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Abstract 
 

Road safety remains a critical global concern, with traffic crashes claiming millions of lives 

annually and imposing significant emotional and economic burdens. Human error accounts for 

95% of road crashes, underscoring the pivotal role of driver behavior in enhancing safety. This 

dissertation investigates the impact of driver telematics feedback mechanism on driving behavior, 

addressing gaps in understanding feedback’s lifecycle effects, including pre-feedback, feedback, 

and post-feedback phases. Employing a multi-modal approach, the study analyzes diverse user 

groups, namely car drivers, motorcyclists, and professional drivers, across urban, rural, and 

highway environments to evaluate feedback mechanism comprehensively. 

 

A 21-month naturalistic driving experiment involving 230 drivers across six feedback phases 

generated a robust dataset of 106,776 trips, covering 1.3 million kilometers. The tailored feedback 

interventions concerned scorecards, gamification, and peer comparisons. Advanced statistical and 

machine learning models, including Generalized Linear Mixed-Effects Models (GLMMs), 

Structural Equation Models (SEMs), and Survival Analysis methods (e.g., Weibull AFT, Cox-PH 

with frailty, and Random Survival Forests), were utilized to analyze behavioral mΣetrics such as 

speeding, mobile phone use, harsh braking, and accelerations which demonstrated substantial 

impacts on reducing risky behaviors. 

 

The overall impact of feedback significantly improved driving behavior, with notable variations 

across user groups and driving contexts. Urban environments demonstrated the most substantial 

reductions in mobile phone use and harsh events, likely driven by the heightened complexity and 

demands of navigating urban settings. Feedback features also influenced outcomes differently; 

scorecards were particularly effective in reducing risky behaviors like speeding, while 

gamification elements motivated sustained engagement among professional drivers. Despite these 

successes, survival analyses revealed significant relapse tendencies once feedback was removed, 

with survival probabilities for maintaining improved behaviors, such as reduced speeding and 

harsh braking, falling below 50% within 150 trips post-feedback. These findings highlight the need 

for continuous and adaptive engagement strategies, incorporating diverse features tailored to the 

specific needs of different user groups and driving contexts, to ensure long-term effectiveness and 

sustained safety improvements. 

 

This dissertation uniquely approaches feedback as a holistic system, examining its impacts across 

multiple phases and user groups, offering a comprehensive framework for evaluating telematics-

based feedback via an integrated suite of three-layer models. Findings provide actionable insights 

for policymakers, technology developers, and road safety advocates, supporting the development 

of scalable solutions to improve driver behavior and enhance road safety sustainably. 
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Σύντομη Περίληψη 

 
Η οδική ασφάλεια παραμένει ένα κρίσιμο παγκόσμιο πρόβλημα, με τα οδικά ατυχήματα να στοιχίζουν 

εκατομμύρια ζωές ετησίως και να επιφέρουν σημαντικές συναισθηματικές και οικονομικές 

επιβαρύνσεις. Το ανθρώπινο λάθος ευθύνεται για το 95% των οδικών ατυχημάτων, γεγονός που 

υπογραμμίζει τον καθοριστικό ρόλο της συμπεριφοράς των οδηγών στην ενίσχυση της ασφάλειας. Η 

παρούσα διατριβή διερευνά τον αντίκτυπο της ανατροφοδότησης του οδηγού μέσω τηλεματικής στην 

οδηγική συμπεριφορά, αντιμετωπίζοντας τα κενά στην κατανόηση των επιπτώσεων του κύκλου ζωής 

της ανατροφοδότησης, συμπεριλαμβανομένων των φάσεων πριν την ανατροφοδότηση, της 

ανατροφοδότησης και της μετά την ανατροφοδότηση. Χρησιμοποιώντας μια πολυτροπική προσέγγιση, 

η μελέτη αναλύει διαφορετικές ομάδες χρηστών οδού, δηλαδή οδηγούς αυτοκινήτων, μοτοσικλετιστές 

και επαγγελματίες οδηγούς, σε αστικά και υπεραστικά περιβάλλοντα, και αυτοκινητόδρομους για να 

αξιολογήσει συνολικά τον μηχανισμό ανατροφοδότησης. 

