speed limit seems to increase the odds of harsh acceleration
frequencies. A possible explanation is that certain drivers develop high driving speeds, reaching
higher than the speed limit, they accelerate in a more abrupt way, allowing the application to detect
a harsh acceleration event. In other words, overly aggressive drivers do not only exceed speed
limits, they do so by accelerating harshly. When comparing the two phases, it is found that the
effect of exceeding the speed limit is higher in Phase 1 than in Phase 2, with respective estimates
0f 0.074 and 0.035, corresponding to risk ratios of 1.076 and 1.035, respectively.

Regarding the effect of mobile use while driving, it appears that 1% of mobile use duration per
trip increases harsh acceleration event frequencies by 4% which makes it the least impactful
variable among the examined ones, based on the respective estimate of 0.042. The fact that mobile
phone use was not found significant for Phase 2 may be interpreted by the aforementioned
reduction of the specific parameter during the two phases. Overall, it is noteworthy that all
examined behavioral parameters (namely speed, percentage of speeding and mobile phone
duration) are positively correlated with harsh acceleration frequencies, confirming the strong
correlation between harsh events and unsafe driving behavior.

As for the exposure parameters (trip distance and duration), there is a remarkable finding similar
for both experiment phases. Trip duration seems to increase the odds of harsh acceleration
frequencies; 1 sec of driving time increases acceleration frequencies by 2.3 and 2.1 times in Phase
1 and 2, respectively; risk ratios originating from parameter estimates of 0.848 and 0.729,
respectively. However, the exposure parameter of total trip distance was found to be negatively
associated with the odds of higher harsh acceleration counts, possibly because drivers may be
prepared more effectively, physically and psychologically, when they are aware of the fact that
they will cover a long distance. More precisely, a single unit of total trip distance travelled appears
to reduce harsh acceleration counts by a lower degree in Phase 2 compared to Phase 1, as the
respective estimates are -0.087 and -0.231, corresponding to risk ratios of 0.916 and 0.793.

With respect to harsh braking events, apart from the mobile use variable, all the other variables,
both driving behavioral and exposure ones, seem to have effects that are similar to the ones they
have on the harsh acceleration events. The occurred finding is more obvious when it comes to both
exposure parameters; trip distance and duration, where the effects appear to be identical.
Specifically, trip duration appears to increase the odds of harsh braking frequencies; 1 sec of
driving time increases braking frequencies by 2.4 and 2.1 times in Phase 1 and 2, respectively; risk
ratios originating from parameter estimates of 0.885 and 0.723, respectively. On the other hand,
similarly to the harsh acceleration models, the exposure parameter of total trip distance was found
to be negatively associated with the odds of higher harsh braking counts; the effect seems higher
in Phase 1 compare to Phase 2, as the respective estimates are -0.298 and -0.082, corresponding to
risk ratios of 0.742 and 0.921.

The examined behavioral parameters, namely the parameters of maximum speed and percentage
of speeding duration, have all been positively correlated with harsh braking frequencies for both
experiment phases. Maximum driving speed increases the frequencies of harsh brakings; the effect
appears to be similar for both Phases, as the respective estimates are 0.327 for Phase 1 and 0.331
for Phase 2, corresponding to risk ratios of 1.387 and 1.395, respectively. In the same context,
exceeding the speed limit appears to increase the odds of harsh braking frequencies; the effect
appears to be higher in Phase 1 than Phase 2, as the respective estimates are 0.097 and 0.081,
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corresponding to risk ratios of 1.102 and 1.084. As already mentioned in the harsh accelerations
models, aggressive driving, expressed by higher driving speeds and higher percentage of speeding
while driving, increases harsh braking frequencies, confirming once again the close relationship
between harsh events and unsafe driving behavior. The absence of mobile phone use in the
statistical model could be interpreted by the fact that drivers reduce speed while distracted, and
therefore are less prone to harsh brakings. In other words, drivers decelerate in order to compensate
for the distraction from mobile use, so they have the ability to brake normally and avoid harsh
braking.

The visual representations of values of random intercepts and random slopes for the log of total
trip duration per driver for both Phase 1 and Phase 2 are shown in the constructed caterpillar plots
below for harsh acceleration frequencies (Figure 6.1) and for harsh braking frequencies (Figure
6.2), respectively. Personal differences per driver from the fixed effect intercept and slope are thus
included in the linear predictor.

To visualise these results, driver-level deviations are shown relative to the mean (0.00; vertical
gray line) with 95% confidence intervals around each intercept (blue circle). With respect to harsh
acceleration frequencies, shown on Figure 6.1, the visual comparison of the intercept estimates
illustrates that overall prediction averages in Phase 1 are similar to the ones of Phase 2. This is an
indication that the unexplained variance for harsh acceleration occurrence is somewhat constant
for each driver between the two Phases. Estimates for random slope effects of the log of total trip
duration show a more erratic effect during Phase 1 comparted to Phase 2. In Phase 1, the impact
of total duration on harsh acceleration counts appears to be mathematically higher for certain
drivers. In practice, this indicates that there are certain individuals for whom total trip duration
plays very different roles for harsh acceleration occurrence when they are not provided with
feedback, a trend that greatly diminishes when feedback is provided.
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Figure 6.1: Random Intercepts and Random Slopes for log(total trip duration)
[Both in the GLMM for harsh acceleration frequencies during Phase 1 (left) and Phase 2 (right)]

However, different observations are drawn from the caterpillar plots when examining harsh
braking frequencies, shown on Figure 6.2. The visual comparison of intercept estimates illustrates
that prediction averages in Phase 2 overlap by a larger degree than in Phase 1. Furthermore, the
gradient when connecting the blue data points of intercepts is steeper for Phase 2 if one takes the
reduced range of the x-axis into account. Estimates for random slope effects of the log of total trip
duration show little difference across the two Phases. It seems that the provision of feedback in
Phase 2 led to overall reductions of harsh braking events per trip duration unit if the driver sample
is examined on an aggregate level. Nonetheless, these reductions seem to have a certain amount
of divergence across individual drivers.

As previously stated, the personal differences are captured in the random effects of the GLMMs.
These differences may be parameters unobserved in the present models such as driver age,
experience, aggressiveness, alertness and performance levels and other similar human factors.
Since the dependent variables are harsh event frequencies, which also depend on the road
environment, additional parameters which may affect harsh event occurrence can be thought to be
integrated therein as well. Examples include temporal and spatial headways and more unforeseen
events such as traffic conflicts or the presence of obstacles.
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Figure 6.2: Random Intercepts and Random Slopes for log(total trip duration)
[Both in the GLMM for harsh braking frequencies during Phase 1 (left) and Phase 2 (right)]

6.1.4 Discussion of results

This section aimed to investigate the impact of detailed trip characteristics on the frequency of
harsh acceleration and harsh braking events recorded by smartphone sensors. In order to achieve
that objective, an ongoing naturalistic driving experiment was carried out within the framework of
the BeSmart project in order to examine driving behavior as expressed by the frequencies of harsh
accelerations and harsh brakings. In the present research, the first two phases were considered;
Phase 1, where participants were asked to drive in the way they usually did, without receiving any
feedback on their driving behavior and Phase 2, where participants were provided with
personalized feedback, a trip list and a scorecard regarding their driving behavior, allowing them
to identify their critical deficits or unsafe behaviors.

Generalized Linear Mixed-Effects Models were fitted to the trips of 65 car drivers who made
frequent trips during both experiment phases in order to model the frequencies of harsh
acceleration and harsh braking events. Results reveal correlations of harsh event frequencies with
specific driving behavior and exposure metrics, at a more detailed level than existing studies (e.g.
exceeding speed limit, trip duration). More specifically, results indicate that maximum speed, the
percentage of speeding duration and total trip duration are positively correlated with both harsh
acceleration and harsh braking frequencies. On the other hand, the exposure metric of total trip
distance was found to be negatively correlated with both harsh event types.
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Results for Phase 1 and Phase 2 indicate that both types of harsh events are influenced by the same
explanatory variables, with the exception of mobile use while driving, which is found statistically
significant only for harsh acceleration models for Phase 1 of the experiment. Additionally, for the
majority of the variables, coefficient values seem to change between the two experiment phases in
a similar direction for both harsh acceleration and harsh braking events. Specifically, the effect of
speeding was found to be higher for the frequency of harsh events in Phase 1 than Phase 2. On the
contrary, the effect of maximum drive speed is higher in Phase 2 than Phase 1 for both acceleration
and braking events. A similar pattern is noticed for the exposure parameters, as it seems that trip
duration effect is higher in Phase 1 than Phase 2, while trip distance effect was found higher in
Phase 2 than in Phase 1, for both types of events.

Although initial findings from descriptive statistics suggest that drivers improved their driving
behavior with regards to all the recorded driving behavior metrics, namely maximum driver speed,
percentage of speeding duration and using the mobile phone duration, the application of suitable
statistical methodologies for before-after evaluation leads to more reliable and accurate results. As
the experiment progresses, different types of personalized feedback will be communicated to all
drivers allowing them to identify their critical deficits or unsafe behaviors, while incentives within
a social gamification scheme, with personalized target setting, benchmarking and comparison with
peers will also be developed and provided through the smartphone application.

Alternative approaches to frequency modelling, such as the modelling of harsh event rates (harsh
events per km), were considered. However, due to the nature of the data, they were ultimately
discarded. Linear modelling led to negative predictions and very poor independent variable and
overall model fits. Additionally, trips with zero harsh events in the dataset did not allow for log-
normal transformations, and their subsequent removal would bias results. This section does not
explicitly focus on the evaluation of the effectiveness of driver feedback on improving driving
behavior and increasing road safety levels from the smartphone application; this will be the
dedicated focus of future research. It should be mentioned that this analysis is macroscopic overall,
and should be treated as a high-level behavioral investigation. Within the present approach, there
is no option to statistically examine if mobile phone use was exactly simultaneous with harsh
events, but only to verify that they both occurred within the same trip. In other words, the temporal
coincidence of data was not considered. Addressing these limitations will require the development
of additional dedicated methodologies in the future, and the examination of in-depth datasets
analyzing each trip per trip-second.

6.2 Feedback Impact on Harsh Events of Professional Drivers on Highways
of Phases 4 & 5

6.2.1 Introduction

Road accidents are the leading cause of death from work-related accidents in industrialized
countries. For truck, coach, and company car drivers, fatigue and speeding are the most common
causes of accidents. (Professional Drivers | Mobility and Transport). Yuan et al. (2021) analyzed
the risk factors associated with truck-involved fatal crashes on various group of truck drivers. The
findings revealed that extreme adverse weather, risky driving behavior (fatigue, driving under the
influence of alcohol), the use of one or more trailing units, and trucks with heavy weights, were
all linked to an increased risk of serious accidents. Uddin & Huynh (2017) examined injury
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severity in crashes with trucks, concluding that lighting conditions, age and gender of occupant,
truck types, speed, and weather condition were found to be factors that have impact on injury
severity. Brouwer et al. (2015) conducted a simulator experiment with 26 professional truck drivers
to investigate the effectiveness of personalized feedback. Han & Zhao (2020) investigated driving
behavior of professional urban bus drivers in China.

An experiment can be carried out mainly in two ways: in a naturalistic experiment, where actual
conditions are used or in a simulator experiment, in a more secure and contained environment.
Driver monitoring through naturalistic driving is one of the most recent developments in road
safety. Approaches of that area include the use of high-end technological solutions, exploitation of
On-Board Diagnostics (OBD) and smartphone data collection. The last approach has many proven
advantages, including uninterrupted and rapid data collection and broad application capabilities,
as well as lower costs per examined driver. Dahlinger et al. (2018) performed naturalistic
experiments and collected data via smartphone. Elvik (2014) conducted naturalistic trials in several
countries to evaluate the impact of rewards on drivers.

There is a variety of studies that used driving simulators for experiments (Dijksterhuis et al., 2015;
Molloy et al., 2018; Zhao & Wu, 2012). Donmez et al. (2007) conducted a simulator study to
investigate real time feedback on drivers. Mullen et al. (2015) used a driving simulator as a cost
efficient and effective solution. Brouwer et al. (2015) and Yuan et al. (2021) both used a driving
simulator experiment in order to evaluate truck drivers’ behavior.

Gamification is the application of game-based design techniques and game-inspired mechanics
(e.g. scoring and achievement measurement methods) to non-game contexts. It is a powerful tool
that can be used to enable drivers to adopt improved driving behavior (behavior persuasion)
(Rossettietal., 2013). According to Toledo and Lotan (2006) safety-related scores calculated based
on in-vehicle monitoring and given to drivers through personal web pages had a major positive
impact on driver results. Elvik (2014) carried out a comprehensive analysis of experiments to
reward safe and eco-driving and found that they were all successful in encouraging rewarded
behaviors. Hamari et al. (2014) found that the effects of gamification (e.g. scores, competition,
social pressure, incentives and rewards, tips and recommendations) are positive, although
controlled by several factors such as the context in which it is applied as well as the profile of
targeted users. Mantouka et al. (2019) found that economic rewards tend to have a major effect on
users' willingness to use a mobile application for airports.

The objective of the present study is: (i) to explore the speeding and aggressive behavior of
professional drivers based on detailed driving analytics collected by smartphone sensors, and (ii)
to investigate whether incentives in a social gamification scheme can improve driving behavior.
For that purpose, high-resolution smartphone data collected from a naturalistic driving experiment
with a sample of 25 professional drivers is utilized. Generalized Linear Mixed-Effects Models
(GLMMs) with the Poisson function are estimated using high-level trip data of professional
drivers, to estimate the percentage of driving time over the speed limit and the frequency (counts)
of harsh-acceleration and harsh-braking events.

6.2.2 Professional drivers sample and descriptive statistics

Originally, 27 professional drivers volunteered to participate in the experiment and allow for
monitoring their driving behavior through the respective smartphone application. However, for the
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present analysis it was decided that the final sample should consist only of drivers who have
participated equally in both phases on terms of trips. An additional criterion was set; all drivers
selected for the analysis were required to have driven for at least 20 trips. As a result, from the 27
professional drivers, 19 drivers (all male) were ultimately selected. The participants were aged
between 25-34 (n=9), between 35-45 (n=9) and between 45-54 (n=1). Detailed sample information
is presented in Table 6.9.

Table 6.9: Participant panel description regarding driving and vehicle data (N=19)

Driving Percentage Driven distance Percentage Engine size Percentage
experience % per year (km) % (co) %
(n. of years)
<5 5.6 <10.000 0.0 <1500cc 0.0
5-10 16.7 10.000 - 20.000 222 1500 - 1700cc 0.0
11-20 38.9 20.000 - 30.000 16.7 1701 - 1900cc 0.0
21-30 38.9 30.000 - 40.000 0.0 1901 - 2200cc 55.6
>30 0.0 >40.000 61.1 > 2200cc 44 .4
Total 100.0 Total 100.0 Total 100.0

Overall, during the two phases of the experiment a large dataset of 5,345 trips from a sample of 19
professional drivers were recorded. Before presenting the model development, it should be
highlighted that the majority of professional drivers’ trip distance was travelled on highways;
namely 84% of the total travelled distance, while 12% and 3% were travelled in the rural and the
urban environment, respectively (Figure 6.3). Taking that into consideration, in combination with
the specific driving patterns noticed on highways, the authors decided to analyze explicitly the
total of trips travelled on highways.

120,000.0
100,000.0
80,000.0
60,000.0
40,000.0
20,000.0
0.0

Total of travelled
distance in km

® Highway Rural Urban

Figure 6.3: Total of travelled distance in km per road type
6.2.3 Generalized linear mixed models for harsh events

In order to model the expected speeding percentage as well as the frequency of events per trip for
the participant drivers, models in a GLM framework were calibrated, as previously explained.
Since the BeSmart application allows for a high resolution, big-data oriented collection scheme, it
was attempted to include random effects in order to capture the unique driving behavior traits for
each driver. This entails having a critical minimum sample of trips for each driver to achieve a
meaningful outcome. Therefore, a screening was made among participant drivers, as described
above, and drivers that had over 20 trips each were selected for the GLMM analysis.
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GLMMs were fitted in R-studio (with the Ime4 package) via maximum likelihood and using z-
factor scaling. A number of models were tested with different configurations in the collected
parameters in both fixed effects and random effects. The selected variables were chosen after
taking into account the following: lowest Akaike Information Criterion (AIC) for dealing with the
trade-off between the goodness of fit of the model and the simplicity of the model, high statistical
significance of variables, low multicollinearity, and finally rational interpretation of their impact

on the dependent variable. Table 6.10 provides a description of the selected variables.

Table 6.10: Description of the variables used in the analyses

Variable

Description

Competition (binary dummy variable)

Trip Duration (continuous numerical variable)
Harsh Accelerations (discrete numerical variable)
Weekend (binary dummy variable)

Speeding Percentage (numerical variable)

Harsh accelerations (discrete numerical variable)
Harsh brakings (discrete numerical variable)

Competition phase (yes/no)

Total trip duration (sec)

Number of harsh accelerations per trip

Trip realized during the weekend (yes/no)
Share of time over the speed limit per trip (%)
Harsh acceleration events per trip (count)
Harsh braking events per trip (count)

To model the frequency of harsh accelerations events, log-likelihood test ANOVA comparisons
were conducted. As is shown in Table 6.11, the most informative configuration of random effects
was the inclusion of random intercepts in the GLMMs to capture unique driver traits (lowest
LogLikelihood and highest y*2). Table 6.11 provides a description of the results of mixed effect
configuration.

Table 6.11: Log-likelihood comparison of mixed effect configuration for harsh acceleration model

Model Model Configuration D.f. Log ¥ PCey? Sig

Family Likelihood

GLM Fixed effects only [baseline] 4 -1198.8 - - -

GLMM Fixed effects & Random 5 1156.8 83.9] <2e-16  ***
Intercepts

GLMM Fixed effects, Random Intercepts 7 -1151.2 11.13 0.004  **
& Random Slopes

Results for the harsh acceleration model indicate that the exposure metrics of trip duration as well
as driving during the weekend are statistically significant and correlated with the frequency of
harsh events. More precisely, trip duration seems to increase the odds of harsh acceleration
frequencies; 1 sec of driving time increases acceleration frequencies by 1.558 times. On the other
hand, driving during the weekend compared to the weekdays seems to reduce the probability of a
harsh acceleration occurrence while driving by a factor of 0.661. This finding can be explained by
the different driving style over the week, indicating a less stressful one on the weekends. With
respect to the impact of the competition on driving behavior, similar to the speeding model, it is
found that drivers seem prone to reducing the frequency of harsh accelerations events when
participating in social gamification scheme with prizes and awards; namely by a factor of 0.348.