 

Ένα πείραμα φυσικής οδήγησης διάρκειας 21 μηνών, στο οποίο συμμετείχαν 230 οδηγοί σε έξι φάσεις 

ανατροφοδότησης, δημιούργησε ένα ισχυρό σύνολο δεδομένων 106.776 διαδρομών, που κάλυψαν 1,3 

εκατομμύρια χιλιόμετρα. Οι εξατομικευμένες παρεμβάσεις ανατροφοδότησης αφορούσαν κάρτες 

βαθμολογίας, παιχνίδισμα και συγκρίσεις μεταξύ των οδηγών. Χρησιμοποιήθηκαν προηγμένα 

στατιστικά μοντέλα και μοντέλα μηχανικής μάθησης, συμπεριλαμβανομένων γενικευμένων γραμμικών 

μοντέλων μικτών αποτελεσμάτων (GLMM), μοντέλων δομικών εξισώσεων (SEM) και μεθόδων 

ανάλυσης επιβίωσης (π.χ. Weibull AFT, Cox-PH και Random Survival Forests), για την ανάλυση 

μετρήσεων συμπεριφοράς όπως η υπερβολική ταχύτητα, η χρήση κινητού τηλεφώνου, τα απότομα 

συμβάντα, οι οποίες κατέδειξαν σημαντικές επιπτώσεις στη μείωση των επικίνδυνων συμπεριφορών. 

 

Η συνολική επίδραση της ανατροφοδότησης βελτίωσε σημαντικά τη συμπεριφορά οδήγησης, με 

αξιοσημείωτες διαφοροποιήσεις μεταξύ ομάδων χρηστών και οδηγικών πλαισίων. Οι αστικές περιοχές 

εμφάνισαν τις πιο σημαντικές μειώσεις στη χρήση κινητού τηλεφώνου και σε απότομα συμβάντα, 

πιθανώς λόγω της αυξημένης πολυπλοκότητας και των απαιτήσεων που συνδέονται με την πλοήγηση σε 

αστικά περιβάλλοντα. Τα χαρακτηριστικά της ανατροφοδότησης επηρέασαν επίσης τα αποτελέσματα 

διαφορετικά, οι βαθμολογίες αποδείχθηκαν ιδιαίτερα αποτελεσματικές στη μείωση επικίνδυνων 

συμπεριφορών, όπως η υπερβολική ταχύτητα, ενώ στοιχεία παιχνιδοποίησης ενίσχυσαν τη διαρκή 

δέσμευση των επαγγελματιών οδηγών στη βελτίωση της οδηγικής τους συμπεριφοράς. Παρά τις 

επιτυχίες αυτές, οι αναλύσεις επιβίωσης αποκάλυψαν σημαντικές τάσεις υποτροπής μετά την αφαίρεση 

της ανατροφοδότησης, με τις πιθανότητες επιβίωσης για τη διατήρηση βελτιωμένων συμπεριφορών, να 

πέφτουν κάτω από 50% μέσα σε 150 διαδρομές μετά την ανατροφοδότηση. Τα ευρήματα αυτά 

υπογραμμίζουν την ανάγκη για συνεχείς και προσαρμοστικές στρατηγικές δέσμευσης, που να 

ενσωματώνουν ποικίλα χαρακτηριστικά προσαρμοσμένα στις συγκεκριμένες ανάγκες διαφορετικών 

ομάδων χρηστών και οδηγικών πλαισίων, ώστε να διασφαλίζεται η μακροπρόθεσμη 

αποτελεσματικότητα και η διαρκής βελτίωση της οδικής ασφάλειας. 

 

Αυτή η διατριβή προσεγγίζει μοναδικά την ανατροφοδότηση ως ένα ολιστικό σύστημα, εξετάζοντας τις 

επιπτώσεις της σε πολλαπλές φάσεις και ομάδες χρηστών, προσφέροντας ένα ολοκληρωμένο πλαίσιο 

για την αξιολόγηση της ανατροφοδότησης μέσω τηλεματικής με μια ολοκληρωμένη σειρά 

τριστρωματικών μοντέλων. Τα ευρήματα παρέχουν πρακτικές πληροφορίες για υπεύθυνους χάραξης 

πολιτικής, τεχνολογικούς προγραμματιστές και υποστηρικτές της οδικής ασφάλειας, υποστηρίζοντας 
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την ανάπτυξη λύσεων μεγάλης κλίμακας για τη βελτίωση της συμπεριφοράς οδηγών και την ενίσχυση 

της οδικής ασφάλειας με βιώσιμο τρόπο.
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Summary 
 

Objectives and Methodology 

 

Road safety is a critical public health and societal issue, as road traffic crashes claim millions of 

lives and cause severe injuries globally every year. Beyond the tragic loss of life, these incidents 

impose immense emotional and economic burdens on families and communities. Research 

attributes approximately 95% of road crashes to human error, underscoring the critical role 

of driver behavior in accident prevention. Understanding and addressing risky driving behaviors—

such as distracted driving, speeding, and harsh events—are pivotal to enhancing road safety. 

 

Based on the above, the primary aim of this dissertation is to investigate the driver telematics 

feedback mechanism under the framework of driving behavior and road safety. Despite growing 

interest from automotive manufacturers and transportation researchers in driver behavior, limited 

research exists on quantifying the comprehensive impact of driver feedback across its entire 

lifecycle—encompassing the pre-feedback, feedback, and post-feedback phases. To address this 

gap, this dissertation adopts a holistic approach to evaluate the effectiveness of feedback on 

modifying driving behavior and ultimately enhancing road safety. 
 
To achieve these objectives, a series of methodological steps were carefully implemented. These 

steps are outlined and visually depicted in Figure I. The methodological framework provides a 

structured approach to achieving the objectives of this dissertation. 

 

As a first step, a systematic literature review was conducted to evaluate the effectiveness of 

driver feedback within naturalistic driving studies. Feedback methods have evolved from in-

vehicle devices and paper-based reports to sophisticated, user-friendly smartphone applications. 

These advancements enable the collection of high-resolution driving data and the delivery of 

personalized, data-driven feedback. Systems such as real-time alerts, post-trip summaries, and 

performance reports have demonstrated potential for improving driver behavior.  

 

However, significant gaps remain regarding the long-term sustainability of these effects and 

the differential impacts of feedback features. While studies highlight the effectiveness of 

feedback in reducing speeding, harsh braking, and mobile phone use, the influence of feedback 

type, frequency, and incentives on behavior remains underexplored. Additionally, many studies 

observe a relapse into risky behaviors once feedback is removed, necessitating further 

investigation.  

 

Based on the results of the systematic literature review, the following research questions were 

formulated:  
 

1. How does feedback influence driver speeding and distracted behavior in terms of the 

percentage of trip time during which the speed limit was exceeded and mobile phone was 

used while driving? 

 

2. How does feedback influence harsh driving events, in terms of the number of harsh 

accelerations and harsh brakings? 
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3. Do different feedback features (e.g., scorecards, maps, peer comparisons, motivations, 

gamification, rewards) have different effects on driver behavior? Which feature 

demonstrates the most significant impact?  

 

4. How does the post-feedback effect influence long-term driver behavior, and to what extent 

are the changes sustained after the feedback is removed? 

 

5. How can advanced statistical techniques be applied to understand the mechanisms of driver 

feedback and develop more individualized, data-driven approaches for driving behavior 

change? 

 

To answer the research questions, a robust methodological framework was developed, 

combining theoretical approaches and experimental design principles. This included the 

application of advanced modeling techniques, such as Generalized Linear Mixed Effects Models 

(GLMMs), Structural Equation Models (SEMs), and Survival Analysis Models, alongside the 

design of a naturalistic driving experiment. 

 

A 21-month naturalistic driving experiment involving 230 drivers was conducted. The 

participants were divided into three groups (car drivers, professional van drivers, and 

motorcyclists), and their driving behavior was monitored across six distinct feedback phases. 

These phases were defined as follows:  

• Phase 1: Basic trip data and characterization were accessible to drivers. 

• Phase 2: Introduction of scorecards with trip-level scoring. 

• Phase 3: Addition of maps and highlights for further trip insights. 

• Phase 4: Peer comparisons enabled for driver performance benchmarking. 

• Phase 5: Competitions and challenges introduced with rewards for safe driving. 

• Phase 6: Reversion to Phase 1, removing all additional feedback. 

 

High-resolution data were collected from 106,776 trips, covering a total of 1,317,573 kilometers 

and 30,532 hours of driving. Behavioral metrics were captured using non-intrusive smartphone 

sensors, ensuring a seamless and accurate recording of driving behaviors. This sensor data was 

complemented by self-reported information from participants, providing a holistic understanding 

of driver perceptions, habits, and behavioral changes. The experimental design adhered to strict 

ethical standards, having been approved by the Research Ethics and Conduct Committee of 

NTUA, and ensured full compliance with General Data Protection Regulation (GDPR) guidelines. 

Continuous communication with participants was maintained throughout the study to address any 

technical issues, sustain engagement, and monitor the smooth execution of the experiment. 