Table 6.12: GLMMs for harsh accelerations of 19 professional drivers (fixed effects)
Relative Risk
Ratio

Trip characteristic Estimate s.e. p-value Sig.
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Intercept -3.531 0.341 0.000 kol -

Competition -1.054 0.219 0.000 koxk 0.348
Trip Duration 0.444 0.026 0.000 oAk 1.558
Weekend -0.414 0.175 0.000 * 0.661

Significance codes: “***’: 0.000 | “**’: 0.001 | “*’: 0.01 | <.>: 0.05| “ *: > 0.1
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Figure 6.4: Random Intercepts for the harsh acceleration model

Figure 6.4 shows that the inclusion of random intercepts, as identified through log-likelihood test
ANOVA comparisons, allows the model to account for individual variability in baseline tendencies
for harsh accelerations. Each blue point represents a driver (identifier), and the horizontal lines
denote the confidence intervals for their random intercept estimates. The variation in intercepts
highlights significant differences in drivers’ inherent likelihood of harsh acceleration events,
independent of fixed effects. Drivers like "besmartuser32" and "besmartuser20" exhibit higher
baseline tendencies (positive intercepts), while others, such as "besmartuser42" and
"besmartuser26," show lower tendencies (negative intercepts). This variability underscores the
importance of incorporating random effects to better model individual-level differences, capturing
unique driver traits that influence harsh acceleration behavior.

Similar to harsh acceleration model, the inclusion of random intercepts was the most informative
configuration of random effects in order to capture the unique driver traits. The log-likelihood test

ANOVA comparisons are presented in Table 6.13. (lowest LogLikelihood and highest x"2).

Table 6.13: Log-likelihood comparison of mixed effect configuration for harsh braking model

Model Model Configuration D.f. Log x? P(>x?) Sig.
Family Likelihood
GLM Fixed effects only [baseline] 4 -3324.6 — - -
GLMM Fixed effects & Random Intercepts 5 -3093.4 46238  <2e-16  F**
GLMM Fixed effects, Random Intercepts 7 -3092.3 2.14 0.343

& Random Slopes

With respect to harsh braking events model (Table 6.14), all the independent variables, both driving
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behavioral and exposure ones, seem to have effects that are similar to the ones they have on the
harsh acceleration events. The occurring finding is more obvious when examining the relative risk
ratio of every variable. Specifically, trip duration appears to increase the odds of harsh braking
frequencies; 1 sec of driving time increases braking frequencies by 1.564 times. On the other hand,
similarly to the harsh acceleration models, the exposure parameter of the variable “weekend”, was
found to be negatively associated with the odds of higher harsh braking counts, corresponding to
risk ratio of 0.748. Finally, once more, the competition seems to motivate drivers to improve their
performance by adopting a less aggressive style, with lower frequencies of harsh brakings.
Notably, driving during the competition phase, the probability of a harsh braking occurrence is
reduced by a factor of 0.404.

Table 6.14: GLMMs for harsh brakings of 19 professional drivers (fixed effects)

. ‘e . . Relative Risk
Trip characteristic Estimate s.e. p-value Sig Ratio
Intercept -2.384 -8.161 0.000 oK -
Competition -0.907 -7.738 0.000 Ak 0.404
Trip Duration 0.447 45.106 0.000 ok 1.564
Weekend -0.290 -3.432 0.001 ok 0.748

Significance codes: “***’: 0.000 | “***: 0.001 | “**: 0.01 | *.>: 0.05] “ *: > 0.1
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Figure 6.5: Random Intercepts for the harsh braking model

As with the harsh acceleration model, the inclusion of random intercepts was identified as the most
informative random effects configuration, based on log-likelihood test ANOVA comparisons
(lowest LogLikelihood and highest y?). Each blue point corresponds to an individual driver, and
the horizontal lines represent the confidence intervals for their random intercept estimates. The
variability in intercepts highlights substantial differences in drivers' baseline likelihood of harsh
braking events, independent of other fixed effects in the model. For instance, drivers like
"besmartuser32" and "besmartuser20" exhibit higher tendencies toward harsh braking (positive
intercepts), whereas drivers such as "besmartuser42" and "besmartuser26" display lower
tendencies (negative intercepts). This heterogeneity underscores the importance of accounting for
unique driver traits in modeling harsh braking behavior.
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6.2.4 Discussion of results

This section aimed: (i) to explore the speeding and aggressive behavior of professional drivers on
based on detailed driving analytics collected by smartphone sensors, and (ii) to investigate whether
incentives in a social gamification scheme can improve driving behavior. For that purpose, high-
resolution smartphone data collected from a naturalistic driving experiment with a sample of 19
professional drivers were utilized. Using risk exposure and driving behavior indicators calculated
from smartphone sensor data, statistical analyses were carried out for correlating the percentage of
driving time over the speed limit, as well as the frequencies of harsh events, with other driving
behavior indicators, namely by means of Generalized Linear Mixed-Effects Models.

The results from the interpretation of the estimated parameters of the models can be summarized
as follows: Trip duration has a positive correlation with harsh eevents, while driving during the
weekends seems to reduce the frequency of harsh events; both accelerations and brakings. In
addition, harsh accelerations are associated with the odds of someone exceeding the speed limits,
outlining a pattern of an overall unsafe driving behavior.

Furthermore, the present research contributes a preliminary example of quantitative documentation
of the impact of encouraging rewarded behaviors on the examined human risk factors; aggressive
behavior as expressed by the frequency of harsh accelerations and harsh brakings. Professional
drivers constitute a high-risk road user group mainly due to the increased driving time and distance
travelled. In that context, rewarding safe driving behavior and providing drivers with motivations
and incentives within a social gamification scheme seems to have successful results. State-of-the-
art interventions can include approaches for driver training and support through innovative driver
behavior monitoring and feedback tools in a variety of ways, personalized feedback with
scorecards as well as incentives within a social gamification scheme, with personalized target
setting, benchmarking and comparison with peers.
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7 Feedback Effects of Different Features on Driver Behavior

7.1 Introduction

Despite considerable progress in road safety over the past decade, road traffic crashes remain a
pervasive public health issue globally, resulting in around 1.19 million road traffic deaths in 2021
(Global Status Report on Road Safety 2023. Geneva: World Health Organization; 2023.),
corresponding to a rate of 15 road traffic deaths per 100 000 population. The identification of
critical risk factors leading to road traffic crashes has been researched by numerous studies over
the years. Among these factors, human elements are consistently recognized as the most
significant, accounting for the vast majority of road crashes. In fact, human error is cited as the
cause of 95% of all road crashes (Singh, 2015). This underscores the importance of understanding
and addressing driver behavior as a key component of road safety initiatives. By analyzing driver
behavior, targeted interventions can be developed, aiming to mitigate risky actions such as
distracted driving, speeding, and impaired driving.

The significance of driver monitoring is becoming more widely acknowledged in the
transportation sector (Koesdwiady et al., 2017). Nevertheless, researchers encounter difficulties in
collecting accurate real-time driving data with affordable collection and processing techniques. In
this context, the widespread use of smartphones and social networks presents new opportunities
for monitoring and analyzing driver behavior (Chan et al., 2020). The capabilities of smartphone
applications, combined with their low cost and ease of use, facilitate data collection. These
advancements facilitate the provision of direct feedback and trip analysis to drivers, potentially
reducing road crashes and casualties. Going one step further, the conduction of driving experiments
under naturalistic conditions using smartphones allows for the recording of drivers in their normal
driving environments without external influences, and thus for the effective assessment of driver
behavior (Ziakopoulos et al., 2020). Despite the growing interest from both manufacturing
companies and transportation researchers in driver behavior, there is a notable gap in research
quantifying the influence of driver feedback on road safety, particularly in terms of comparing data
before and after feedback provision.

In this regard, the present study aims to leverage large-scale trip data from smartphone sensors to
assess the impact of driver feedback on key performance indicators, such as speeding, harsh
braking, and harsh acceleration events. For this purpose, a naturalistic driving experiment has been
conducted thousands of trips have been used first to examine the trend of the risk driving indicators
and then, Structural Equations Models (SEM) are applied to identify feedback effects to risky
driving indicators. The outputs of the two methods are combined to provide some critical insights
on whether driver feedback influences driving behavior and in what extent.

7.2 Descriptive Statistics and Preliminary Analysis

Overall, during the 21-months experiment 73,869 trips were recorded from a sample of 175 car
drivers (54% female, all ages) who had participated in all experiment phases. This subchapter
presents the trend in the most crucial indicators of driving behavior during the experiment, noting
the change in the phase of the experiment, in order to draw some initial conclusions about the
effect of feedback on driver behavior. Table 7.1 shows the summary statistics of the selected
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variables, while Figure 7.1 illustrate the trend of the same variables across the different experiment
phases.

The trends identified are the following: (i) There was an overall improvement in driving behavior
from Phase 1 to Phase 2; (i1) The Covid-19 pandemic and subsequent lockdown measures
significantly reduced the travel; (iii) There is a fluctuating improvement in driver behavior in
subsequent phases; (iv) There is an improvement in driver behavior during the Competition phase;
(v) There is a relapse to worse driving behavior once the Competition and Challenge phase is
completed.

Table 7.1: Descriptive statistics of the per trip values of the variables recorded during the experiment

Percentage Percentage Harsh Harsh Speed above
Experiment of mobile use of speeding brakings per  accelerations  the speed
Phases time 100km per 100km limits

mean std mean std mean std mean  std mean _ std
Phase 1 4.69% 0.13 6.17% 0.10 18.90 31.23 9.20 2134 4381 6.37
Phase 2 395% 0.12 3.71% 0.07 1935 3272 9.64 2237 422 6.30
Phase 3 4.55% 0.13 3.70% 0.08 19.75 31.87 11.34 2511 3.71 5.76
Phase 4 4.44% 0.13 3.88% 0.08 17.70 31.62 10.53 2398 3.33 5.28

Phase 5/
Competition 3.03% 0.10 2.69% 0.06 1321 2492 8.23 20.44 2.38 4.13
Phase 5/
Challenges  3.04% 0.11 3.37% 0.07 16.21 29.26 8.62 21.86 2.51 4.34
Phase 6 235% 0.09 3.72% 0.07 1689 29.79 8.01 19.72  3.01 4.51
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Average number of harsh accelerations per 100km Average number of harsh decelerations per 100km

Harsh brakings per 100km

Average percentage of mobile phone use Average percentage of time exceeding the speed limits

Average speed exceeding of the speed limits

Figure 7.1: Trends of the driving behavior parameters over the different experimental phases

Before moving to the advanced statistical analysis, Wilcoxon signed-rank test was used to compare
the examined variable of the different phases and assess whether their population mean ranks
differ. Since none of the variables met the assumptions for normality and homogeneity of
variances, the Wilcoxon signed-rank test (a non-parametric test) was used for all variables (Table
3). Previous within-subjects design studies in the field of naturalistic driving research have also
utilized the test to compare means among different feedback phases (Camden et al., 2019; Newnam
et al., 2014).

The Wilcoxon signed-rank test results, showed in Table 7.2, reveal significant changes in driving
behaviors across different phases. Notable improvements were observed between Phase 1 and
Phase 2, with substantial reductions in mobile use (26.20%), speeding time (41.40%), and harsh
braking (12.90%), indicating the effectiveness of feedback interventions. Between Phase 2 and
Phase 3, although mobile use and speeding time continued to decrease, harsh braking slightly
increased, suggesting mixed outcomes. The comparison between Phase 3 and Phase 4 showed an
increase in mobile use (9.60%) but a decrease in harsh accelerations (11.20%), highlighting
persistent distractions despite some improvements. Lastly, the shift from Competition and
Challenges to the last phase resulted in significant increases in all risky behaviors, emphasizing
that drivers may relapse to unsafe behaviors once not receiving anymore feedback.
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Table 7.2: Wilcoxon signed-rank test results comparing means of risky driving behavior parameters

across each phase

mean

Phases compared Driving behavior parameters diff. S statistic p-value
Phase 1 - Phase 2 Percentage of mobile use -26.20%  1.50591E+11 <0.01
Phase 1 - Phase 2 Percentage of speeding time -41.40%  4.63629E+11 <0.01
Phase 1 - Phase 2 Harsh brakings per 100km -12.90%  4.05868E+11 <0.01
Phase 1 - Phase 2 Harsh accelerations per 100km 2.50%  2.07426E+11 <0.01
Phase 1 - Phase 2 Speed above the speed limits (kmvh)  -18.00%  4.14412E+11  <0.01
Phase 2 - Phase 3 Percentage of mobile use -26.80%  2.74877E+11 <0.01
Phase 2 - Phase 3 Percentage of speeding time -16.70%  5.50967E+11 <0.01
Phase 2 - Phase 3 Harsh brakings per 100km 1.50% 7.48152E+11 <0.01
Phase 2 - Phase 3 Harsh accelerations per 100km 0.00% 4.86203E+11  <0.01
Phase 2 - Phase 3 Speed above the speed limits (km/h)  -27.60%  5.1229E+11  <0.01
Phase 3 - Phase 4 Percentage of mobile use 9.60% 1.08069E+12  <0.01
Phase 3 - Phase 4 Percentage of speeding time -5.80%  2.46395E+12 <0.01
Phase 3 - Phase 4 Harsh brakings per 100km -10.00%  2.68961E+12 <0.01
Phase 3 - Phase 4 Harsh accelerations per 100km 11.20%  1.98769E+12 <0.01
Phase 3 - Phase 4 Speed above the speed limits (km/h) - 1.30% 2.27401E+12  <0.01
Phase 4 - Competition Percentage of mobile use -3.90% 27327559116  0.657
Phase 4 - Competition Percentage of speeding time -13.10% 72000240177 <0.01
Phase 4 - Competition Harsh brakings per 100km -3.20% 82995973298 <0.01
Phase 4 - Competition Harsh accelerations per 100km -10.30% 47511875657 <0.01
Phase 4 - Competition Speed above the speed limits (km/h)  -20.90% 72401356187 <0.01
Competition - Challenges ~ Percentage of mobile use 10.00% 1502836826  <0.01
Competition - Challenges ~ Percentage of speeding time 50.70% 4321598228  <0.01
Competition - Challenges ~ Harsh brakings per 100km 41.50% 5775250817  <0.01
Competition - Challenges ~ Harsh accelerations per 100km 30.00% 2623882294  <0.01
Competition - Challenges ~ Speed above the speed limits (km/h)  24.30% 4081454761  <0.01
Challenges - Phase 6 Percentage of mobile use 2.90% 4712410638  <0.01
Challenges - Phase 6 Percentage of speeding time 4.00% 18068246934  <0.01
Challenges - Phase 6 Harsh brakings per 100km -4.90% 21576313967 <0.01
Challenges - Phase 6 Harsh accelerations per 100km 1.80% 9765516199  <0.01
Challenges - Phase 6 Speed above the speed limits (km/h)  13.00% 18002330803  <0.01

The results of the Wilcoxon signed-rank test provide a comprehensive understanding of how driver
behavior evolves across different feedback phases and contexts. The significant reductions in
mobile phone use, speeding time, and harsh braking between Phase 1 and Phase 2 strongly indicate
the initial effectiveness of feedback interventions in curbing risky behaviors. These findings align
with previous research that highlights feedback as a powerful tool for behavior modification in

148



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism

naturalistic driving settings. The observed improvements suggest that drivers responded positively
to feedback, adopting safer driving practices during the early stages of intervention.

However, the subsequent phases reveal more nuanced outcomes, highlighting the challenges of
sustaining long-term behavioral changes. Between Phase 2 and Phase 3, while mobile use and
speeding continued to decrease, a slight increase in harsh braking suggests potential adaptation
effects or situational factors that influenced driver responses. The increase in mobile use observed
between Phase 3 and Phase 4, despite reductions in harsh accelerations, underscores the persistent
challenge of distractions and the complexity of driver behavior over time. Importantly, the
significant increases in risky behaviors during the shift from the Competition phase to the
Challenges phase emphasize the potential for relapse when feedback or incentives are removed.
This relapse underscores the necessity of continuous engagement strategies or reinforcement
mechanisms to maintain safe driving behaviors over extended periods.

7.3 Structural Equations Models

This section presents the results of the SEM analysis, focusing solely on the final models, presented
in Table 7.3. In addition to the previously mentioned hard goodness-of-fit measures, the coefficient
estimates produced were evaluated to ensure they provided logical and interpretable results. Efforts
were made to avoid model misspecification by considering the appropriateness of the theoretical
framework and the outcomes produced. During the modeling process, it was evident that certain
model structures were significantly better suited to the experimental data based on specific criteria;
only these best-fitting models are presented here. Variations within each latent variable structure
were explored using the backwards elimination technique.

All statistical analyses were conducted in R-studio (R Core Team, 2013) and SEM analysis in
particular utilized the lavaan R package. Ultimately, the proposed SEM structure retained two
latent unobserved variables:

e Feedback, expressing the influence of the different features of the smartphone app
during the different phases of the experiment, namely Baseline, Scorecard feature, Maps
feature, Compare feature, Competition and Challenges feature.

e Exposure, expressing the influence of the exposure metrics, namely Distance (for
driving speed 30km/h — 50km/h), Morning peak and Afternoon peak.

It is important to note that mobile phone use while driving was initially included as a variable in
the examined models. However, it did not prove to be statistically significant and was subsequently
omitted from the final model. The analysis instead focused on other recorded driving behavior
indicators, specifically the percentage of speeding time, harsh brakings per 100 km, and harsh
accelerations per 100 km.
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Table 7.3: SEM model of Percentage of speeding time, Harsh Brakings per 100km & Harsh
Accelerations per 100km

SEM Components Parameters Estimate S.E.  z-value P(>|z|)
Latent Feedback Baseline 1.000 - - -
Variables Scorecard feature 2.076  0.014 148.640 0.000
Maps feature 1.646 0.010 157.864 0.000
Compare feature 1.215 0.029 41.754 0.000
Competition & Challenges 2.053  0.038 54.447 0.000
feature
Exposure Distance (for driving speed1.000  — — -
30km/h — 50km/h)
Morning peak 2.473 0.350 7.072  0.000
Afternoon peak -1.360  0.129 -10.579 0.000
Regressions Percentage of speeding Intercept 0.409 0.003 138.941 0.000
time
Exposure 0.326 0.043 7.627  0.000
Feedback -0.214  0.014 -15.655 0.000
Harsh Accelerations per  Intercept 0.099  0.001 95.037 0.000
100km
Exposure 0.028  0.010 2.769  0.006
Feedback 0.026  0.004 6.493  0.000
Competition & Challenges -0.001  0.000 -2.748  0.000
feature
Afternoon peak 0.006 0.002 3.095  0.002
Harsh Brakings per 100km Intercept 0.184  0.001 158.258 0.000
Exposure 0.077 0.014 5.542  0.000
Feedback -0.027  0.005 -4.976 0.000
. Percentage of speeding Harsh Brakings per 100km0.007  0.001 7.686  0.000
Covariances time
Harsh Accelerations per ~ Percentage of speeding  0.006  0.001 9.526  0.000
100km time
Harsh Brakings per 100km Harsh Accelerations per  0.021 0.000 75.739 0.000
100km
Feedback Exposure -0.001  0.000 -5.558 0.000
Goodness-of-fit CFI 0.940
measures
TLI 0.944
RMSEA 0.049 0.845
SRMR 0.025

The model's goodness-of-fit measures further support the robustness of these findings, with a CFI
0f 0.940, TLI of 0.944, RMSEA of 0.049, and SRMR of 0.025. All four examined goodness-of-fit
measures and the signs of the estimated coefficients indicate an excellent model fit. Additionally,
the model's AIC was the lowest among the tested combinations, and no negative variances were
observed, which would have suggested model misspecification (variance outputs are omitted for
brevity). To enhance model fit, several variables were scaled linearly by factors of 10, which
reduced variance discrepancies without affecting the interpretation of the coefficients. Moreover,
an iterative process was employed to integrate covariances of the measured variables into the
model. This involved comparing observed and fitted covariance correlations and addressing the
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largest discrepancies by including relevant covariance pairs, provided there were no significant
theoretical objections. This approach significantly improved the overall model fit.
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Figure 7.2: Residual correlation heatmap for SEM model

Furthermore, Figure 7.2 provides a heatmap visualization of the residual correlations among the
observed variables in the SEM model. The colors indicate the degree and direction of residual
discrepancies: blue represents overestimation by the model, while red indicates underestimation.
The strongest correlations (blue) are observed between the latent variables app competition10 and
distance 3050, as well as between speeding percentagel0 and hb_per100km100. This suggests
that while the model fits well overall, these relationships highlight potential areas for further
refinement or covariate inclusion. The relatively low range of residual values (maximum absolute
value = 0.09) supports the robustness of the model. However, minor adjustments to better account

for specific interactions—such as those involving distance 3050—could enhance the model's
explanatory power.