 

Extensive data processing and cleaning were carried out to ensure the quality and reliability of the 

dataset. Invalid or incomplete trip data were systematically identified and excluded, while key 

behavioral metrics such as speeding, mobile phone use while driving, harsh accelerations, and 

braking events were standardized for analysis. Data preprocessing steps included the conversion 

of raw sensor outputs into meaningful variables and the integration of self-reported data for cross-

validation. This rigorous approach to data management enabled the creation of a robust 

dataset, facilitating detailed statistical analyses and ensuring the accuracy of the findings 

presented in this dissertation. 
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Figure I: Graphical representation of the overall methodological framework  

of the doctoral dissertation 
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Advanced statistical techniques were employed to analyze feedback effects on critical driving 

indicators, such as speeding, mobile phone use, harsh accelerations, and harsh brakings. The 

analysis unfolded in three key pillars: 

 

1. Impact of Feedback: This pillar assessed the immediate effects of feedback on i) driver 

speeding and distracted behavior, focusing on speeding among motorcyclists and 

distraction due to mobile phone use while driving in car drivers, and ii) driving harsh 

evenrs, focusing on harsh braking and harsh accelerations among car drivers, and 

professional drivers on highways. Generalized Linear Mixed-Effects Models (GLMM) 

were then employed in all cases to evaluate the effects of feedback while accounting for 

individual differences and contextual factors. 

 

2. Effects of Different Feedback Features: A Structural Equation Model (SEM) was 

developed to explore the complex relationships between feedback features (e.g. scorecards, 

maps, peer comparisons, motivations, gamification, rewards) and driver behavior, 

exposure metrics and safety outcomes, allowing for the simultaneous analysis of multiple 

variables and their interactions. 

 

3. Post-Feedback Effects: Effects on long-term driver behavior, with a particular emphasis 

on understanding the relapse of driving behaviors following the withdrawal of feedback 

telematics during the last phase of the experiment. Survival analysis methods were 

employed to investigate relapse patterns across various indicators, including harsh 

accelerations, harsh braking, speeding behavior, and mobile phone use while driving. 

These analyses leverage Kaplan-Meier curves, Cox-PH models with frailty, Weibull AFT 

models with clustered heterogeneity, and Random Survival Forests to evaluate and 

compare the predictive power and insights offered by each model. 

 

Ultimately, the synthesis of all the analyses carried out within the framework of this doctoral 

dissertation resulted in a driver behavior telematics feedback mechanism with numerous original 

and interesting results, which are discussed below. 

 

Main findings 

 

Feedback Impact on Driver Behavior  

 

The investigation of feedback impacts on driver behavior yielded significant findings across 

different user groups, driving environments, and behavioral metrics. Overall, during the two 

phases of the experiment a large dataset of 3,537 trips from a sample of 13 motorcyclists were 

recorded and analysed. Using Generalized Linear Mixed-Effects Models with random intercepts 

and random slopes for total trip duration revealed that providing motorcyclists with feedback about 

their riding performance during experiment Phase 2 led to a remarkable decrease in speeding 

percentage over a trip. Particularly, in the developed models rider feedback seems to decrease 

speeding percentage, having a risk ratio of exp(β=-0.145) = 0.865 for the overall model (13.5% 

decrease), and exp(β=-0.031) = 0.970 and exp(β=-0.420) = 0.657 for urban (3.0% decrease) and 

rural (34.3%) road types respectively. These results highlight the effectiveness of feedback in 

targeting high-risk behaviors, offering a foundation for scalable interventions in rider training and 

policy design. 
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Similarly, distracted driving, particularly mobile phone use, was examined across urban, 

rural, and highway contexts via GLMM models for 65 car drivers over 21,167 trips. Feedback 

emerged as a strong restrictive in using the mobile phone while driving overall (β = −0.4276, p < 

2e−16), particularly in urban settings (β = −0.3687, p < 2e−16), while its impact was notably 

weaker in rural environments (β = −0.1180, p < 2e−16) and unexpectedly positive on highways (β 

= 0.5490, p < 2e−16), suggesting compensatory behaviors or a perceived lower risk of distraction 

on high-speed roads. The substantial variability in random intercepts (SD = 1.4024 overall) 

highlights notable individual differences in baseline behavior, while random slopes for trip 

duration (SD = 0.2827 overall) show diverse responses to prolonged trips. 

 

In the domain of harsh events such as accelerations and brakings, feedback mechanisms 

demonstrated significant behavioral improvements, as well. Results from the analysis of 65 car 

drivers during the first two phases of the experiment, revealed a significant reduction in harsh 

accelerations (12%) and harsh brakings (10%), both changes being statistically significant (p 

< 0.001). The GLMM models further reinforce these findings, as feedback was consistently 

associated with reduced frequencies of harsh events, particularly in urban and rural environments. 