The path diagram of the present model is presented on Figure 7.3; green arrows denote positive
correlations, while red arrows denote negative correlations. Several useful insights can be obtained
from the produced SEM model results that are discussed in detail in the following subsections.
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Figure 7.3. Path diagram of SEM model for percentage of speeding time, harsh accelerations per
100km and harsh brakings per 100km

Feedback

The SEM analysis reveals that feedback mechanisms, including the scorecard, maps, compare, and
competition & challenges features, significantly impact driver behavior. The scorecard feature has
the highest positive estimate at 2.076 (p < 0.001), indicating its crucial role in modifying driving
habits. This finding is particularly interesting as it demonstrates the powerful impact of feedback,
leading to an immediate shift in driving behavior once participants are made aware of their risky
actions. Similarly, the maps feature shows a strong influence with an estimate of 1.646 (p <0.001),
suggesting that providing drivers with map-based feedback can effectively encourage safer driving
practices.

The compare feature, with an estimate of 1.215 (p < 0.001), helps drivers assess their performance
relative to others, positively influencing behavior. Additionally, the competition & challenges
feature, with an estimate of 2.053 (p < 0.001), motivates drivers through competitive elements,
reinforcing safe driving behaviors. Overall, these feedback mechanisms are effective in reducing
the percentage of speeding time (feedback estimate: -0.214, p <0.001) and harsh braking incidents
(feedback estimate: -0.027, p < 0.001), although there is a slight increase in harsh accelerations
(feedback estimate: 0.026, p < 0.001), which may require further refinement of the feedback
system.
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Exposure

Exposure factors, particularly the times of day, play a significant role in driving behaviors.
Morning peak exposure is associated with increased driving aggressiveness, as indicated by the
significant positive estimate of 2.473 (p < 0.001). This suggests that drivers are more likely to
engage in risky behaviors, such as speeding and harsh braking, during morning peak hours. This
is likely due to their rush to reach work or university, resulting in a sense of urgency.

In contrast, afternoon peak exposure has a negative estimate of -1.360 (p < 0.001), indicating that
driving behaviors may be less aggressive during this time. The distance driven at speeds between
30km/h and 50km/h serves as a reference parameter with an estimate of 1.000. Understanding
these exposure patterns can help in designing targeted interventions to mitigate risky driving
behaviors during specific times of the day.

Regressions

The regression analysis provides insights into how exposure and feedback influence specific
driving behaviors. The percentage of speeding time is positively associated with exposure, with an
estimate of 0.326 (p < 0.001), indicating that increased driving time leads to more speeding.
However, feedback mechanisms significantly reduce speeding, with an estimate of -0.214 (p <
0.001), highlighting their effectiveness. Harsh accelerations per 100km show a slight positive
association with exposure (estimate: 0.028, p = 0.006) and feedback (estimate: 0.026, p < 0.001),
suggesting that while feedback reduces some risky behaviors, it may inadvertently increase others.

The competition & challenges feature slightly reduces harsh accelerations (estimate: -0.001, p <
0.001), demonstrating its potential in moderating aggressive driving. Afternoon peak exposure
increases harsh accelerations (estimate: 0.006, p = 0.002), further emphasizing the need for
targeted interventions. Harsh brakings per 100km are positively influenced by exposure (estimate:
0.077, p < 0.001) but significantly reduced by feedback (estimate: -0.027, p < 0.001), reinforcing
the importance of feedback in promoting safer driving.

Covariances

The covariance analysis reveals strong interrelationships between various driving behaviors. There
is a positive correlation between the percentage of speeding time and harsh brakings per 100km
(estimate: 0.007, p <0.001), indicating that drivers who speed are also more likely to brake harshly.
Similarly, there is a positive correlation between speeding and harsh accelerations (estimate: 0.006,
p < 0.001), suggesting that these behaviors often co-occur in aggressive driving patterns. The
strong positive correlation between harsh brakings and harsh accelerations (estimate: 0.021, p <
0.001) further supports this finding.

Additionally, a negative correlation between feedback and exposure (estimate: -0.001, p < 0.001)
indicates that increased feedback is associated with decreased exposure to risky driving conditions.
These covariance relationships highlight the interconnected nature of different driving behaviors
and the importance of comprehensive intervention strategies to address multiple aspects of driver
behavior simultaneously.

7.4 Discussion of Results
Rapid technological advances, especially in telematics and Big Data analytics, as well as the

increasing penetration and use of information technology by drivers (e.g. smartphones), provide
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new capabilities for monitoring and analyzing driving behavior. In this section, the effect of driver
feedback via a smartphone application on driving behavior risk indicators within a multiphase
naturalistic driving experiment was examined. First, a preliminary analysis highlighted the
beneficial effects of upgraded feedback on key risk indicators across experiment phases.
Subsequently, SEM analysis on a 73,869-trip dataset provided significant insights into how
feedback mechanisms and exposure factors influence driving behaviors.

Feedback features, namely scorecard, maps, compare, and competition & challenges seem to be
effective in reducing risky driving behaviors like speeding and harsh braking, although they may
slightly increase harsh accelerations, at least some of the feedback features. Morning peak
exposure is associated with more aggressive driving, while afternoon peak exposure tends to be
less risky. Additionally, the strong positive correlations between speeding, harsh braking, and harsh
accelerations highlight the interconnected nature of aggressive driving behaviors, confirming
previous studies (Su et al., 2023) and showcasing the importance of driver behavior analysis.

The present findings come with some practical implications, as well. First, further in depth
examination of driver feedback is necessary to quantify the complex relationships involved in
various driving tasks, taking also into account the two other road safety pillars; environment and
vehicle. On that note, modifications to vehicle and mobile phone interfaces could be beneficial,
particularly with the expected rise in connectivity and automation in the future. Additionally,
incorporating eco-driving feedback is crucial to understanding and enhancing the effectiveness of
feedback mechanisms.

As the transportation landscape evolves, particularly with the rise of micromobility within
multimodal transport systems and the emergence of new travel patterns in the wake of COVID-
19, understanding these shifts in decision-making processes is crucial. In that context, the ultimate
goal of providing feedback to drivers is to activate the process of learning and self-assessment,
enabling them to gradually improve their performance and monitor their progress. This process
involves establishing detailed cause-and-effect relationships between aggressive driving and
associated risks, offering valuable insights for improving road safety. Such information is
beneficial for insurance companies, fleet management applications, and identifying hazardous
geographical locations on the road network. Additionally, feedback can serve as a tool for
objectively proving driving behavior, allowing users to gain benefits from their insurance
companies or to regain their driver's license after revocation.

While the study provides valuable insights into the impact of driver feedback mechanisms on
driving behavior, it is not without limitations. One significant limitation is the exclusion of mobile
phone use as a variable in the final model due to its lack of statistical significance. This omission
may have overlooked potential nuances in driver distraction and its interaction with other risky
behaviors. Additionally, the naturalistic driving experiment was conducted within specific
geographic and temporal contexts, which may limit the generalizability of the findings to different
regions or periods. Moreover, the reliance on self-selected participants who voluntarily used the
feedback application could introduce selection bias, as these individuals may inherently be more
safety-conscious or tech-savvy compared to the general driving population. This aspect of the
experiment design is particularly intriguing and warrants further investigation; i.e. a follow-up
questionnaire directed at participants could provide additional insights, allowing for a deeper
understanding of their motivations and behaviors.
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Undoubtedly, much more work needs to be done in this promising area and many challenges need
to be addressed. Many different techniques have been used and there is a need for comparison
integration to optimize the reliability and level of detail of research results. The advent of new
technologies (e.g. in sensors) is progressively simplifying the application of naturalistic driving
experiments, and new analysis techniques, such as artificial intelligence and machine learning,
allow for a more efficient and in-depth analysis of results. Finally, considering other vulnerable
road users (cyclists, pedestrians) in naturalistic driving research allows for the identification and
understanding of problems specific to these groups of road users and the identification of possible
solutions in ways that were not previously applicable.

Future research should also focus on complex spatio-temporal analysis of data to develop advanced
statistical models for identifying dangerous locations and road segments, through comparison with
road accident locations, and reduced fuel consumption. The richness of the collected data can be
exploited to develop easy-to-use reliable road maps by examining changes in driving risk exposure
under changing traffic conditions and in different regions. The transfer and scalability potential of
the methodology and research derivatives will be a legacy for the development of maps at any
region and scale.
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8 Post-Feedback Effect on Long-Term Driver Behavior

8.1 Introduction

Feedback-based interventions have been widely explored as a means to improve driver behavior
and enhance road safety. However, the long-term effects of these systems remain inconsistent, with
post-feedback behaviors varying significantly across studies. In some cases, feedback has
demonstrated enduring positive impacts on driver behavior, even after the feedback period ended.
For instance, Ghamari et al. (2022) observed that bus drivers sustained their improved behavior
beyond the intervention phase, highlighting the potential for lasting change. Similarly,
Merrikhpour et al. (2014) found that although behavioral improvements slightly diminished post-
intervention, they remained better than baseline levels, reflecting a degree of persistence. Molloy
et al. (2023) also reported sustained improvements in speed compliance, albeit limited to low-
speed zones (e.g., 50 km/h).

On the other hand, several studies have shown that once feedback is discontinued, drivers often
revert to pre-feedback behaviors. For example, Bolderdijk et al. (2011) observed an increase in
speeding among drivers once financial incentives tied to the feedback were removed, suggesting
that such effects may not persist without ongoing reinforcement. Similarly, Toledo and Lotan
(2006) found that initial reductions in driving risk indices dissipated within five months, with
metrics returning to or even surpassing baseline levels. Mazureck and Van Hattem (2006) also
noted that most drivers reverted to their prior habits following the feedback phase.

Interestingly, some studies have highlighted the importance of continuous reinforcement
mechanisms, such as follow-up coaching or ongoing monitoring, in sustaining behavioral changes.
McGehee et al. (2007) reported a durable reduction in safety-critical events among high-frequency
drivers when feedback was coupled with consistent reinforcement, such as training or performance
improvement plans. This underscores the role of structured follow-ups in prolonging the benefits
of feedback interventions.

Certain studies also suggest that feedback interventions can deliver long-term benefits under
specific conditions. For example, Soleymanian et al. (2019), Takeda et al. (2011), and Toledo et
al. (2008) reported sustained improvements in driver behavior. However, these findings were often
limited by low certainty due to issues such as data attrition or study dropout. Attrition bias is a
critical challenge in long-term experiments, as drivers may lose engagement over time, leading to
reduced statistical power and potential skewing of results. This loss of participation raises the
question of whether sustained behavior change could have been achieved with ongoing
interventions and consistent participant engagement.

These mixed findings highlight the complexity of achieving sustained behavioral change through
feedback interventions and underline the need for further research to understand the factors that
influence long-term outcomes. This section seeks to address this gap by examining the post-
feedback effects on driver behavior over extended periods, focusing on the mechanisms that
contribute to or hinder sustained improvements through survival analysis.
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8.2 Participants and Preliminary Analysis

In this study, a cohort of 31 car drivers who participated across all experimental phases—baseline,
feedback, and post-feedback—was analyzed. Over the course of the 21-month experiment, these
drivers completed a total of 24,904 trips, with each driver contributing a minimum of 20 trips in
the post-feedback phase. Overall, the broader experiment involved a larger sample of 175 drivers
and documented 73,869 trips, and feedback features different effect on driver behavior was
investigated in the previous section of this thesis. This subset of 31 drivers was selected to closely
examine the long-term effects of feedback interventions on driving behavior. Summary statistics

for the selected sample are shown in Table 8.1, while critical driving indicators are shown in Table
8.2 and Table 8.3.

Table 8.1: Overview of the selected sample

Age groups
18-34 35-54 >55 Total%
Male 6 5 3 45%
Female 8 5 4 55%
Total % 45% 32% 23% 100%

Table 8.2: Summary statistics for critical driving indicators during the different phases

Indicators Baseline Feedback Post-Feedback
Mean of the percentage of mobile phone use while
driving (sd) 3.34% (0.11) 2.17% (0.09) 2.33% (0.09)
Mean of the percentage of speeding while driving
(sd) 5.42% (0.09) 2.81% (0.06) 3.74% (0.07)
Mean of harsh accelerations per 100 km (sd) 6.68 (17.27) 6.88 (18.72) 7.96 (19.67)
Mean of harsh braking per 100km (sd) 16.86 (27.15) 14.479 (26.50) 16.734 (29.55)

To rigorously examine the impact of feedback on driving behavior across the Baseline, Feedback,
and Post-Feedback phases, a Wilcoxon signed-rank test was conducted for each key behavioral
indicator. Given that the data did not meet assumptions for normality and homogeneity of
variances, the non-parametric Wilcoxon signed-rank test was chosen to compare median ranks
across the three phases. This approach is consistent with methodologies used in prior naturalistic
driving studies that explore changes in driver behavior under feedback interventions (Camden et
al., 2019; Newnam et al., 2014).

Table 8.3: Results of the non-parametric Wilcoxon signed-rank test for the examined indicators

Variable Comparison Statistic p value g/i[:le;ence
mbu_percentage Baseline vs. Feedback 2.05E+11 <0.01 -0.35%
mbu_percentage Baseline vs. Post-Feedback 2.42E+09 <0.01 -0.28%
mbu_percentage Feedback vs. Post-Feedback 9.26E+10 <0.01 0.16%
speeding_percentage Baseline vs. Feedback 1.41E+12 <0.01 -2.74%
speeding_percentage Baseline vs. Post-Feedback 1.79E+10 <0.01 -2.48%
speeding_percentage Feedback vs. Post-Feedback 4.17E+11 <0.01 0.41%
hb_per100km Baseline vs. Feedback 1.20E+12 <0.01 -0.93
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hb per100km Baseline vs. Post-Feedback 1.50E+10 <0.01 0.45
hb_per100km Feedback vs. Post-Feedback 5.15E+11 <0.01 1.98
ha_per100km Baseline vs. Feedback 421E+11 <0.01 0.47
ha_per100km Baseline vs. Post-Feedback 5.34E+09 <0.01 0.96
ha per100km Feedback vs. Post-Feedback 2.32E+11 <0.01 0.69

As shown in Table 8.2, the comparison between the Baseline and Feedback phases showed a
significant improvement in driving behavior. Indicators of risky driving, such as mobile phone use,
speeding percentage, and frequency of harsh braking, decreased notably during the Feedback
phase. This trend aligns with previous studies indicating that post trip feedback can enhance safe
driving behaviors by making drivers more aware of their risky actions (Camden et al., 2019;
Newnam et al., 2014). Feedback mechanisms have been shown to promote self-regulation and
encourage drivers to adjust their behavior to safer standards, supporting the hypothesis that
feedback can be an effective tool for improving road safety in the short term.

Despite the overall improvement in safe driving during the Feedback phase, some fluctuations in
risky behavior were observed. Certain indicators, 1.e. harsh accelerations per 100 km showed
intermittent increases, suggesting that driver adaptation to feedback may vary across individuals
and situations. This finding highlights the complexity of driver behavior under feedback conditions
and aligns with studies that report varied responses to feedback interventions over time (Johnson
et al., 2020). The fluctuation may reflect an adjustment period as drivers acclimate to receiving
real-time feedback, underscoring the potential need for prolonged or reinforced feedback to
achieve steady behavioral improvements.

A notable relapse in risky driving behavior occurred once feedback was withdrawn in the Post-
Feedback phase. Indicators such as mobile phone use, speeding, and harsh braking increased
compared to the Feedback phase, suggesting that the absence of feedback may lead drivers to
revert to previous, riskier behaviors. This relapse effect is consistent with findings from Newnam
et al. (2014) and Johnson et al. (2020), who observed similar tendencies in naturalistic driving
studies. The observed relapse highlights a critical challenge in sustaining safe driving habits over
the long term, as drivers may rely on continuous feedback to maintain safer behavior.

The results of the Wilcoxon signed-rank test suggest that further research is necessary to better
understand the impact of post-feedback effects on long-term driving behavior. To address this need,
the present study will employ survival analysis to explore the mechanisms underlying these post-
feedback effects, providing insights into the sustainability of behavioral changes and the potential
for relapses in the absence of feedback.

8.3 Survival Analysis of Driving Behavior Relapse After Feedback
Withdrawal

The integration of survival analysis into driving studies has allowed researchers to understand the

temporal patterns in risky driving and the factors that increase or decrease the likelihood of adverse

events. For instance, Afghari et al. (2020) applied survival analysis to examine the impacts of

distractions on developing time of a critical driving event, further showing its utilitarian value in

understanding real-time driving risk. Similarly, the Kaplan-Meier curve and the parametric

models, including the Weibull and Cox proportional hazards models, have been one of the widely
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applied methods to quantify the impact that environmental and behavioral factors exert on the
timing of risky events (Wang et al., 2021). This is a methodological approach that has considerably
enriched the literature on driver safety and risk mitigation strategies with valuable practical
implications for designing interventions and driver monitoring systems.

Survival analysis was employed because of its ability to analyze time-to-event data, making it
particularly suitable for understanding driver behavior over time. In the context of post-feedback
effect, survival analysis allows for the examination of how long, drivers maintain improved
behaviors before relapsing into their original patterns. This method is essential for capturing not
only whether behavioral changes occur but also the duration for which these changes persist,
providing a dynamic view of the intervention’s long-term impact. By focusing on time-to-relapse
as the primary outcome, survival analysis enables the evaluation of feedback effectiveness in
fostering sustained behavioral improvements. While most driving behavior studies have analyzed
time-to-event data within a microscopic framework—such as deceleration adjustment times in car-
following scenarios (Adavikottu et al., 2023) or the probability of detecting a pedestrian during
mobile phone use (Choudhary & Velaga, 2017)—this study focuses on a macroscopic analysis of
time-to-event data, examining driving behavior relapse after feedback withdrawal during the final
phase of the experiment.

Another key advantage of survival analysis is its ability to handle censored data, which is common
in longitudinal studies. In this research, not all drivers may have experienced a relapse or
completed the entire study period, leading to incomplete observations. Survival analysis addresses
this issue by incorporating censored data into the model, ensuring that the findings remain robust
and reflective of the entire study population. Moreover, the inclusion of covariates such as age,
driving experience, and vehicle characteristics in survival models allows for the identification of
factors influencing the likelihood and timing of behavioral relapse, providing deeper insights into
the mechanisms underlying the post-feedback effects.

Furthermore, survival analysis facilitates the comparison of different intervention strategies by
estimating and visualizing survival curves, such as Kaplan-Meier plots, and by fitting advanced
models like Accelerated Failure Time (AFT) and Cox proportional hazards models, or even
machine learning techniques like Random Survival Forest. These tools help quantify the influence
of specific variables on the duration of behavior change while accounting for time-dependent
effects and individual heterogeneity through random effects or frailty models. The detailed
description of the survival models used in this thesis are presented in Section 3. In summary, basic
terminologies for the survival analysis in the present section are defined as following:

e Event: In this analysis, an "event" is defined as a "relapse" in driving behavior, specifically
when the driver’s examined behavior (i.e. harsh accelerations, harsh brakings, speeding
and mobile phone use) exceed a predefined threshold. This threshold is calculated as the
mean behavior indicator rate observed during the feedback phase, a period of active
intervention. Exceeding this threshold in the post-feedback phase signals a decline in
driving behavior, which is considered an "event" for survival analysis purposes.

e Duration Variable (Time to Event): The duration variable in this analysis is represented by
the number of trips taken until a relapse event occurs. In survival analysis terms, the
duration is a continuous random variable T with a cumulative distribution function F(t) and
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probability density function f(t). The survival analysis tracks the probability of a driver
maintaining improved driving behavior over successive trips in the post-feedback phase.

e Survival Rate (S(t)): The survival rate S(t) gives the probability that a driver will maintain
driving behavior below the harsh acceleration threshold for a given number of trips,
denoted by t. This can be interpreted as the probability of no relapse occurring within that
period.

e Hazard Rate (h(t)): The hazard rate h(t) represents the conditional probability of a relapse
occurring at a particular trip t, given that no relapse has occurred up until that trip. It
provides an instantaneous risk of relapse at each point in time (number of trips). In this
study, as the number of trips increases in the post-feedback phase, the probability of relapse
also tends to increase, indicating a rising hazard rate over time.

All survival analyses were performed in R Studio. The survfit function was used to generate
Kaplan-Meier curves for survival probability visualization. The coxme function fitted a Cox
Proportional Hazards model with frailty effects, while cox.zph validated the proportional hazards
assumption. A Weibull Accelerated Failure Time (AFT) model was implemented using survreg,
incorporating clustered heterogeneity with the cluster argument. The Random Survival Forest
model was built using the ranger package to explore non-linear relationships and identify key
predictors. Model performance and comparisons were assessed using metrics like AIC, BIC, and
concordance indices computed through predict and concordance functions. These tools facilitated
a comprehensive exploration of survival patterns.

8.3.1 Survival analysis of relapse in harsh accelerations

8.3.1.1 The Kaplan-Meier curves

The Kaplan-Meier curve is a stepwise function that visually represents the survival probability
over time. Its primary advantage lies in its ability to handle censored data, which is particularly
useful in studies where subjects may not experience the event by the end of the observation period.
The Kaplan-Meier survival curve shows the proportion of drivers who continue to maintain
improved driving behavior without relapse across successive trips. The survival probability is
recalculated at each relapse event, giving a stepwise depiction of the declining survival rate as
drivers accumulate trips post-feedback. The Kaplan-Meier survival curve for harsh accelerations
is shown in Figure 8.1.

The Kaplan-Meier survival curve for harsh accelerations per 100 km in the post-feedback phase
provides insights into the long-term impact of feedback on driving behavior. These results
demonstrate that while feedback led to temporary behavior improvement, the effect diminishes
over time without continued feedback. The Kaplan-Meier analysis highlights the necessity for
sustained or recurring interventions to reinforce safer driving behaviors in the long term.
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Average harsh accelerations per 100km
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Figure 8.1: Kaplan-Meier survival curve for harsh accelerations per 100 km

Initial Period: The survival probability remains relatively high initially, indicating that most drivers
maintain improved behavior within the first several trips.
Declining Survival Probability: As the number of trips increases, the survival probability declines,
with notable drops at specific points. For instance:
= 50 trips: approximately 84.8% of drivers still maintain improved behavior (no relapse).
= 100 trips: the survival probability decreases to about 68.7%, showing a progressive
decline in adherence to safer driving behavior.
= 150 trips: the probability further drops to around 49.2%, suggesting that nearly half of the
drivers have relapsed to pre-feedback levels of harsh acceleration.

8.3.1.2 Cox-PH Model with Frailty

In this study, the Cox Proportional Hazards (Cox-PH) model with frailty was applied to capture
the nuanced relationship between driver behavior and relapse after feedback phase, using both
naturalistic driving data and questionnaire data, as well. This semi-parametric approach is
particularly advantageous because it models the hazard rate of relapse without imposing strict
assumptions about the underlying distribution of survival times. By focusing on the hazard rate,
the Cox-PH model allows for a dynamic analysis of how various factors, such as age, driving
experience, and driving conditions, influence the likelihood of relapse over time. This flexibility
is critical in studying complex behavioral patterns where survival times may not conform to
traditional distributions.

The inclusion of frailty in the Cox-PH model further enhances its utility by accounting for
unobserved heterogeneity across drivers. Frailty acts as a random effect, capturing individual-
specific differences that might not be fully explained by observed covariates. This is especially
important in driving behavior studies, where factors like personality, driving style, or situational
influences can introduce variability in relapse rates. Additionally, the model’s ability to provide
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interpretable hazard ratios enables a clear understanding of the relative impact of different
variables on relapse risk, offering actionable insights for tailoring feedback interventions to
specific driver groups. By leveraging these strengths, the Cox-PH model with frailty provides a
robust framework for analyzing time-to-relapse data in the context of driver safety feedback.

The results of the Cox Proportional Hazards model with frailty highlight key factors influencing
the likelihood of harsh accelerations. Table 8.4 shows the results and the metrics of the model.

Table 8.4: Cox -PH model with frailty results for harsh accelerations per 100km
Random Effects

Group Variable SD Variance

Identifier Intercept 1.189 1.415

Metrics chisq df p AIC BIC
Integrated loglik 489 9.00 0.00 471 431.4
Penalized Loglik 584 26.66 0.00 530.7 413.2
Fixed Effects

Variable Coef Exp(Coef) SE(Coef) y/ p
Participant’s age

Age [18-34] Ref.

Age [35-54] -1.851 0.156 0.652 -2.84 0.004
Age [55+] -0.930 0.394 1.020 -0.91 0.362
Participant’s gender

Female Ref.

Male -0.653 0.520 0.520 -1.25 0.209
Self-reported aggressiveness

Low Ref.

High 1.176 3.243 0.651 1.81 0.070
Participant’s vehicle cc

<1400cc Ref.

>1400cc 0.500 1.649 0.677 0.74 0.459
Peak hour

Off peak Ref.

Morning peak -0.244 0.783 0.110 -2.21 0.026
Afternoon peak -0.368 0.691 0.108 -3.39 <0.001
Trip duration 0.011 1.011 0.002 4.75 <0.001
Concordance Index (C-index): 0.675

AIC 7588.86

BIC 7740.94

Results show that random effects indicate significant unobserved heterogeneity across drivers, as
indicated by an intercept standard deviation of 1.189 and variance of 1.415. Among fixed effects,
significant predictors include age group [35-54] (p = 0.0046), which is associated with a reduction
in the hazard of relapse (Exp(Coef) = 0.156), and peak hour99 (p = 0.0007), which shows a
protective effect against relapse (Exp(Coef) = 0.692). Duration is strongly associated with an
increased hazard (p < 0.0001), suggesting that longer trips slightly increase the risk of relapse
(Exp(Coef) =1.012). Non-significant predictors include gender and vehicle engine capacity, while
aggressive driving tendencies approach significance (p = 0.070).
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As explained above, one of the main assumptions of the Cox Proportional Hazards model is the
proportionality of the covariates. For each of the variables included in the model, a function that
correlates the corresponding set of scaled Schoenfeld residuals with time was implemented to test
independence between residuals and time. The same test applies to the model as a whole. The
results indicate that the proportionality assumption is violated, as p<0.05.
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Figure 8.2 Schoenfeld residuals versus time for each of the variables of the Cox model
8.3.1.3 Weibull AFT Model with Clustered Heterogeneity

The Weibull Accelerated Failure Time (AFT) model with clustered heterogeneity provides a
powerful alternative for analyzing the time to relapse in driving behavior indicators following the
feedback phase. Unlike the Cox-PH model, which focuses on hazard rates, the Weibull AFT model
directly models survival time, offering a distinct perspective on how various covariates accelerate
or decelerate relapse. This approach is particularly valuable in understanding the temporal
dynamics of driver behavior, as it allows for the direct estimation of time-related effects of
predictors, such as trip duration or vehicle characteristics. For instance, the model’s coefficients
can provide actionable insights into how specific factors extend or shorten the time until a relapse
occurs, making it a useful tool for tailoring interventions.

Another key strength of the Weibull AFT model is its ability to incorporate random effects to
account for unobserved heterogeneity among drivers. By clustering drivers and considering
individual-specific differences, the model effectively captures variability introduced by latent
factors, such as driving habits or psychological tendencies, that are not explicitly measured. This
feature ensures that the analysis reflects the diversity of driver behavior, thereby increasing the
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reliability of the results. Moreover, the interpretability of the model’s coefficients facilitates a
straightforward understanding of how covariates like age, driving conditions, or feedback timing
influence survival time, making the Weibull AFT model a robust choice for analyzing complex,
clustered time-to-event data in driver behavior studies.

The results presented in Table 8.5 and the accompanying plots provide critical insights into the
relapse of harsh acceleration behaviors among drivers after feedback withdraw in the experiment.

Table 8.5: Weibull AFT model with clustered heterogeneity results for harsh accelerations per 100km

Variable Value Std. Err (Naive SE) z p
(Intercept) 5.011 0.362 0.091 13.82 <0.001
Participant’s age

Age [18-34] Ref.

Age [35-54] 0.245 0.21892 0.078 1.12 0.042
Age [55+] 0.387 0.2108 0.169 1.84 0.085
Participant’s gender

Female Ref.

Male 0.382 0.27019 0.073 1.41 0.157
Self-reported aggressiveness

Low Ref.

High -0.643 0.25925 0.115 -2.48 0.013
Participant’s vehicle cc

<1400cc Ref.

>1400cc -0.008 0.28301 0.110 -0.03 0.046
Peak hour

Off peak Ref.

Morning peak 0.189 0.10928 0.084 1.73 0.083
Afternoon peak 0.411 0.13258 0.080 3.11 0.001
Trip duration -0.015 0.00332 0.001 -4.58 <0.001
Log(scale) -0.253 0.083 0.032 -3.05 0.002
Scale 0.776

Loglik(model) -3842.7

Loglik(intercept only) -3944.9

Chisq 204.41 <0.001
Number of Newton-Raphson

Iterations 8

Concordance Index 0.677

AIC 7705.44

BIC 7762.49

The Weibull AFT model identifies significant predictors of time to relapse, accounting for
unobserved heterogeneity through clustering. Aggressive drivers in the high self-reported category
had a shorter time to relapse (p = 0.013), underscoring the importance of targeted interventions for
this group. Afternoon peak hours were associated with a significantly longer time to relapse (p =
0.001), while longer trip durations reduced the time to relapse (p < 0.001), highlighting the
influence of contextual factors such as driving conditions and trip characteristics on behavior. The
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model's concordance index (0.677) reflects moderate predictive accuracy, indicating that it
provides reasonably reliable predictions.

The plots provide a visual representation of the frailty effects and survival probabilities across
strata. The frailty plot shows variability in random intercepts across drivers, confirming the
importance of considering unobserved individual differences in the analysis. Meanwhile, the
survival probability plot reveals that afternoon peak hours (green) are associated with higher
survival probabilities compared to morning and off-peak hours, further substantiating the impact
of contextual driving conditions. Together, the table and plots underscore the role of both
individual and situational factors in shaping relapse behaviors, highlighting actionable areas for
improving feedback strategies and ensuring sustained behavioral change. More specifically, The
left plot illustrates survival probabilities stratified by peak hour categories (off-peak, morning
peak, afternoon peak) over successive trips, highlighting differences in relapse risk. The right plot
depicts the random intercepts (frailty effects) by driver identifier, showcasing individual-level
variability in relapse behavior.

Strata peak_hour=0 peak_hour=1 peak_hour=99
1.00 1
0751
=
E
]
e
&
o 0.50
©
=
<
=
w
0.251
0.00
0 50 100 150 200 250

Time (Successive Trips)

Figure 8.3: Survival probability for harsh accelerations relapse
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Random Intercepts (Frailty Effects) by Identifier - AFT Model
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Figure 8.4:Random effects for harsh accelerations relapse

The diagnostic plots for the Weibull AFT model with clustered heterogeneity indicate an overall
good model fit for predicting relapse in harsh accelerations per 100km. The histogram and Q-Q
plot of deviance residuals show that the residuals are approximately symmetric and centered
around zero, with minor deviations at the tails, suggesting the model captures most of the data well
but may have difficulty with extreme values. The Cox-Snell residuals display a random scatter,
supporting the assumption of independence and appropriate model specification. The observed vs.
predicted times plot reveals a reasonable alignment with the diagonal line, indicating that the
model predictions are broadly accurate, though variability increases for longer observed times.
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Figure 8.5: Model diagnostics for the Weibull AFT model on harsh accelerations

8.3.1.4 Random Survival Forest

The results of the Random Survival Forest (RSF) model for harsh accelerations emphasize the
dominance of trip duration as the most significant predictor of relapse, as illustrated in the variable
importance plot. The importance score for trip duration significantly exceeds that of other
predictors, emphasizing its critical role in influencing survival outcomes. This finding aligns with
results from other survival models, which consistently show that longer trips are associated with a
quicker relapse into previous driving behaviors, effectively reducing the likelihood of maintaining
improved driving behavior over time. Gender and vehicle engine capacity (vehicle cc_group) also
show moderate importance, suggesting that demographic factors and vehicle characteristics play
roles in relapse prediction. Age group, aggressive driving behavior, and peak hour display
relatively lower importance, indicating their less direct impact on survival times in the context of
harsh accelerations.
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Figure 8.6: Feature importance of Random Forest for harsh accelerations relapse

The predictive performance of the RSF model was evaluated using Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE), with values of 91.36 and 69.63, respectively. These
errors highlight the model's ability to estimate survival times with moderate accuracy. Additionally,
the out-of-bag prediction error (I-C index) of 0.33 indicates reasonable discrimination
performance, though slightly lower compared to the Weibull AFT parametric survival model.
Overall, the RSF model complements traditional survival analysis methods by capturing complex,
non-linear interactions among predictors, which is evident in the nuanced relationships identified
between predictors and relapse behavior.

Table 8.6: RSF model results for harsh accelerations

Type Survival
Number of trees 30
Sample size 2220
Number of independent variables 6
Mtry 2
Target node size 5
Variable importance mode permutation
Splitrule logrank
Number of unique death times 196
OOB prediction error (1-C) 0.32969

8.3.1.5 Model comparison for harsh accelerations

Table 8.6 provides a comparative analysis of survival models applied to driving behavior relapse,
focusing on harsh accelerations per 100km. Among these, the Weibull Accelerated Failure Time
(AFT) model demonstrated its strengths, offering a balance of interpretability and predictive
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accuracy with a C-index of 0.677. Its ability to model survival time directly and account for
clustered heterogeneity through a parametric framework makes it particularly effective when
interpretability and explicit handling of frailty effects are critical. Key predictors such as trip
duration and aggressive driver group were identified, and the model exhibited lower prediction
error compared to the Cox model, although it was slightly outperformed by the Random Survival

Forest (RSF) in terms of RMSE and MAE.

Table 8.7 Survival models comparison for harsh accelerations per 100km

Random Survival Forest

Aspect Weibull AFT Model Cox Model with Frailty (RSF)

Purpose Models survival time Models hazard rate Captures non-linear
directly effects

C-index 0.677 0.675 0.670 (OOB)

AIC 7705.44 7588.86 N/A

BIC 7762.49 7740.94 N/A

Key Predictors Age, aggressive driver Aggr'esswe driver group, Durgtlon, gender,
group, duration duration vehicle cc_group

Frailty Effects Accounted (Clustered Accounted (Shared Frailty) Imphc1t1y handled (Non-
Heterogeneity) parametric)

Prediction Error  RMSE: 92.81, MAE: RMSE: 173.08, MAE: RMSE: 91.36, MAE:

(RMSE/MAE) 71.30 152.21 69.63

Strengths Interpr.etable, adjusts for Han-dles heterogeneity Capmrgs complex
clustering flexibly interactions
Assumes Weibull Assumes proportional .

Weaknesses distribution hazards Less interpretable

The Cox model with frailty achieved a comparable C-index of 0.675 and handled heterogeneity
flexibly through shared frailty terms. However, its reliance on the proportional hazards
assumption, which was violated in this dataset, along with higher prediction errors (RMSE: 173.08,
MAE: 152.21), limits its applicability in contexts where hazard ratios vary over time or predictive
accuracy is essential.

The RSF model, while less interpretable, excelled in capturing complex non-linear relationships
and interactions among predictors, making it particularly useful when predictive accuracy and
modeling flexibility are paramount. It achieved the best predictive performance, with an RMSE of
91.36 and an MAE of 69.63. However, its lack of transparency and inability to provide clear hazard
ratios or survival time estimates present challenges for understanding the underlying dynamics of
relapse.