Notably, the relative risk ratios for speeding duration and trip duration indicate strong positive 

associations with harsh events, though feedback appears to mitigate these effects to a degree in 

Phase 2 of the experiment. Importantly, driver-specific variability, captured through random 

intercepts and slopes, underscores the need for tailored feedback mechanisms to address unique 

behavioral traits. 

 

Professional drivers, due to their prolonged driving hours and distances, were also a key area of 

exploration. Using GLMMs calibrated on a dataset of 5,345 trips from 19 professional drivers, the 

analysis revealed that participation in a social gamification scheme with incentives led to 

notable improvements in harsh events of professional drivers. During the competition phase, 

the likelihood of harsh accelerations was reduced by a factor of 0.348 (p < 0.001), while harsh 

brakings decreased by a factor of 0.404 (p < 0.001), indicating the efficacy of gamification in 

promoting safer driving practices. Additionally, trip duration showed a positive association with 

harsh events, with a 1-second increase in driving time raising the odds of harsh accelerations and 

harsh brakings by factors of 1.558 and 1.564, respectively, highlighting the cumulative effects of 

extended driving. The inclusion of random intercepts in the models underscored substantial 

variability in baseline driver behavior, emphasizing the importance of personalized interventions. 

 

Feedback Different Features Effects on Driver Behavior  

 

The Structural Equation Model (SEM) analysis provided significant insights into the impact of 

effects of feedback features on driver behavior, specifically speeding, harsh braking, and harsh 

acceleration events. The dataset, comprising 73,869 trips from 175 car drivers over 21 months, 

offered a robust basis for modeling. The SEM results identified two latent variables, namely 

feedback and exposure as critical influences. The model exhibited excellent goodness-of-fit 

measures, with Comparative Fit Index (CFI) = 0.940, Tucker–Lewis Index (TLI) = 0.944, Root 

Mean Square Error Approximation (RMSEA) = 0.049, and Standardized Root Mean Square 

Residual (SRMR) = 0.025, indicating a robust and well-specified structure. The inclusion of 

covariances among variables, guided by residual correlation analysis, further improved the model 
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fit and highlighted critical relationships, such as those between speeding and harsh braking 

behaviors. 

 

Among the feedback features analyzed, the scorecard emerged as the most influential feature, 

with the highest positive estimate (β = 2.076, p < 0.001), demonstrating its powerful role in 

promoting safer driving habits by immediately altering risky behaviors in comparison with the 

baseline phase. This result can be attributed to the clear, concise, and actionable nature of 

scorecards, which provide drivers with straightforward insights into their performance and 

specific areas for improvement, making it easier to adjust their behavior. Similarly, the maps 

feature showed a strong impact (β = 1.646, p < 0.001), emphasizing the importance of spatial 

awareness in enhancing driving practices. The compare feature allowed drivers to assess their 

performance relative to peers, positively influencing behavior (β = 1.215, p < 0.001). Additionally, 

the competition & challenges feature proved highly effective (β = 2.053, p < 0.001) by 

motivating drivers to adopt safer driving behaviors through gamified elements and rewards for 

safe driving. 

 

In terms of driving behavior metrics, driver telematics feedback significantly reduced the 

percentage of speeding time (β = -0.214, p < 0.001) and harsh braking events per 100km (β = 

-0.027, p < 0.001). However, an increase in harsh accelerations per 100km (β = 0.026, p < 0.001) 

suggests the need for further refinement of feedback systems to address unintended consequences. 

Exposure factors also played a key role in shaping driver behavior, with morning peak exposure 

correlating with increased risk-taking (β = 2.473, p < 0.001), likely driven by time pressure during 

commuting hours. Conversely, afternoon peak exposure was associated with less aggressive 

behavior (β = -1.360, p < 0.001), providing insights into temporal variations in driving patterns. 

 

Regression analysis confirmed these findings, highlighting the interplay between exposure and 

feedback features. While exposure positively influenced speeding (β = 0.326, p < 0.001), 

feedback features effectively mitigated this behavior. The competition & challenges feature, in 

particular, showed promise in moderating harsh accelerations (β = -0.001, p < 0.001). Harsh 

braking incidents were also significantly reduced by feedback, reinforcing the role of feedback in 

promoting safer driving practices. Covariance analysis further revealed strong interrelationships 

between risky behaviors, such as speeding and harsh braking, underscoring the complexity of 

driver behavior patterns. These findings suggest that speeding often necessitates sudden 

corrections, like harsh braking, and both behaviors may stem from underlying traits such as risk-

taking tendencies or aggressive driving habits. 