Overall, the choice of the model depends on the priorities of the analysis. If interpretability and
the explicit handling of frailty are critical, the Weibull AFT model stands out as the preferred
option. However, when predictive accuracy and the ability to model complex relationships are
paramount, the Random Survival Forest emerges as a strong candidate, despite its interpretability
challenges.
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8.3.2 Survival analysis of relapse in harsh braking

8.3.2.1 The Kaplan-Meier curves

The Kaplan-Meier survival curve for harsh braking events per 100 km shows the rate at which
drivers revert to higher levels of harsh braking after the feedback phase.

Average harsh brakings per 100km
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Figure 8.7: Kaplan-Meier survival curve for harsh braking per 100 km

Initial Period: The survival probability remains relatively high in the early trips of the post-
feedback phase, indicating that most drivers maintain reduced levels of harsh braking initially.
Declining Survival Probability: Over time, there is a steady decline in the survival probability,
indicating an increase in harsh braking behaviors. Specific points of note include:
= 50 trips: Approximately 81.5% of drivers maintain their improved behavior, with a
notable 18.5% relapsing.
= 100 trips: The survival probability drops to around 61.4%, suggesting that close to 40%
of drivers have reverted to higher levels of harsh braking.
= 150 trips: The survival probability falls further to 40.3%, indicating that the majority of
drivers have relapsed by this stage.

These results suggest that while feedback leads to temporary improvements in harsh braking
behavior, the effect diminishes considerably over time. Continued feedback may be necessary to
sustain these improvements long-term.

8.3.2.2 Cox-PH Model with Frailty

The results of the Cox Proportional Hazards model with frailty highlight key factors influencing
the likelihood of relapse in harsh brakings.

Table 8.8 shows the results and the metrics of the model.
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Table 8.8: Cox-PH model with frailty results for harsh braking per 100km
Random Effects

Group Variable SD Variance

Identifier Intercept 0.941 0.885

Metrics chisq Df p AIC BIC
Integrated loglik 446.9 9.00 0.00 428.9 387.4
Penalized Loglik 537 26.15 0.00 4384.8 363
Fixed Effects

Variable Coef Exp(Coef) SE(Coef) y/ p
Participant’s age

Age [18-34] Ref.

Age [35-54] -1.659 0.190 0.506 -3.28 0.002
Age [55+] -1.517 0.219 0.812 -1.87 0.061
Participant’s gender

Female Ref.

Male -0.260 0.770 0.409 -0.64 0.524
Self-reported aggressiveness

Low Ref.

High 0.962 2.617 0.518 1.85 0.063
Participant’s vehicle cc

<1400cc Ref.

>1400cc 1.064 2.898 0.516 2.06 0.039
Peak hour

Off peak Ref.

Morning peak -0.311 0.732 0.103 -3.00 0.002
Afternoon peak -0.185 0.831 0.096 -1.92 0.054
Trip duration 0.005 1.005 0.002 2.24 0.024
Concordance Index (C-index): 0.653

AIC 9796.77

BIC 9945.937

Results reveal that random effects show significant variability between participants, as indicated
by the intercept standard deviation (SD = 0.941) and variance (0.885), highlighting the importance
of accounting for unobserved heterogeneity. Among the fixed effects, age group [35-54]
(Exp(Coef) = 0.190, p = 0.002) significantly reduces the hazard of relapse, while participants with
vehicles >1400cc (Exp(Coef) = 2.898, p = 0.039) show an increased risk of relapsing. Morning
peak hours (Exp(Coef) = 0.732, p = 0.002) also reduce relapse risk compared to off-peak hours.
Trip duration slightly increases the hazard of relapse (Exp(Coef) = 1.005, p = 0.024). However,
other factors such as gender and self-reported aggressiveness approach significance but do not
achieve statistical significance. The model's concordance index (C-index = 0.275) suggests limited
predictive accuracy, while the AIC (9796.77) and BIC (9945.94) indicate adequate model fit. These
results emphasize the influence of vehicle characteristics, trip context, and demographic factors in
relapse behavior but suggest room for improvement in predictive power.

Simirarly to the harsh accelerations model, the results of the Schoenfeld residuals test indicate that
the proportionality assumption is violated.
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Figure 8.8 Schoenfeld residuals versus time for each of the variables of the Cox model
8.3.2.3 Weibull AFT Model with Clustered Heterogeneity

The Weibull AFT model results for harsh braking per 100km, as presented in Table 8.4, provide
key insights into the factors influencing relapse time. Significant predictors include age, where
both the [35-54] and [55+] groups exhibit longer survival times compared to the [18-34] reference
group, with p-values of 0.010 and 0.005, respectively. Vehicle engine capacity (>1400cc) also
plays a role, as drivers with larger vehicles have shorter survival times (p = 0.012). Additionally,
trip duration negatively impacts relapse likelihood (p = 0.027), indicating that longer trips reduce
the chances of relapse. While morning peak hours approach significance (p = 0.051), other
variables, such as gender and aggressiveness, were not significant. The model achieves a
concordance index (C-index) of 0.653, suggesting moderate predictive accuracy.
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Table 8.9: Weibull AFT model with clustered heterogeneity results for harsh braking per 100km

Variable Value Std. Err (Naive SE) z p
(Intercept) 4.792 0.214 0.077 22.350 <0.001
Participant’s age

Age [18-34] Ref.

Age [35-54] 0.360 0.139 0.065 2.590 0.010
Age [55+] 0.624 0.220 0.159 2.830 0.005
Participant’s gender

Female Ref.

Male 0.352 0.185 0.064 1.900 0.057
Self-reported aggressiveness

Low Ref.

High -0.271 0.217 0.099 -1.250 0.213
Participant’s vehicle cc

<1400cc Ref.

>1400cc -0.508 0.202 0.085 -2.520 0.012
Peak hour

Off peak Ref.

Morning peak 0.191 0.098 0.074 1.960 0.051
Trip duration -0.008 0.003 0.002 -2.220 0.027
Log(scale) -0.325 0.056 0.029 -5.750 <0.001
Scale 0.723

Loglik(model) -4740.7

Loglik(intercept only) -4849.1

Chisq 216.72 <0.001
Number of Newton-Raphson

Iterations 8

Concordance Index 0.724

AIC 9501.39

BIC 9558.44

The survival plot stratified by aggressiveness group highlights clear differences in survival
probabilities. Drivers in the "High Aggressiveness" group show a steeper decline in survival
probability compared to the "Low Aggressiveness" group, confirming the significant impact of
behavioral traits on relapse likelithood. This visualization complements the model results,
emphasizing the role of personality factors in determining survival times. Furthermore, the random
intercepts plot reveals individual variability in frailty effects, showcasing the importance of
accounting for unobserved heterogeneity across drivers. Drivers with positive frailty effects
exhibit shorter survival times, while those with negative frailty effects survive longer.

173



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism

Strata aggressive_driver_group=Low aggressive_driver_group=High
1.001
0.751
=
3
o
O
o
o 0.50 1
©
=
P
3
w
0.25+
0.00+
0 50 100 150 200 250

Time (Successive Trips)

Figure 8.9: Survival probability for harsh braking relapse
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Figure 8.10: Random effects for harsh braking relapse

Lastly, the residual diagnostics provide additional support for the model's adequacy. The histogram
and Q-Q plots of deviance residuals show that residuals are roughly symmetric and align well with
theoretical expectations, although slight deviations exist at the tails. The Cox-Snell residuals plot
confirms the independence of residuals, as no clear patterns emerge, while the observed vs.
predicted times scatterplot indicates reasonable alignment around the diagonal, despite variability
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at higher observed times. Together, the table and plots confirm the robustness of the Weibull AFT
model while highlighting areas for refinement, particularly in predicting extreme cases or tailoring
interventions based on individual frailty.
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Figure 8.11: Model diagnostics for the Weibull AFT model on harsh braking

Lastly, the residual diagnostics provide additional support for the model's adequacy. The histogram
and Q-Q plots of deviance residuals show that residuals are roughly symmetric and align well with
theoretical expectations, although slight deviations exist at the tails. The Cox-Snell residuals plot
confirms the independence of residuals, as no clear patterns emerge, while the observed vs.
predicted times scatterplot indicates reasonable alignment around the diagonal, despite variability
at higher observed times. Together, the table and plots confirm the robustness of the Weibull AFT
model while highlighting areas for refinement, particularly in predicting extreme cases or tailoring
interventions based on individual frailty.

8.3.2.4 Random Survival Forest

The results of the Random Survival Forest (RSF) model for harsh braking reveal key insights into
the predictors influencing the relapse event. The variable importance plot indicates that
vehicle cc_group is the most critical predictor, followed by age group and gender, while factors
like duration and aggressive driver group have a moderate influence. Interestingly, peak hour,
while included, appears to have the least importance, suggesting it has a minor role in predicting
harsh braking relapse. These findings align with the broader understanding that vehicle
characteristics and driver demographics are more central to relapse behavior than contextual
factors like time of travel.
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Figure 8.12: Feature importance of Random Forest for harsh braking

The RSF model, trained with 30 trees, demonstrated an out-of-bag (OOB) prediction error of
0.357, highlighting its moderate predictive performance. The model's flexibility in capturing non-
linear relationships and interactions adds value, but its interpretability is limited compared to
parametric models. The error metrics, with an RMSE of 91.92, and an MAE of 70.67, indicate
moderate alignment between predicted and observed survival times. These results suggest the RSF
model's utility for identifying critical predictors, which can inform targeted interventions, while
underscoring the importance of integrating other models for more nuanced interpretations of
hazard dynamics.

Table 8.10: RSF model results for harsh braking

Type Survival
Number of trees 30
Sample size 2220
Number of independent variables 6
Mtry 2
Target node size 5
Variable importance mode permutation
Splitrule logrank
Number of unique death times 220
OOB prediction error (1-C) 0.357947
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8.3.2.5 Model comparison for harsh braking

Table 8.11 Survival models comparison for harsh braking per 100km

Random Survival Forest

Aspect Weibull AFT Model Cox Model with Frailty (RSF)

Purpose Models survival time Models hazard rate Captures non-linear effects
directly

C-index 0.724 0.653 0.636 (OOB)

AIC 9501.4 9796.8 N/A

BIC 9558.4 9945.9 N/A

Key Predictors Age group, Vehlc_:le CcC Vehlcle. CC group, peak Vehicle CC group, age
group, trip duration hour, trip duration group, gender, trip duration

Frailty Effects Accounted (Clustered Acgounted (Shared Imphcltly handled (Non-
Heterogeneity) Frailty) parametric)

Prediction Error

RMSE: 91.73, MAE:

RMSE: 121.11, MAE:

RMSE: 91.92, MAE: 70.67

(RMSE/MAE) 70.25 102.42

Interpretable, adjusts for Handles heterogeneity =~ Captures complex
Strengths . . . .

clustering flexibly interactions

Accounts for driver- Provides interpretable =~ Robust to outliers,

specific effects hazard ratios identifies non-linear effects
Weaknesses Assqmeg Weibull Assumes proportional Less interpretable

distribution hazards

Sensitive to outliers

Lower predictive
accuracy

Requires larger datasets

The comparison of survival models for harsh braking per 100km highlights the strengths and
limitations of the Weibull AFT model, the Cox model with frailty, and the Random Survival Forest
(RSF). The Weibull AFT model emerged as the best performer, with a C-index of 0.724 and
competitive prediction error metrics, making it both interpretable and effective at accounting for
frailty effects. It is particularly well-suited for datasets requiring explicit adjustment for clustered
heterogeneity, and it identified key predictors such as age group, vehicle CC group, and trip
duration. This combination of strong discriminative ability, predictive accuracy, and
interpretability positions the AFT model as the preferred choice for understanding the factors
influencing harsh braking behavior.

The Cox model with frailty, while flexible and interpretable due to its shared frailty terms,
demonstrated a lower C-index of 0.653 and higher prediction errors (RMSE: 121.11, MAE:
102.42), limiting its utility in this analysis. Its reliance on the proportional hazards assumption,
which may not hold in this context, further reduces its applicability. On the other hand, the RSF
model excelled in capturing complex non-linear interactions and demonstrated comparable
prediction error metrics to the Weibull AFT model. However, its lower C-index (0.636) and lack
of interpretability make it less suitable for understanding the dynamics of harsh braking but
valuable for predictive tasks where modeling flexibility and accuracy are paramount. Together,
these models reflect the trade-offs between interpretability, predictive performance, and
methodological assumptions in survival analysis.
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8.3.3 Survival analysis of relapse in speeding percentage

8.3.3.1 The Kaplan-Meier curves

The Kaplan-Meier curve for speeding percentage reflects how quickly drivers relapse to pre-
feedback levels of speeding.
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Figure 8.13 Kaplan-Meier survival curve for speeding percentage

Initial Period: At the beginning of the post-feedback phase, the survival probability is high, with
most drivers adhering to improved speeding behavior in the initial trips.
Progressive Decline: The survival probability decreases steadily as the number of trips increases.
Key milestones include:

= 50 trips: Approximately 82.3% of drivers maintain lower speeding levels.

= 100 trips: The survival probability reduces to 65.2%, suggesting a gradual relapse.

= 150 trips: Around 46.8% of drivers maintain improved behavior, showing a significant

relapse among the remaining drivers.

These findings highlight that while drivers initially adhere to safer speeds, many revert to previous
behaviors in the absence of ongoing feedback, emphasizing the potential benefit of sustained
interventions to address speeding.

8.3.3.2 Cox-PH Model with Frailty

The results of the Cox Proportional Hazards model with frailty highlight key factors influencing
the likelihood of speeding behavior Table 8.11 shows the results and the metrics of the model.

Table 8.12: Cox -PH model with frailty results for speeding percentage
Random Effects

Group Variable SD Variance
Identifier Intercept 1.486 2.208
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Metrics chisq Df p AIC BIC
Integrated loglik 697.8 9.00 0.00 679.8 638.9
Penalized Loglik 810 2791 0.00 754.1 627.1
Fixed Effects

Variable Coef Exp(Coef) SE(Coef) z p
Participant’s age

Age [18-34] Ref.

Age [35-54] -1.066 0.344 0.750 -1.42 0.154
Age [55+] -0.128 0.879 1.224 -0.11 0.016
Participant’s gender

Female Ref.

Male -0.583 0.557 0.632 -0.92 0.355
Self-reported aggressiveness

Low Ref.

High 0.632 1.881 0.819 0.77 0.040
Participant’s vehicle cc

<1400cc Ref.

>1400cc 0.457 1.580 0.826 0.55 0.579
Peak hour

Off peak Ref.

Morning peak 0.191 1.210 0.110 1.73 0.082
Afternoon peak -0.009 0.990 0.110 -0.09 0.927
Trip duration 0.022 1.023 0.002 11.32 <0.001
Concordance Index (C-index): 0.696

AIC 8549.05

BIC 8708.30

The Cox Proportional Hazards model with frailty for speeding percentage provides valuable
insights into the factors influencing relapse while highlighting the limitations of the model’s
predictive power. The random effects indicate substantial unobserved heterogeneity, with an
intercept standard deviation (SD = 1.486) and variance (2.208), suggesting significant variability
across individuals. Among the fixed effects, trip duration emerges as a strong and highly significant
predictor of relapse (Exp(Coef) = 1.023, p <0.001), indicating that longer trips are associated with
a higher hazard of speeding relapse. Morning peak hours (Exp(Coef) = 1.210, p = 0.082) approach
statistical significance, suggesting a potential increase in relapse risk during this time. Other
variables, such as age, gender, aggressiveness, and vehicle engine size, show limited or no
significant associations, though high self-reported aggressiveness (Exp(Coef) = 1.881, p = 0.040)
is associated with increased relapse risk, and age group [55+] (Exp(Coef) = 0.879, p = 0.016)
demonstrates a protective trend.

Similarly to the previous models, the results of the Schoenfeld residuals test indicate that the
proportionality assumption is violated, with the global p-value being 0.00.
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Figure 8.14: Schoenfeld residuals versus time for each of the variables of the Cox model
8.3.3.3 Weibull AFT Model with Clustered Heterogeneity

The Weibull Accelerated Failure Time (AFT) model with clustered heterogeneity provides a
detailed examination of factors influencing speeding relapse. The model effectively accounts for
survival time and clustered variability, with a concordance index (C-index = 0.700) indicating
moderate predictive accuracy. Among the predictors, trip duration emerges as a significant factor,
with a negative coefficient (Coef = -0.022, p < 0.001), suggesting that longer trips are associated
with a shorter time to relapse. This aligns with the expected behavior of trip duration being a key
driver of speeding relapse. Additionally, morning peak hours show a significant negative
association (Coef = -0.096, p = 0.004), indicating a slightly reduced survival time for relapse
compared to off-peak hours. Age group [55+] demonstrates a protective effect (Coef = 0.084, p =
0.022), although other age and gender categories, as well as vehicle engine size, do not show
significant contributions.
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Table 8.13: Weibull AFT model with clustered heterogeneity results for speeding percentage

Variable Value Std. Err (Naive SE) z p
(Intercept) 5.294 0.453 0.095 11.69 <0.001
Participant’s age

Age [18-34] Ref.

Age [35-54] 0.165 0.215 0.073 0.77 0.441
Age [55+] 0.084 0.237 0.140 0.36 0.022
Participant’s gender

Female Ref.

Male 0.318 0.305 0.071 1.04 0.298
Self-reported aggressiveness

Low Ref.

High 0.191 0.477 0.121 -0.40 0.089
Participant’s vehicle cc

<1400cc Ref.

>1400cc -0.115 0.386 0.108 -0.30 0.766
Peak hour

Off peak Ref.