 

The practical implications of these findings are substantial. Feedback features, particularly those 

leveraging personalized scorecards, spatial tools, and gamification elements, hold great promise 

for improving driver safety. Tailored interventions targeting specific behaviors and times of day 

could further enhance the efficacy of these systems. However, limitations such as the exclusion of 

mobile phone use from the final model and potential selection biases due to the voluntary nature 

of participation should be addressed in future research. 
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Post-Feedback Effect on Long-Term Driver Behavior  

 

Survival analysis techniques were applied to a dataset of 24,904 trips from 31 car drivers, 

each contributing at least 20 trips in the post-feedback phase, to investigate the long-term effects 

of driver telematics feedback on driving behavior. The analysis focused on relapse patterns in 

mobile phone use, speeding, harsh braking, and harsh accelerations. The methods utilized included 

Kaplan-Meier curves, Cox-PH models with frailty, Weibull Accelerated Failure Time (AFT) 

models incorporating clustered heterogeneity, and Random Survival Forests. The findings 

demonstrate the effectiveness of feedback interventions in achieving significant short-term 

behavioral improvements during the feedback phase. However, the post-feedback phase reveals 

varied relapse tendencies, emphasizing the need for sustained interventions to maintain these 

improvements over time. 

 

The Kaplan-Meier survival analysis emphasized relapse trends, showing a steady decline in 

improved behavior over successive trips in the post-feedback phase. For harsh accelerations, 

survival probabilities dropped from 84.8% at 50 trips to 49.2% by 150 trips. Similar trends 

were observed for harsh braking and speeding, with survival probabilities declining to 

approximately 40.3% and 46.8%, respectively, by the 150-trip mark. These patterns underscore 

the transient nature of feedback effects and the need for continuous reinforcement mechanisms. 

Mobile phone use showed slightly greater resilience, with survival probabilities remaining above 

80% at 100 trips, but the gradual relapse was evident over time. 

 

Among the survival analysis models applied, the Weibull Accelerated Failure Time (AFT) 

model consistently emerged as a robust performer across the examined indicators, balancing 

predictive accuracy and interpretability. The concordance index (C-index) values ranged between 

0.677 and 0.773, with the model achieving the highest predictive ability for mobile phone use 

relapse (C-index = 0.773), indicating strong discriminative capacity in identifying drivers most at 

risk of relapse. Key predictors such as age group [35-54] (β = 0.165, p = 0.041), trip duration (β = 

-0.022, p < 0.001), and self-reported aggressiveness (approaching significance at p = 0.089) were 

highlighted, providing actionable insights into relapse behavior. The model also captured 

heterogeneity across drivers by incorporating random effects, with frailty effects showing 

significant variability in survival times.  

 

For speeding relapse, the Weibull AFT model achieved a C-index = 0.700 with significant 

predictors including trip duration (β = -0.022, p < 0.001) and morning peak hours (β = -0.096, p = 

0.004). Trip duration, in particular, emerged as the dominant predictor, consistently 

reducing survival time across all relapse indicators, underscoring the role of prolonged driving 

in behavioral regression. Similarly, in the analysis of harsh braking relapse, the model achieved a 

moderate predictive accuracy (C-index = 0.724) with significant contributions from variables such 

as age group [35-54] (β = 0.360, p = 0.010) and vehicle engine capacity (>1400cc) (β = -0.508, p 

= 0.012). These findings highlight that younger age groups and drivers of larger-engine vehicles 

are more prone to relapse. 

 

The Random Survival Forest (RSF) model demonstrated superior predictive performance in 

some examined indicators, excelling in capturing non-linear interactions and complex 

relationships between predictors. With Root Mean Squared Error (RMSE) values as low as 85.87 

and out-of-bag (OOB) prediction errors of 24.3% for mobile phone use relapse, RSF identified 
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critical predictors such as trip duration, aggressive driving tendencies, and vehicle engine size. Its 

flexibility in handling diverse predictors and uncovering nuanced dynamics makes RSF an 

invaluable tool for predictive analyses. However, the model's "black box" nature and reliance on 

larger datasets limit its interpretability and applicability for explanatory purposes. 

 

Overall, comparing the models, the Weibull AFT model stands out for balancing 

interpretability and predictive accuracy, making it particularly suited for contexts requiring 

actionable insights into survival dynamics. The Cox model offers a useful compromise with its 

interpretability and ability to handle frailty, however repeatedly failed to meet model assumptions. 

The RSF model is most appropriate for predictive tasks where capturing non-linear relationships 

and complex interactions is critical, though its lack of transparency limits its utility in 

understanding the underlying behavioral mechanisms. These findings emphasize the importance 

of aligning model configuration with research objectives. For studies focused on understanding 

behavioral dynamics and guiding intervention design, the Weibull AFT model provides robust 

insights. Conversely, when predictive accuracy is paramount, RSF offers a superior alternative. 

 

While this study offers valuable insights into the dynamics of driver feedback and relapse, 

limitations such as the relatively small sample size, exclusion of traffic conditions, and 

macroscopic focus should be noted. Future research could incorporate more granular data, such as 

traffic dynamics and moment-to-moment driver decisions, to provide a deeper understanding of 

behavioral patterns. Employing advanced modeling techniques, such as random parameters with 

heterogeneity-in-means, could further enhance the analysis by accounting for driver-specific 

variability.  

 

Innovative Scientific Contributions 

 

The innovative contributions of this doctoral dissertation consist of five original scientific 

contributions, as described below, and illustrated in Figure II. 

 

 
Figure II: Innovative contributions of the doctoral dissertation 
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Extensive Naturalistic Driving Data Collection 

 

The present dissertation represents a significant step forward in naturalistic driving (ND) 

research by leveraging non-intrusive data collection methods that rely on smartphone sensors. 

Unlike traditional approaches, this methodology minimizes disruption to participants, enabling the 

unobtrusive capture of real-world driving behaviors. The data spans a large sample size of 

drivers (230) across diverse road environments and vehicle types, including car drivers, 

motorcyclists, and professional van drivers. This inclusivity ensures that findings are not only 

representative but also account for variations across driver demographics and vehicle categories. 

The dataset's rich temporal resolution provides detailed insights into driving behaviors at the trip 

level, offering a granular perspective on driver behavior dynamics. 

 

Moreover, the long-term data collection 21-month period, spanning multiple feedback phases and 

covering various road environments, adds unique value. By capturing behavior changes over time, 

the study bridges a critical gap in existing ND research, which often relies on short-term 

observations. This long-term perspective enables the assessment of sustained behavior 

modifications and relapse tendencies, providing a robust foundation for developing adaptive and 

sustainable interventions to improve road safety. The methodology sets a new benchmark for 

ND experiments, paving the way for more scalable, cost-effective, and technologically advanced 

driving behavior studies. 

 

Multi-Modal Approach to Driver Behavior Analysis 

 

This dissertation takes a multi-modal approach, emphasizing the importance of understanding 

driving behaviors across diverse road user groups and environments. By including car drivers, 

motorcyclists, and professional van drivers, the research recognizes the critical need to study 

vulnerable road users, such as motorcyclists, who face heightened risks, and professional drivers, 

who spend extended hours on the road. This inclusive focus ensures a comprehensive evaluation 

of driver telematics feedback, highlighting their relevance across varying risk profiles and 

exposure levels. 

 

The investigation also considers the influence of urban, rural, and highway environments, 

acknowledging the distinct challenges posed by each road type. This contextual approach reveals 

that feedback effectiveness is not uniform; behaviors like mobile phone use or speeding respond 

differently to interventions depending on the driving environment. For instance, motorcyclists 

may benefit more from feedback targeting situational awareness, while professional drivers might 

require tailored interventions addressing fatigue and repetitive exposure to high-risk scenarios. 

 

By integrating this diversity of user groups and contexts, the dissertation provides actionable 

insights for policymakers, road safety advocates, and technology developers. It emphasizes the 

importance of developing tailored feedback systems that cater to the unique needs of vulnerable 

road users, such as motorcyclists, and professional drivers, who contribute significantly to road 

traffic activity. This comprehensive approach supports the creation of adaptive, context-sensitive 

interventions, ultimately improving road safety for all users. 
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Comprehensive Suite of Three-Layer Models 

 

This dissertation employs a comprehensive suite of advanced statistical and machine learning 

models, tailored to address the multifaceted nature of driving behavior analysis. By incorporating 

Generalized Linear Mixed-Effects Models, Structural Equation Models, and Survival Analysis 

techniques (e.g., Weibull AFT, Cox-PH with frailty, and Random Survival Forest), the study 

provides a rigorous analytical framework capable of uncovering both linear and non-linear 

relationships between variables. Each model is carefully selected to align with the research 

objectives, balancing predictive accuracy with interpretability to ensure actionable insights. 

 

This model suite also enables the exploration of complex phenomena, such as the interplay 

between feedback features, driving behaviors, and contextual factors like time of day or road type. 