Morning peak -0.096 0.186 0.086 -0.52 0.004
Afternoon peak 0.146 0.130 0.083 1.13 0.259
Trip duration -0.022 0.003 0.001 -7.38 <0.001
Log(scale) -0.229 0.083 0.030 -2.76 0.006
Scale 0.796

Loglik(model) -4306.10

Loglik(intercept only) -4446.00

Chisq 279.820 <0.001
Number of Newton-Raphson

Iterations 8

Concordance Index 0.700

AIC 8632.255

BIC 8689.308

The survival probability plot stratified by peak hour categories reveals substantial differences in
survival probabilities over successive trips. Drivers operating during afternoon peak hours show
higher survival probabilities, suggesting that driving conditions during this period may contribute
to safer behavior or delayed relapse. By contrast, morning peak hours indicate a slightly higher
relapse risk, aligning with contextual factors such as traffic density or stress. Additionally, the
frailty effects plot shows variability among individual drivers, with a range of frailty scores
highlighting unobserved heterogeneity. This variability emphasizes the importance of accounting
for driver-specific differences in the analysis.
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Figure 8.15: Survival probability for speeding relapse

Random Intercepts (Frailty Effects) by Identifier - AFT Model
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Figure 8.16: Random effects for speeding relapse

The diagnostic plots provide additional evidence of model adequacy. The histogram and Q-Q plots
of deviance residuals show a roughly symmetric distribution with slight deviations, while the Cox-
Snell residuals confirm the appropriateness of the model specification with no evident patterns.
The observed versus predicted times scatterplot shows reasonable alignment with the diagonal,
though some variability at higher observed times suggests areas for improvement. Together, these
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results underscore the robustness of the Weibull AFT model while emphasizing the role of trip-
specific and individual-level factors in understanding relapse in speeding behavior.
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Figure 8.17: Model Diagnostics for the Weibull AFT Model on speeding

8.3.3.4 Random Survival Forest

The variable importance results from the Random Survival Forest (RSF) model for predicting
harsh braking events underscore the significance of trip duration as the most critical predictor,
showing the strongest association with relapse events. This indicates that the length of a trip
directly influences the likelihood of a harsh braking occurrence. The age group and gender of
drivers emerged as the next most influential factors, suggesting that demographic characteristics
play a key role in driving behavior patterns. Peak hour and vehicle engine size group also showed
moderate importance, indicating that external factors like traffic density and vehicle characteristics
contribute to harsh braking events. Lastly, the aggressive driver group had a lower relative
importance but still highlights that self-reported behavioral tendencies are relevant to predicting
such events.
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Figure 8.18: Feature importance of Random Forest for speeding

The error metrics provide further insight into the model's performance. The RMSE of 91.87 and
MAE: of 70.17 indicate moderate prediction accuracy, reflecting some degree of variance between
predicted and observed survival times. These results suggest that while the RSF captures key
patterns in the data, the non-linear and interaction effects it models may introduce noise, especially
in survival scenarios with a high number of unique death times (196 in this case).

Table 8.14 RSF model results for speeding behavior

Type Survival
Number of trees 30
Sample size 2220
Number of independent variables 6
Mtry 2
Target node size 5
Variable importance mode permutation
Splitrule logrank
Number of unique death times 196
OOB prediction error (1-C) 0.32969

8.3.3.5 Models comparison for speeding percentage

The comparison of survival models for relapse in speeding behavior highlights the trade-offs

between interpretability, predictive performance, and modeling flexibility. The Weibull AFT model

offers a well-rounded approach, balancing interpretability and predictive accuracy with a

concordance index (C-index) of 0.70 and reasonable prediction error metrics (RMSE: 92.47, MAE:

70.91). Its explicit handling of clustered heterogeneity through frailty terms makes it particularly

effective for datasets with nested structures, such as repeated measures for drivers. Trip duration
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emerged as the key predictor, underscoring its critical role in understanding speeding relapse.
However, its reliance on the Weibull distribution and sensitivity to outliers may limit its

applicability in more complex datasets.

Table 8.15: Models comparison summary of relapse in speeding behavior

Aspect Weibull AFT Model Cox Model with Frailty = Random Survival Forest
(RSF)
Models survival time Captures non-linear
Purpose directly Models hazard rate effects
C-index 0.70 0.696 0.704 (OOB)
AIC 8632.26 8549.06 N/A
BIC 8689.31 8708.31 N/A
Key Predictors  Trip duration Gegder, trip duration, Trip duya‘uon3 age group,
vehicle CC group aggressive driving
Frailty Effects Accounted (Clustered Accpunted (Shared Imphcltly handled (Non-
Heterogeneity) Frailty) parametric)

Prediction Error

RMSE: 92.47, MAE:

RMSE: 146.59, MAE:

RMSE: 91.87, MAE:

(RMSE/MAE) 70.91 130.41 70.17
Interpretable, adjusts for ~ Handles heterogeneity Capturgs complex
. . ) interactions; Robust to
Strengths clustering; Accounts for flexibly; Provides . . .
. . ) . outliers, identifies non-
driver-specific effects interpretable hazard ratios .
linear effects
Assumes Weibull Assumes proportional Less interoretable:
Weaknesses distribution; Sensitive to hazards; Lower predictive P ’

outliers

accuracy

Requires larger datasets

The Cox model with frailty demonstrated comparable discriminative ability (C-index = 0.696) but
higher prediction errors (RMSE: 146.59, MAE: 130.41), suggesting reduced predictive accuracy.
While it flexibly handles heterogeneity through shared frailty terms and provides interpretable
hazard ratios, its reliance on the proportional hazards assumption can be restrictive. In contrast,
the Random Survival Forest (RSF) excelled in predictive performance, achieving the lowest
prediction errors (RMSE: 91.87, MAE: 70.17) and the highest C-index (0.704). Its ability to
capture non-linear relationships and complex interactions makes it a strong choice for predictive
tasks, though its lack of interpretability and reliance on larger datasets present challenges.
Together, these models illustrate the balance between understanding speeding relapse dynamics
and achieving high predictive accuracy, with the Weibull AFT model standing out for
interpretability and RSF for flexibility and predictive performance.

8.3.4 Survival analysis of relapse in mobile phone use while driving
8.3.4.1 The Kaplan-Meier curves
The survival curve suggests that mobile phone use relapses at a slower rate compared to harsh

braking and speeding. However, without continued feedback, drivers gradually return to higher
levels of phone use while driving.
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Figure 8.19 Kaplan-Meier survival curve for mobile phone use percentage

Early Maintenance: In the early stages, the survival probability remains high, indicating that
drivers initially maintain reduced phone use during driving.
Gradual Decline: Over successive trips, the survival probability gradually decreases,
showing a rise in mobile phone use among drivers. Key milestones include:
= 50 trips: About 91.7% of drivers still show restraint in phone use, indicating a slower
relapse pattern compared to other indicators.
= 100 trips: The survival probability decreases to approximately 84.8%, showing a steady
increase in mobile phone use.

8.3.4.2 Cox-PH Model with Frailty

The results of the Cox Proportional Hazards model with frailty highlight key factors influencing
the likelihood of distracted behavior due to mobile phone use while driving. Table 8.16 shows the
results and the metrics of the model.

Table 8.16: Cox -PH model with frailty results for mobile phone use
Random Effects

Group Variable SD Variance

Identifier Intercept 1.419 2.014

Metrics chisq Df p AIC BIC
Integrated loglik 376.2 9.00 0.00 358.2 325.2
Penalized Loglik 454.8 24.98 0.00 404.9 313.3
Fixed Effects

Variable Coef Exp(Coef) SE(Coef) y/ p
Participant’s age

Age [18-34] Ref.

Age [35-54] -2.463 0.085 0.853 -2.89 0.003
Age [55+] -1.324 0.266 1.313 -1.01 0.313
Participant’s gender

Female Ref.
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Male -0.258 0.772 0.643 -0.40 0.687
Self-reported aggressiveness

Low Ref.

High 1.525 4.597 0.825 1.85 0.064
Participant’s vehicle cc

<1400cc Ref.

>1400cc -0.910 0.402 0.953 -0.96 0.339
Peak hour

Off peak Ref.

Morning peak 0.167 1.182 0.218 0.77 0.443
Afternoon peak 0.213 1.237 0.217 0.98 0.327
Trip duration 0.026 1.026 0.003 8.57 <0.001
Concordance Index (C-index): 0.737

AIC 3371.42

BIC 3513.93

The Cox Proportional Hazards model with frailty for mobile phone use highlights key factors
influencing relapse, with a strong predictive accuracy as indicated by a concordance index (C-
index) of 0.737. Trip duration emerges as the most significant predictor (Coef = 0.026, Exp(Coef)
=1.026, p <0.001), indicating that longer trips are associated with an increased hazard of mobile
phone use relapse. Among demographic factors, age group [35-54] shows a highly significant
protective effect (Coef = -2.463, Exp(Coef) = 0.085, p = 0.003) compared to the reference group
[18-34], while other age and gender categories do not reach statistical significance. Self-reported
aggressiveness trends toward significance at the 0.1 level (Coef = 1.525, Exp(Coef) = 4.597, p =
0.064), suggesting a potential association with increased relapse risk. The random effects indicate
substantial variability across individuals, with an intercept standard deviation (SD = 1.419) and
variance (2.014), underscoring unobserved heterogeneity. The model’s fit is supported by an AIC
0f'3371.42 and BIC of 3513.93, reflecting a reasonable balance between complexity and predictive
power. These results emphasize the critical role of trip duration and individual differences in
influencing mobile phone use relapse.

Similar to the previous models, the results of the Schoenfeld residuals test indicate that the
proportionality assumption is violated with the global p-value being 0.04.
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Figure 8.20: Schoenfeld residuals versus time for each of the variables of the Cox model

8.3.4.3 Weibull AFT Model with Clustered Heterogeneity

The Weibull AFT model with clustered heterogeneity for speeding percentage highlights
significant predictors while achieving a moderate predictive accuracy, as indicated by a
concordance index (C-index) of 0.700. Trip duration emerges as the most significant factor (Coef
=-0.022, p <0.001), showing that longer trips are strongly associated with shorter survival times
before relapse. Age group [35-54] also shows a statistically significant effect at the 0.05 level (Coef
=0.165, p = 0.041), indicating a slight increase in survival time compared to the reference group
[18-34], while age group [55+] does not reach significance. Other variables, such as gender, self-
reported aggressiveness, and vehicle engine size, trend toward significance at the 0.1 level but do
not achieve stronger associations.

The model's fit is supported by significant improvements in log-likelihood values (-4306.10 for
the model vs. -4446.00 for the intercept-only model) and a chi-square statistic of 279.820 (p <
0.001), with AIC (8632.255) and BIC (8689.308) reflecting reasonable model fit. These findings
underscore the importance of trip duration while suggesting limited contributions from other
demographic and behavioral factors.
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Table 8.17: Weibull AFT model with clustered heterogeneity results for mobile phone use

Variable Value Std. Err (Naive SE) z p
(Intercept) 5.294 0.453 0.095 11.69 <0.001
Participant’s age

Age [18-34] Ref.

Age [35-54] 0.165 0.215 0.073 0.77 0.041
Age [55+] 0.084 0.237 0.140 0.36 0.722
Participant’s gender

Female Ref.

Male 0.318 0.305 0.071 1.04 0.298
Self-reported aggressiveness

Low Ref.

High 0.191 0.477 0.121 -0.40 0.089
Participant’s vehicle cc

<1400cc Ref.

>1400cc -0.115 0.386 0.108 -0.30 0.066
Peak hour

Off peak Ref.

Morning peak -0.096 0.186 0.086 -0.52 0.604
Afternoon peak 0.146 0.130 0.083 1.13 0.059
Trip duration -0.022 0.003 0.001 -7.38 <0.001
Log(scale) -0.229 0.083 0.030 -2.76 0.006
Scale 0.796

Loglik(model) -4306.10

Loglik(intercept only) -4446.00

Chisq 279.820 <0.001
Number of Newton-Raphson

Iterations 8

Concordance Index 0.700

AIC 8632.255

BIC 8689.308

The survival probability plot stratified by peak hour categories reveals substantial differences in
survival probabilities over successive trips. Drivers operating during afternoon peak hours show
higher survival probabilities, suggesting that driving conditions during this period may contribute
to safer behavior or delayed relapse. By contrast, morning peak hours indicate a slightly higher
relapse risk, aligning with contextual factors such as traffic density or stress. Additionally, the
frailty effects plot shows variability among individual drivers, with a range of frailty scores
highlighting unobserved heterogeneity. This variability emphasizes the importance of accounting
for driver-specific differences in the analysis.

189



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism

Strata peak_hour=0 peak_hour=1 peak_hour=99
1.001
0.751
=
3
o
O
e
o 0.50 1
@
e
P
3
w
0251
0.004
0 50 100 150 200 250

Time (Successive Trips)

Figure 8.21: Survival probability for mobile phone use relapse

Random Intercepts (Frailty Effects) by Identifier - AFT Model
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Figure 8.22: Random effects for mobile phone use relapse

The diagnostic plots provide additional evidence of model adequacy. The histogram and Q-Q plots
of deviance residuals show a roughly symmetric distribution with slight deviations, while the Cox-
Snell residuals confirm the appropriateness of the model specification with no evident patterns.
The observed versus predicted times scatterplot shows reasonable alignment with the diagonal,
though some variability at higher observed times suggests areas for improvement. Together, these
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results underscore the robustness of the Weibull AFT model while emphasizing the role of trip-
specific and individual-level factors in understanding relapse in speeding behavior.
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Figure 8.23: Model Diagnostics for the Weibull AFT Model on mobile phone use

8.3.4.4 Random Survival Forest

The results from the Random Survival Forest model highlight the critical predictors influencing
speeding relapse among drivers. Among the six independent variables, age group emerged as the
most significant predictor, suggesting that younger or older age groups may have distinct
behavioral patterns contributing to relapse. Trip duration was the second most influential variable,
likely reflecting how prolonged driving may lead to lapses in attention or adherence to speed limits.
Vehicle engine size (vehicle cc group) also played a key role, indicating that drivers of larger
engine vehicles might engage in riskier behaviors or have higher relapse tendencies.
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Figure 8.24: Feature importance of Random Forest for mobile phone use

The model's configuration, with 30 trees and a logrank split rule, efficiently handled the survival
data, capturing non-linear relationships and interactions. However, while the out-of-bag (OOB)
error rate of 0.243 indicates a reasonably good model fit, the predictive performance, as reflected
in the Root Mean Squared Error (RMSE) of 89.77 and Mean Absolute Error (MAE) of 68.05,
suggests room for improvement in accurately predicting relapse times. Despite this, the model's
flexibility in ranking variables provides valuable insights into key behavioral and vehicle-related
factors that could inform targeted interventions to reduce speeding relapse among drivers.

Table 8.18 RSF model results for mobile phone use

Type Survival
Number of trees 30
Sample size 2220
Number of independent variables 6
Mtry 2
Target node size 5
Variable importance mode permutation
Splitrule logrank
Number of unique death times 154
OOB prediction error (1-C) 0.242985
Root Mean Squared Error (RMSE): 89.77445
Mean Absolute Error (MAE): 68.04955
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8.3.4.5 Model comparison for mobile phone use

Table 8.19 shows the comparison of models for relapse in mobile phone use. The Weibull AFT
model demonstrates the highest discriminative ability with a C-index of 0.773, making it the
strongest performer in terms of predictive accuracy. It effectively handles frailty effects while
providing interpretable results, identifying key predictors such as age group, aggressive driver
group, vehicle CC, and trip duration. These features make it particularly valuable for
understanding the dynamics of relapse. However, its AIC (3976.995) and BIC (4034.048) values
indicate a poorer fit compared to the Cox model, and its reliance on the Weibull distribution may
limit its flexibility in datasets with more complex structures. Despite these drawbacks, its overall
interpretability and predictive capability position it as a strong contender for survival analysis.

Table 8.19: Models comparison summary of relapse in mobile phone use

Random Survival Forest

Aspect

Weibull AFT Model

Cox Model with Frailty

(RSF)
Models survival time .
Purpose . Models hazard rate Captures non-linear effects
directly
C-index 0.773 0.737 0.755
AIC 3976.995 3371.426 N/A
BIC 4034.048 3513.939 N/A
Key qu EToup, aggressive Age group, aggressive driver ~ Age group, duration, vehicle
Predictors driver group, vehicle group, duration CC group, aggressive driving
CC, duration ’ ’
Frailty Effects Accounted (Cluste.r ed Accounted (Shared Frailty) Implicitly handled (Nqn-
Heterogeneity) parametric)
Prediction

Error RMSE:D247, WAL RMSE: 105.87, MAE: 8541  RMSE: 85.87, MAE: 65.41

(RMSE/MAE) ‘
Interpretable, adjusts for Adjusts for heterogeneity Captures complex
Strengths clustering; Highlights across clusters; Provides relationships; Robust to
significant predictors interpretable hazard ratios outliers
Assumes Weibull Lower discrimination Less 1nterpretgble; Wgaker
Weaknesses distribution; Sensitive to ability; Assumes numerical precision

deviations and outliers

proportional hazards

compared to parametric
models

The Cox model with frailty offers the best model fit with the lowest AIC (3371.426) and a
reasonable BIC (3513.939), demonstrating its strength in handling heterogeneity across clusters.
However, its lower C-index (0.737) and higher prediction error metrics (RMSE: 105.87, MAE:
85.41) suggest weaker predictive accuracy compared to the Weibull AFT and RSF models. In
contrast, the Random Survival Forest (RSF) excels in predictive performance, with a competitive
C-index (0.755) and the lowest prediction error metrics (RMSE: 85.87, MAE: 65.41), showcasing
its ability to model non-linear relationships and complex interactions. However, the RSF model's
lack of interpretability and reliance on larger datasets make it less suitable for explanatory
analyses. Overall, the Weibull AFT model is preferable for balancing interpretability and
predictive accuracy, while RSF stands out when prioritizing predictive performance and modeling
flexibility.

193



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism

8.4 Discussion of Results

The results of this section provide a comprehensive evaluation of driver telematics feedback on
long-term driving behavior using survival analysis techniques, with a particular focus on relapse
in mobile phone use, speeding, harsh braking, and harsh accelerations. Across all indicators, driver
feedback demonstrated significant short-term improvements in driving behavior during the
feedback phase. However, the post-feedback phase revealed varied tendencies toward relapse,
underscoring the importance of intervention strategies in shaping driver behavior over time.

The Weibull Accelerated Failure Time (AFT) model consistently emerged as a robust performer
across the examined indicators, balancing predictive accuracy and interpretability. The C-index
values ranged between 0.677 and 0.773, with the model achieving the highest predictive ability
for mobile phone use relapse (C-index = 0.773), indicating strong discriminative capacity in
identifying drivers most at risk of relapse. Key predictors such as age group [35-54] (B =0.165, p
= 0.041), trip duration (B = -0.022, p < 0.001), and self-reported aggressiveness (approaching
significance at p = 0.089) were highlighted, providing actionable insights into relapse behavior.
The model also captured heterogeneity across drivers by incorporating random effects, with frailty
effects showing significant variability in survival times. For speeding relapse, the Weibull AFT
model achieved a C-index = 0.700 with significant predictors including trip duration (f = -0.022,
p <0.001) and morning peak hours (f =-0.096, p = 0.004). Trip duration, in particular, emerged
as the dominant predictor, consistently reducing survival time across all relapse indicators,
underscoring the role of prolonged driving in behavioral regression. Similarly, in the analysis of
harsh braking relapse, the model achieved a moderate predictive accuracy (C-index = 0.724) with
significant contributions from variables such as age group [35-54] (B = 0.360, p = 0.010) and
vehicle engine capacity (>1400cc) ( =-0.508, p = 0.012). These findings highlight that younger
age groups and drivers of larger-engine vehicles are more prone to relapse.

The model’s ability to account for clustered heterogeneity through frailty terms further enhanced
its robustness, capturing unobserved individual-specific differences that influence relapse times.
For instance, random intercept variability was reflected in frailty standard deviations, ranging from
1.189 in harsh accelerations to 1.419 in mobile phone use relapse. Additionally, log-likelihood
values and diagnostic metrics such as AIC and BIC demonstrated good model fit, with values like
AIC = 7705.44 for harsh accelerations and AIC = 8632.26 for speeding relapse. Despite these
strengths, the Weibull AFT model does have limitations. Its reliance on the Weibull distribution
assumes a specific survival time shape, which may not fully capture the complexities of behavioral
relapse in datasets with non-parametric relationships. Furthermore, the model’s sensitivity to
outliers can affect predictive performance in cases with extreme observations, particularly in harsh
braking and speeding events. Nonetheless, the Weibull AFT model’s combination of
interpretability and predictive power makes it a valuable tool for understanding relapse dynamics
between driving behavior indicators and cofounding parameters.

The Cox Proportional Hazards model with frailty also proved valuable, particularly in its ability
to flexibly handle heterogeneity through shared frailty terms. Its strength lay in providing
interpretable hazard ratios that elucidated the relative impact of predictors on relapse risks. For
example, the model highlighted the protective effects of age (e.g., age group [35-54] reduced
relapse hazards for mobile phone use and harsh braking) and the influence of driving conditions
such as trip duration and peak hour. However, its C-index values (e.g., 0.737 for mobile phone use
and 0.653 for harsh braking) and higher prediction errors indicate lower predictive accuracy
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compared to the Weibull AFT model and Random Survival Forest (RSF). Furthermore, and most
importantly, the proportional hazards assumption, which was violated in several instances, further
limited its applicability for these datasets.

The Random Survival Forest (RSF) model excelled in capturing complex, non-linear interactions
among predictors, achieving the lowest prediction error metrics across most relapse indicators.
With its ability to model non-parametric relationships, the RSF effectively uncovered nuanced
dynamics in driver behavior relapse. Specifically, the Root Mean Squared Error (RMSE) values
ranged between 91.36 and 85.87, while the Mean Absolute Error (MAE) fell between 70.67 and
65.41, reflecting its strong predictive performance. For mobile phone use relapse, the out-of-bag
(OOB) prediction error was the lowest among all models at 24.3%, reinforcing RSF's superior
accuracy. Trip duration consistently emerged as the most critical predictor of relapse across all
behaviors, while other variables like aggressive driving tendencies and vehicle engine size showed
moderate importance. Additionally, the RSF effectively identified the interplay between
demographic factors, such as age group and gender, and contextual elements, like peak hours,
highlighting the model's flexibility in handling diverse predictors.

Despite its predictive strengths, the RSF model has limitations, primarily its lack of
interpretability. Unlike parametric models, RSF operates as a "black box," making it difficult to
derive hazard ratios or direct survival time estimates, which are often critical for explanatory
analysis. Furthermore, the RSF model's reliance on larger datasets to capture complex interactions
makes it less efficient in studies with smaller sample sizes. Nonetheless, the RSF is a powerful
tool for analyzing behavioral relapse, offering exceptional predictive performance and the ability
to model intricate, non-linear relationships. Future research could enhance its interpretability by
incorporating post-hoc techniques, such as SHAP values or partial dependence plots, enabling a
deeper understanding of the drivers behind relapse while maintaining the model's predictive
accuracy.

Overall, comparing the models, the Weibull AFT model stands out for balancing interpretability
and predictive accuracy, making it particularly suited for contexts requiring actionable insights
into survival dynamics. The Cox model offers a useful compromise with its interpretability and
ability to handle frailty, albeit at the cost of predictive performance. The RSF model is most
appropriate for predictive tasks where capturing non-linear relationships and complex interactions
is critical, though its lack of transparency limits its utility in understanding the underlying
behavioral mechanisms. These findings emphasize the importance of aligning model configuration
with research objectives. For studies focused on understanding behavioral dynamics and guiding
intervention design, the Weibull AFT model provides robust insights. Conversely, when predictive
accuracy is paramount, RSF offers a superior alternative.

The results also underscore the critical need for sustained feedback mechanisms to reinforce safe
driving behaviors over the long term, as relapse patterns were consistently observed across all
examined indicators once feedback interventions were withdrawn. For harsh accelerations, the
Kaplan-Meier survival analysis revealed that approximately 84.8% of drivers maintained
improved behavior within the first 50 trips of the post-feedback phase. However, this figure
declined to 68.7% at 100 trips and further dropped to 49.2% by 150 trips, indicating that nearly
half of the drivers reverted to unsafe acceleration habits within this period. Similarly, for harsh
braking, survival probabilities decreased progressively from 81.5% at 50 trips to 61.4% at 100
trips, and finally to 40.3% at 150 trips, demonstrating a steady return to pre-feedback behaviors.
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For speeding, the relapse trends were equally pronounced, with survival probabilities showing a
gradual decline. At the 50-trip mark, 82.3% of drivers adhered to improved behavior, but by 100
trips, this proportion fell to 65.2%, and by 150 trips, only 46.8% of drivers maintained reduced
speeding levels. This highlights that more than half of the participants relapsed into speeding
behaviors in the absence of ongoing feedback. Mobile phone use, while showing a slower relapse
pattern, followed a similar trajectory: 91.7% of drivers refrained from phone use at 50 trips, but
adherence reduced to 84.8% by 100 trips. Although these percentages suggest slightly greater
resilience in behavior regarding distracted driving, the decline over time remains evident.

Despite its valuable insights, this study has several limitations that should be acknowledged. The
sample size of 31 drivers, while relatively small, is mitigated by the extensive number of trips
analyzed over a prolonged period, providing a robust dataset for understanding long-term driving
behavior. However, the exclusion of traffic conditions, which are critical contextual factors
influencing driver behavior, represents a significant limitation. Incorporating traffic dynamics into
future research could provide a more comprehensive understanding of relapse behaviors.
Additionally, as this is a macroscopic study focusing on aggregated driving patterns, future
research could delve into microscopic elements, such as moment-to-moment decision-making and
situational responses. Employing random parameters with heterogeneity-in-means in AFT models
in future studies would also allow for a more nuanced analysis (Ali et al., 2022; Sharma et al.,
2020) by accommodating greater complexity and variability among drivers and driving behavior
indicators, further enhancing the understanding of long-term feedback effects.
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9 Conclusions

9.1 Dissertation Overview

Road safety is a critical public health and societal issue, as road traffic crashes claim millions of
lives and cause severe injuries globally every year. Beyond the tragic loss of life, these incidents
impose immense emotional and economic burdens on families and communities. Research
attributes approximately 95% of road crashes to human error, underscoring the critical role of
driver behavior in accident prevention. Understanding and addressing risky driving behaviors—
such as distracted driving, speeding, and harsh events—are pivotal to enhancing road safety.

Based on the above, the primary aim of this dissertation is to investigate the driver telematics
feedback mechanism under the framework of driving behavior and road safety. Despite growing
interest from automotive manufacturers and transportation researchers in driver behavior, limited
research exists on quantifying the comprehensive impact of driver feedback across its entire
lifecycle—encompassing the pre-feedback, feedback, and post-feedback phases. To address this
gap, this dissertation adopts a holistic approach to evaluate the effectiveness of feedback on
modifying driving behavior and ultimately enhancing road safety.

To achieve these objectives, a series of methodological steps were carefully implemented. The
methodological framework provides a structured approach to achieving the objectives of this
dissertation.

As a first step, a systematic literature review was conducted to evaluate the effectiveness of driver
feedback within naturalistic driving studies. Feedback mechanisms have evolved from in-vehicle
devices and paper-based reports to sophisticated, user-friendly smartphone applications. These
advancements enable the collection of high-resolution driving data and the delivery of
personalized, data-driven feedback. Mechanisms such as real-time alerts, post-trip summaries, and
performance reports have demonstrated potential for improving driver behavior.

However, significant gaps remain regarding the long-term sustainability of these effects and the
differential impacts of feedback features. While studies highlight the effectiveness of feedback in
reducing speeding, harsh braking, and mobile phone use, the influence of feedback type,
frequency, and incentives on behavior remains underexplored. Additionally, many studies observe
a relapse into risky behaviors once feedback is removed, necessitating further investigation.

Based on the results of the systematic literature review, the following research questions are
formulated:

1. How does feedback influence driver speeding and distracted behavior in terms of the
percentage of trip time during which the speed limit was exceeded and mobile phone was

used while driving?

2. How does feedback influence harsh driving events, in terms of the number of harsh
accelerations and harsh brakings?
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3. Do different feedback features (e.g., scorecards, maps, peer comparisons, motivations,
gamification, rewards) have different effects on driver behavior? Which feature
demonstrates the most significant impact?

4. How does the post-feedback effect influence long-term driver behavior, and to what extent
are the changes sustained after the feedback is removed?

5. How can advanced statistical techniques be applied to understand the mechanisms of driver
feedback and develop more individualized, data-driven approaches for driving behavior
change?

To answer the research questions, a robust methodological background was developed, combining
theoretical approaches and experimental design principles. This included the application of
advanced modeling techniques, such as Generalized Linear Mixed Effects Models (GLMMs),
Structural Equation Models (SEMs), and Survival Analysis Models, alongside the design of a
naturalistic driving experiment.

A 21-month naturalistic driving experiment involving 230 drivers was conducted. The participants
were divided into three groups (car drivers, professional van drivers, and motorcyclists), and their
driving behavior was monitored across six distinct feedback phases. These phases were defined as
follows:

e Phase 1: Basic trip data and characterization were accessible to drivers.

e Phase 2: Introduction of scorecards with trip-level scoring.

e Phase 3: Addition of maps and highlights for further trip insights.

e Phase 4: Peer comparisons enabled for driver performance benchmarking.

e Phase 5: Competitions and challenges introduced with rewards for safe driving.

e Phase 6: Reversion to Phase 1, removing all additional feedback.

High-resolution data were collected from 106,776 trips, covering a total of 1,317,573 kilometers
and 30,532 hours of driving. Behavioral metrics were captured using non-intrusive smartphone
sensors, ensuring a seamless and accurate recording of driving behaviors. This sensor data was
complemented by self-reported information from participants, providing a holistic understanding
of driver perceptions, habits, and behavioral changes. The experimental design adhered to strict
ethical standards, having been approved by the Research Ethics and Conduct Committee of NTUA,
and ensured full compliance with GDPR guidelines. Continuous communication with participants
was maintained throughout the study to address any technical issues, sustain engagement, and
monitor the smooth execution of the experiment.

Extensive data processing and cleaning were carried out to ensure the quality and reliability of the
dataset. Invalid or incomplete trip data were systematically identified and excluded, while key
behavioral metrics such as speeding, mobile phone use while driving, harsh accelerations, and
braking events were standardized for analysis. Data preprocessing steps included the conversion
of raw sensor outputs into meaningful variables and the integration of self-reported data for cross-
validation. This rigorous approach to data management enabled the creation of a robust dataset,
facilitating detailed statistical analyses and ensuring the accuracy of the findings presented in this
dissertation.

198



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism

Advanced statistical techniques were employed to analyze feedback effects on critical driving
indicators, such as speeding, mobile phone use, harsh accelerations, and harsh brakings. The
analysis unfolded in three key pillars:

1. Impact of Feedback: This pillar assessed the immediate effects of feedback on 1) driver
speeding and distracted behavior, focusing on speeding among motorcyclists and
distraction due to mobile phone use while driving in car drivers, and i1) driver harsh events,
focusing on harsh braking and harsh accelerations among car drivers, and professional
drivers on highways. Generalized Linear Mixed-Effects Models (GLMM) were then
employed in all cases to evaluate the effects of feedback while accounting for individual
differences and contextual factors.

2. Effects of Different Feedback Features: A Structural Equation Model (SEM) was
developed to explore the complex relationships between feedback features (e.g. scorecards,
maps, peer comparisons, motivations, gamification, rewards) and driver behavior,
exposure metrics and safety outcomes, allowing for the simultaneous analysis of multiple
variables and their interactions.

3. Post-Feedback Effects: Effects on long-term driver behavior, with a particular emphasis on
understanding the relapse of driving behaviors following the withdrawal of feedback
telematics during the last phase of the experiment. Survival Analysis methods were
employed to investigate relapse patterns across various indicators, including harsh
accelerations, harsh braking, speeding behavior, and mobile phone use while driving.
These analyses leverage Kaplan-Meier curves, Cox-PH models with frailty, Weibull AFT
models with clustered heterogeneity, and Random Survival Forests to evaluate and
compare the predictive power and insights offered by each model.

Ultimately, the synthesis of all the analyses carried out within the framework of this doctoral
dissertation resulted in a driver behavior telematics feedback mechanism with numerous original
and interesting results, which are discussed in the following concluding subsections.

9.2 Main Findings
9.2.1 Main findings of the feedback impact on driver behavior

The investigation of feedback impacts on driver behavior yielded significant findings across
different user groups, driving environments, and behavioral metrics. Overall, during the two
phases of the experiment a large dataset of 3,537 trips from a sample of 13 motorcyclists were
recorded and analysed. Using Generalized Linear Mixed-Effects Models with random intercepts
and random slopes for total trip duration revealed that providing motorcyclists with feedback about
their riding performance during experiment Phase 2 led to a remarkable decrease in speeding
percentage over a trip. Particularly, in the developed models rider feedback seems to decrease
speeding percentage, having a risk ratio of exp(p=-0.145) = 0.865 for the overall model (13.5%
decrease), and exp(B=-0.031) = 0.970 and exp(p=-0.420) = 0.657 for urban (3.0% decrease) and
rural (34.3%) road types respectively. These results highlight the effectiveness of feedback in
targeting high-risk behaviors, offering a foundation for scalable interventions in rider training and
policy design.
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Similarly, distracted driving, particularly mobile phone use, was examined across urban, rural, and
highway contexts via GLMM models for 65 car drivers over 21,167 trips. Feedback emerged as a
strong restrictive in using the mobile phone while driving overall (B = —0.4276, p < 2e—16),
particularly in urban settings (B = —0.3687, p < 2e—16), while its impact was notably weaker in
rural environments (f =—0.1180, p < 2e—16) and unexpectedly positive on highways ( = 0.5490,
p < 2e—16), suggesting compensatory behaviors or a perceived lower risk of distraction on high-
speed roads. The substantial variability in random intercepts (SD = 1.4024 overall) highlights
notable individual differences in baseline behavior, while random slopes for trip duration (SD =
0.2827 overall) show diverse responses to prolonged trips.

In the domain of harsh events such as accelerations and brakings, feedback mechanisms
demonstrated significant behavioral improvements, as well. Results from the analysis of 65 car
drivers during the first two phases of the experiment, revealed a significant reduction in harsh
accelerations (12%) and harsh brakings (10%), both changes being statistically significant (p <
0.001). The GLMM models further reinforce these findings, as feedback was consistently
associated with reduced frequencies of harsh events, particularly in urban and rural environments.
Notably, the relative risk ratios for speeding duration and trip duration indicate strong positive
associations with harsh events, though feedback appears to mitigate these effects to a degree in
Phase 2 of the experiment. Importantly, driver-specific variability, captured through random
intercepts and slopes, underscores the need for tailored feedback mechanisms to address unique
behavioral traits.

Professional drivers, due to their prolonged driving hours and distances, were also a key area of
exploration. Using GLMMs calibrated on a dataset of 5,345 trips from 19 professional drivers, the
analysis revealed that participation in a social gamification scheme with incentives led to notable
improvements in harsh events of professional drivers. During the competition phase, the likelihood
of harsh accelerations was reduced by a factor of 0.348 (p <0.001), while harsh brakings decreased
by a factor of 0.404 (p < 0.001), indicating the efficacy of gamification in promoting safer driving
practices. Additionally, trip duration showed a positive association with harsh events, with a 1-
second increase in driving time raising the odds of harsh accelerations and harsh brakings by
factors of 1.558 and 1.564, respectively, highlighting the cumulative effects of extended driving.
The inclusion of random intercepts in the models underscored substantial variability in baseline
driver behavior, emphasizing the importance of personalized interventions.

9.2.2 Main findings of the different feedback features effects

The Structural Equation Model (SEM) analysis provided significant insights into the impact of
different effects of feedback features on driver behavior, specifically speeding, harsh braking, and
harsh acceleration events. The dataset, comprising 73,869 trips from 175 car drivers over 21
months, offered a robust basis for modeling. The SEM results identified two latent variables,
namely feedback and exposure as critical influences. The model exhibited excellent goodness-of-
fit measures, with Comparative Fit Index (CFI) = 0.940, Tucker—Lewis Index (TLI) = 0.944, Root
Mean Square Error Approximation (RMSEA) = 0.049, and Standardized Root Mean Square
Residual (SRMR) = 0.025, indicating a robust and well-specified structure. The inclusion of
covariances among variables, guided by residual correlation analysis, further improved the model
fit and highlighted critical relationships, such as those between speeding and harsh braking
behaviors.
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Among the feedback features analyzed, the scorecard emerged as the most influential feature, with
the highest positive estimate (f = 2.076, p < 0.001), demonstrating its powerful role in promoting
safer driving habits by immediately altering risky behaviors in comparison with the baseline phase.
This result can be attributed to the clear, concise, and actionable nature of scorecards, which
provide drivers with straightforward insights into their performance and specific areas for
improvement, making it easier to adjust their behavior. Similarly, the maps feature showed a strong
impact (B = 1.646, p < 0.001), emphasizing the importance of spatial awareness in enhancing
driving practices. The compare feature allowed drivers to assess their performance relative to
peers, positively influencing behavior (f = 1.215, p < 0.001). Additionally, the competition &
challenges feature proved highly effective (B = 2.053, p < 0.001) by motivating drivers to adopt
safer driving behaviors through gamified elements and rewards for safe driving.

In terms of driving behavior metrics, driver telematics feedback significantly reduced the
percentage of speeding time (f = -0.214, p < 0.001) and harsh braking events per 100km (B = -
0.027, p < 0.001). However, an increase in harsh accelerations per 100km ( = 0.026, p < 0.001)
suggests the need for further refinement of feedback systems to address unintended consequences.
Exposure factors also played a key role in shaping driver behavior, with morning peak exposure
correlating with increased risk-taking (f =2.473, p <0.001), likely driven by time pressure during
commuting hours. Conversely, afternoon peak exposure was associated with less aggressive
behavior (B =-1.360, p <0.001), providing insights into temporal variations in driving patterns.

Regression analysis confirmed these findings, highlighting the interplay between exposure and
feedback features. While exposure positively influenced speeding (B = 0.326, p <0.001), feedback
features effectively mitigated this behavior. The competition & challenges feature, in particular,
showed promise in moderating harsh accelerations (f =-0.001, p <0.001). Harsh braking incidents
were also significantly reduced by feedback, reinforcing the role of feedback in promoting safer
driving practices. Covariance analysis further revealed strong interrelationships between risky
behaviors, such as speeding and harsh braking, underscoring the complexity of driver behavior
patterns. These findings suggest that speeding often necessitates sudden corrections, like harsh
braking, and both behaviors may stem from underlying traits such as risk-taking tendencies or
aggressive driving habits.

The practical implications of these findings are substantial. Feedback features, particularly those
leveraging personalized scorecards, spatial tools, and gamification elements, hold great promise
for improving driver safety. Tailored interventions targeting specific behaviors and times of day
could further enhance the efficacy of these systems. However, limitations such as the exclusion of
mobile phone use from the final model and potential selection biases due to the voluntary nature
of participation should be addressed in future research.

9.2.3 Post-feedback effect on long-term driver behavior

Survival analysis techniques were applied to a dataset of 24,904 trips from 31 car drivers, each
contributing at least 20 trips in the post-feedback phase, to investigate the long-term effects of
driver telematics feedback on driving behavior. The analysis focused on relapse patterns in mobile
phone use, speeding, harsh braking, and harsh accelerations. The methods utilized included
Kaplan-Meier curves, Cox-PH models with frailty, Weibull Accelerated Failure Time (AFT)
models incorporating clustered heterogeneity, and Random Survival Forests. The findings
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demonstrate the effectiveness of feedback interventions in achieving significant short-term
behavioral improvements during the feedback phase. However, the post-feedback phase reveals
varied relapse tendencies, emphasizing the need for sustained interventions to maintain these
improvements over time.

The Kaplan-Meier survival analysis emphasized relapse trends, showing a steady decline in
improved behavior over successive trips in the post-feedback phase. For harsh accelerations,
survival probabilities dropped from 84.8% at 50 trips to 49.2% by 150 trips. Similar trends were
observed for harsh braking and speeding, with survival probabilities declining to approximately
40.3% and 46.8%, respectively, by the 150-trip mark. These patterns underscore the transient
nature of feedback effects and the need for continuous reinforcement mechanisms. Mobile phone
use showed slightly greater resilience, with survival probabilities remaining above 80% at 100
trips, but the gradual relapse was evident over time.

Among the survival analysis models applied, the Weibull Accelerated Failure Time (AFT) model
consistently emerged as a robust performer across the examined indicators, balancing predictive
accuracy and interpretability. The concordance index (C-index) values ranged between 0.677 and
0.773, with the model achieving the highest predictive ability for mobile phone use relapse (C-
index = 0.773), indicating strong discriminative capacity in identifying drivers most at risk of
relapse. Key predictors such as age group [35-54] (B =0.165, p=0.041), trip duration (f =-0.022,
p < 0.001), and self-reported aggressiveness (approaching significance at p = 0.089) were
highlighted, providing actionable insights into relapse behavior. The model also captured
heterogeneity across drivers by incorporating random effects, with frailty effects showing
significant variability in survival times.

For speeding relapse, the Weibull AFT model achieved a C-index = 0.700 with significant
predictors including trip duration (B =-0.022, p < 0.001) and morning peak hours (f =-0.096, p =
0.004). Trip duration, in particular, emerged as the dominant predictor, consistently reducing
survival time across all relapse indicators, underscoring the role of prolonged driving in behavioral
regression. Similarly, in the analysis of harsh braking relapse, the model achieved a moderate
predictive accuracy (C-index = 0.724) with significant contributions from variables such as age
group [35-54] (B =0.360, p=0.010) and vehicle engine capacity (>1400cc) (B =-0.508, p=0.012).
These findings highlight that younger age groups and drivers of larger-engine vehicles are more
prone to relapse.

The Random Survival Forest (RSF) model demonstrated superior predictive performance in some
examined indicators, excelling in capturing non-linear interactions and complex relationships
between predictors. With Root Mean Squared Error (RMSE) values as low as 85.87 and out-of-
bag (OOB) prediction errors of 24.3% for mobile phone use relapse, RSF identified critical
predictors such as trip duration, aggressive driving tendencies, and vehicle engine size. Its
flexibility in handling diverse predictors and uncovering nuanced dynamics makes RSF an
invaluable tool for predictive analyses. However, the model's "black box" nature and reliance on
larger datasets limit its interpretability and applicability for explanatory purposes.

Overall, comparing the models, the Weibull AFT model stands out for balancing interpretability
and predictive accuracy, making it particularly suited for contexts requiring actionable insights
into survival dynamics. The Cox model offers a useful compromise with its interpretability and
ability to handle frailty, however repeatedly failed to meet model assumptions. The RSF model is
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most appropriate for predictive tasks where capturing non-linear relationships and complex
interactions is critical, though its lack of transparency limits its utility in understanding the
underlying behavioral mechanisms. These findings emphasize the importance of aligning model
configuration with research objectives. For studies focused on understanding behavioral dynamics
and guiding intervention design, the Weibull AFT model provides robust insights. Conversely,
when predictive accuracy is paramount, RSF offers a superior alternative.

While this study offers valuable insights into the dynamics of driver feedback and relapse,
limitations such as the relatively small sample size, exclusion of traffic conditions, and
macroscopic focus should be noted. Future research could incorporate more granular data, such as
traffic dynamics and moment-to-moment driver decisions, to provide a deeper understanding of
behavioral patterns. Employing advanced modeling techniques, such as random parameters with
heterogeneity-in-means, could further enhance the analysis by accounting for driver-specific
variability.

9.3 Innovative Scientific Contributions

The innovative contributions of this doctoral dissertation consist of five original scientific
contributions, as described below, and illustrated in Figure 9.1.

Extensive
Naturalistic Driving Multi-Modal Approach
Data Collection to Driver Behavior
Analysis
Driver Feedback

Mechanism as

a Holistic System Comprehensive

Suite of
Three-Layer Models

In-Depth Analysis
of Post-Feedback Effects

Figure 9.1: Innovative contributions of the doctoral dissertation
9.3.1 Extensive naturalistic driving data collection

The present dissertation represents a significant step forward in naturalistic driving (ND) research
by leveraging non-intrusive data collection methods that rely on smartphone sensors. Unlike
traditional approaches, this methodology minimizes disruption to participants, enabling the
unobtrusive capture of real-world driving behaviors. The data spans a large sample size of drivers
(230) across diverse road environments and vehicle types, including car drivers, motorcyclists, and
professional van drivers. This inclusivity ensures that findings are not only representative but also
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account for variations across driver demographics and vehicle categories. The dataset's rich
temporal resolution provides detailed insights into driving behaviors at the trip level, offering a
granular perspective on driver behavior dynamics.

Moreover, the long-term data collection 21-month period, spanning multiple feedback phases and
covering various road environments, adds unique value. By capturing behavior changes over time,
the study bridges a critical gap in existing ND research, which often relies on short-term
observations. This long-term perspective enables the assessment of sustained behavior
modifications and relapse tendencies, providing a robust foundation for developing adaptive and
sustainable interventions to improve road safety. The methodology sets a new benchmark for ND
experiments, paving the way for more scalable, cost-effective, and technologically advanced
driving behavior studies.

9.3.2 Multi-modal approach to driver behavior analysis

This dissertation takes a multi-modal approach, emphasizing the importance of understanding
driving behaviors across diverse road user groups and environments. By including car drivers,
motorcyclists, and professional van drivers, the research recognizes the critical need to study
vulnerable road users, such as motorcyclists, who face heightened risks, and professional drivers,
who spend extended hours on the road. This inclusive focus ensures a comprehensive evaluation
of driver telematics feedback, highlighting their relevance across varying risk profiles and
exposure levels.

The investigation also considers the influence of urban, rural, and highway environments,
acknowledging the distinct challenges posed by each road type. This contextual approach reveals
that feedback effectiveness is not uniform; behaviors like mobile phone use or speeding respond
differently to interventions depending on the driving environment. For instance, motorcyclists may
benefit more from feedback targeting situational awareness, while professional drivers might
require tailored interventions addressing fatigue and repetitive exposure to high-risk scenarios.

By integrating this diversity of user groups and contexts, the dissertation provides actionable
insights for policymakers, road safety advocates, and technology developers. It emphasizes the
importance of developing tailored feedback systems that cater to the unique needs of vulnerable
road users, such as motorcyclists, and professional drivers, who contribute significantly to road
traffic activity. This comprehensive approach supports the creation of adaptive, context-sensitive
interventions, ultimately improving road safety for all users.

9.3.3 Comprehensive suite of three-layer models

This dissertation employs a comprehensive suite of advanced statistical and machine learning
models, tailored to address the multifaceted nature of driving behavior analysis. By incorporating
Generalized Linear Mixed-Effects Models, Structural Equation Models, and Survival Analysis
techniques (e.g., Weibull AFT, Cox-PH with frailty, and Random Survival Forest), the study
provides a rigorous analytical framework capable of uncovering both linear and non-linear
relationships between variables. Each model is carefully selected to align with the research
objectives, balancing predictive accuracy with interpretability to ensure actionable insights.
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This model suite also enables the exploration of complex phenomena, such as the interplay
between feedback features, driving behaviors, and contextual factors like time of day or road type.
For example, survival models uniquely capture relapse dynamics, offering novel insights into post-
feedback behavioral tendencies. Machine learning techniques further enhance the study by
capturing nuanced, non-linear interactions, ensuring that the models are equipped to handle the
complexity of real-world driving data. This innovative analytical framework not only elevates the
scientific rigor of the research but also demonstrates the potential of combining traditional
statistical methods with state-of-the-art machine learning approaches for driver behavior studies.

9.3.4 In-depth analysis of post-feedback effects

This dissertation is among the first to analyze thoroughly post-feedback effects on driver behavior
using advanced statistical and machine learning techniques, addressing a critical gap in existing
research. Through survival analysis methods, such as Weibull AFT and Random Survival Forest,
the study evaluates long-term behavior changes and relapse patterns after feedback withdrawal.
These techniques enable a detailed exploration of the factors influencing relapse in risky behaviors
like speeding, harsh events, and mobile phone use, providing actionable insights for the design of
sustained intervention strategies.

The findings reveal the importance of adaptive feedback systems that can maintain behavior
improvements over time. For example, survival analysis showed that trip duration and time of day
significantly influence relapse dynamics, emphasizing the need for context-aware feedback
mechanisms. This innovative focus on the post-feedback phase provides a novel framework for
understanding the longevity of feedback-induced improvements, allowing for more durable and
impactful road safety interventions. It also sets a precedent for future research to integrate long-
term perspectives into the evaluation of driving behavior modification strategies.

9.3.5 Driver feedback mechanism as a holistic system

This dissertation uniquely approaches the feedback mechanism as a holistic system, examining its
full lifecycle through a multiparametric analytical framework. By systematically analyzing the pre-
feedback, feedback, and post-feedback phases, the study offers a comprehensive understanding of
how feedback influences driver behavior across time. The integration of diverse feedback features,
such as scorecards, maps, comparison tools, and competition elements, enables the evaluation of
their individual and combined impacts on behavior modification. This multi-phase perspective not
only captures immediate behavior changes but also sheds light on long-term patterns and relapse
tendencies.

Furthermore, the holistic framework provides valuable insights into the synergies and trade-offs
between different feedback features. For instance, while scorecards and competition elements are
highly effective in reducing speeding, their impact on other behaviors like harsh accelerations
requires further refinement. This systemic approach advances the field by moving beyond isolated
feedback evaluations, offering a scalable, data-driven framework for designing and implementing
telematics-based interventions. The findings emphasize the potential of adaptive feedback systems
to improve driving behavior sustainably, ultimately contributing to safer road environments.
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9.4 Challenges Ahead

While this thesis provides significant contributions to understanding driver behavior and the role
of telematics-based feedback mechanisms, several limitations should be acknowledged. One
notable limitation lies in the lack of traffic data, which could have provided essential context for
interpreting driving behavior. Traffic density, flow patterns, and congestion levels are known to
significantly influence driver decisions, such as speeding, harsh braking, and aggressive
maneuvers. The absence of such data limits the ability to fully account for external conditions that
may contribute to risky driving behaviors. Future studies should aim to integrate traffic data from
external sources, such as real-time traffic monitoring systems or connected infrastructure, to
provide a more holistic understanding of driver behavior in various traffic conditions.

A related limitation is the geographic and sample constraints of the study. The data collection was
conducted within specific regions, focusing on a sample of drivers that, while diverse in terms of
vehicle types and road environments, may not represent the global driving population. Cultural,
legal, and infrastructural differences across regions may affect driving behaviors and the
effectiveness of feedback mechanisms. To enhance the generalizability of the findings, future
research should replicate the study across multiple geographic locations, incorporating diverse
road environments, legal frameworks, and driving cultures.

The study also faced challenges related to self-selection bias, inherent in naturalistic driving
experiments. Participants voluntarily agreed to take part, which may introduce bias as these
individuals might already be more safety-conscious or willing to improve their driving behavior.
This could lead to an overestimation of the effectiveness of feedback mechanisms. Future research
should aim for broader recruitment strategies, such as random sampling or targeted incentives, to
ensure a more representative sample of the driving population.

The technological constraints of using smartphone sensors for data collection pose another
limitation. While the use of smartphones provides a low-cost, non-intrusive method, they have
inherent limitations in data accuracy and coverage. For example, harsh event detection, such as
accelerations and brakings, is sensitive to the smartphone's placement and calibration. Moreover,
smartphones lack the ability to capture critical parameters such as traffic conditions, weather, and
external environmental factors, which could significantly influence driving behavior. Future
studies should explore integrating data from multiple sources, such as connected vehicle systems,
external traffic monitoring systems, and weather data, to create a richer and more robust dataset.

The study's temporal scope, although extensive compared to many prior studies, is still limited in
capturing the full lifecycle of behavior changes induced by feedback. While the research examines
pre-feedback, feedback, and post-feedback phases, the long-term sustainability of these changes
remains unclear. Behavioral relapses may evolve over years, requiring more longitudinal studies
to understand how feedback interventions impact behavior over extended periods. This challenge
is particularly pertinent as driving technologies and environments continue to evolve, potentially
altering the dynamics of driver behavior.

A further limitation arises from the complexity of modeling and interpretation. Advanced
statistical and machine learning models were used to analyze the data, each with its strengths and
limitations. While machine learning models, such as Random Survival Forests, excel in predictive
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accuracy, they lack transparency, making it challenging to derive actionable insights. Conversely,
traditional models like the Cox Proportional Hazards model offer interpretability but may fail to
capture complex, non-linear relationships. Future research should explore hybrid modeling
approaches that combine the strengths of these methodologies, enhancing both predictive power
and practical applicability.

Lastly, the integration of feedback with other road safety pillars, such as vehicle technology and
road infrastructure, remains underexplored. While the thesis emphasizes driver behavior, the
interaction between drivers, vehicles, and the built environment is a critical area for future
exploration. Emerging technologies, including connected and autonomous vehicles, will further
complicate these dynamics. Adaptive feedback systems that incorporate real-time traffic and
infrastructure data will be necessary to address these complexities. Additionally, studying
feedback interventions for vulnerable road users, such as pedestrians and cyclists, can extend the
applicability of these findings to broader road safety contexts.

Addressing these limitations will require innovative methodologies, expanded datasets, and
interdisciplinary collaborations. The increasing availability of advanced sensors, telematics
platforms, and artificial intelligence provides an opportunity to overcome many of these
challenges. By incorporating traffic data, expanding geographic and temporal scope, and
leveraging advanced analytical techniques, future research can build upon this thesis to further
advance road safety and driver behavior analysis.
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Appendix 11

Consent Form for Participants

BESMART

Consent Form for Participants

&, Topdos, Mrompopan
km Fuproniuniakrs

Yrodopre, ERMN

T
A i LA

1. T declare that I have read and understood the Parficipant Information Sheet
provided for the BeSmart research project titlted “Driver Behavior and Safety
Support System for All Means of Transportation Using Mobile Phones.™ I also
confirm that I have been given the opporhmmity to ask queshions about the

experiment procedure in which I will participate.

2. T understand that my participation 15 voluntary and that I am free to withdraw at
any time without having to explain my reasons and without affecting my legal
nights.

3. I consent to mstalling the BeSmart application, developed by OSeven as part of
the BeSmart project, cn my mobile phone, provided I have read and accepted the
application’s Terms of Use.

4. 1 authonze the designated members of the BeSmart research team to access all
data recorded by the application installed on my mobile phone solely for the
purpose of processing and analyzing it within the scope of the research project.
The data recorded includes sensor values from the mobile phone (eg.,
accelerometer, gyroscope, GPS).

3. T acknowledge full responsibility for my drving behavier and understand that t'].t‘
research team members bear no responsibility for the outcomes of my driving
behavior.

DAt e
**Participant Name:**
**Email Address**
**Vehicle Type:**

[l Private Car

[ Commercial Vehicle

O Metorcyele
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- Topda Metapopd M
BESMART @ = $)osees

Ynebophe, EMI ""“‘“g
O Bicycle
**Smartphone Type:**
1 Androad
0108
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Appendix IT1

Driving behavior questionnaire

Driver Behavior Questionnaire
A, Driving Experience — Trips
1. Participant Email:
2. When did you obtain your car driver's license?
3. How many years of driving experience do you have, regardless of vehicle type?
4. How many days per week do you use your car? (1 to 7 options)
5. Approximate kilometers driven per week (<20 to 150+ options)
6. Average daily trips as a drver (1 fo 5+ options)
7. Average daily trip length in kilometers (1-2 to 30+ options)

8. Approximate yearly kilometers driven (5,000 fo =20,000 options)

B. Vehicle
9. Ownership status (Personal, family-owned, rented, company vehicle, other)

10. Engine capacity (<1001cc to =2000cc options)
11. Vehicle age (<5 years o =15 years options)

12. Average fuel consumption (<51t/100km to =151t/100km options)

C. Driving Behavior
13. Accident history (last 3 vears, with or without fault):

a. Total number of accidents you have been involved in.
b. Accidents with injuries.
c. Accidents with only material damages.
14 Traffic violation fines in the last 3 years (0 to =3 options)
15. Statements on driving behavior (Never to Always scale):
a. Exceeding speed limits

EMARER 3112281 g Ei"h
amiT4IT
===

UEPHIART IPOITARS.
AMTARCAEITI THTA T IFHHATID AT KAMOTOHA
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b. Harsh braking
c. Aggressive acceleration
d. Sudden turns
e. Mobile phone use while driving
16. Compliance with speed limits (1: Not at all, 5: Very much):
a. Highway
b. National roads
c. Urban roads
17. Driver self-assessment (1 to 5 scale):
a. How careful you perceive yourself to be?

b. How aggressive you perceive yourself to be?

D. Demographic Data
18. Gender (Male, Female, Other)

19. Age (ranges: 18-24 to =65)

20. Marital status (Single, Married, Divorced, Widowed)

21. Household size

22 Family annual income (<<10,000 to =30,000 options or "Prefer not to say’)
23, Education level (Primary fo Doctorate and Other)

24 Familiarity with smartphone applications (1: Very low, 5: Very high)

EMAVER T3 = EIMA

CLEPHDAS] PPN, s
ABTTATAETTIN ITH T TN BT MATIR AT Bl OTOMIA ﬁ
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