For example, survival models uniquely capture relapse dynamics, offering novel insights into post-

feedback behavioral tendencies. Machine learning techniques further enhance the study by 

capturing nuanced, non-linear interactions, ensuring that the models are equipped to handle the 

complexity of real-world driving data. This innovative analytical framework not only elevates 

the scientific rigor of the research but also demonstrates the potential of combining traditional 

statistical methods with state-of-the-art machine learning approaches for driver behavior studies. 
 
In-Depth Analysis of Post-Feedback Effects 

 

This dissertation is among the first to analyze thoroughly post-feedback effects on driver 

behavior using advanced statistical and machine learning techniques, addressing a critical gap in 

existing research. Through survival analysis methods, such as Weibull AFT and Random Survival 

Forest, the study evaluates long-term behavior changes and relapse patterns after feedback 

withdrawal. These techniques enable a detailed exploration of the factors influencing relapse in 

risky behaviors like speeding, harsh events, and mobile phone use, providing actionable insights 

for the design of sustained intervention strategies. 

 

The findings reveal the importance of adaptive feedback systems that can maintain behavior 

improvements over time. For example, survival analysis showed that trip duration and time of day 

significantly influence relapse dynamics, emphasizing the need for context-aware feedback 

mechanisms. This innovative focus on the post-feedback phase provides a novel framework for 

understanding the longevity of feedback-induced improvements, allowing for more durable 

and impactful road safety interventions. It also sets a precedent for future research to integrate 

long-term perspectives into the evaluation of driving behavior modification strategies. 

 

Feedback Mechanism as a Holistic System 

 

This dissertation uniquely approaches the feedback mechanism as a holistic system, examining 

its full lifecycle through a multiparametric analytical framework. By systematically analyzing 

the pre-feedback, feedback, and post-feedback phases, the study offers a comprehensive 

understanding of how feedback influences driver behavior across time. The integration of diverse 

feedback features, such as scorecards, maps, comparison tools, and competition elements, enables 

the evaluation of their individual and combined impacts on behavior modification. This multi-

phase perspective not only captures immediate behavior changes but also sheds light on long-term 

patterns and relapse tendencies. 
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Furthermore, the holistic framework provides valuable insights into the synergies and trade-offs 

between different feedback features. For instance, while scorecards and competition elements are 

highly effective in reducing speeding, their impact on other behaviors like harsh accelerations 

requires further refinement. This systemic approach advances the field by moving beyond isolated 

feedback evaluations, offering a scalable, data-driven framework for designing and 

implementing telematics-based interventions. The findings emphasize the potential of adaptive 

feedback systems to improve driving behavior sustainably, ultimately contributing to safer road 

environments. 
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Εκτεταμένη Περίληψη 

 
Στόχοι και Μεθοδολογία 

 

Η οδική ασφάλεια αποτελεί κρίσιμο ζήτημα δημόσιας υγείας και κοινωνίας, καθώς τα οδικά 

ατυχήματα κοστίζουν εκατομμύρια ζωές και προκαλούν σοβαρούς τραυματισμούς παγκοσμίως 

κάθε χρόνο. Πέρα από την τραγική απώλεια ζωών, αυτά τα περιστατικά επιβαρύνουν 

συναισθηματικά και οικονομικά τις οικογένειες και τις κοινότητες. Έρευνες δείχνουν ότι το 

ανθρώπινο λάθος ευθύνεται για περίπου το 95% των οδικών ατυχημάτων, υπογραμμίζοντας 

τον κρίσιμο ρόλο της συμπεριφοράς των οδηγών στην πρόληψη των ατυχημάτων. Η κατανόηση 

και αντιμετώπιση επικίνδυνων οδηγικών συμπεριφορών—όπως η απόσπαση προσοχής, η 

υπερβολική ταχύτητα και οι απότομοι χειρισμοί—είναι ζωτικής σημασίας για τη βελτίωση της 

οδικής ασφάλειας. 

 

Με βάση τα παραπάνω, ο κύριος στόχος αυτής της διατριβής είναι η διερεύνηση του 

μηχανισμού ανατροφοδότησης της συμπεριφοράς των οδηγών μέσω τηλεματικής στο 

πλαίσιο της οδηγικής συμπεριφοράς και της οδικής ασφάλειας. Παρά το αυξανόμενο ενδιαφέρον 

από κατασκευαστές αυτοκινήτων και ερευνητές μεταφορών για τη συμπεριφορά των οδηγών, 

υπάρχει περιορισμένη έρευνα σχετικά με την ποσοτικοποίηση της συνολικής επίδρασης της 

ανατροφοδότησης κατά τη διάρκεια ολόκληρου του κύκλου ζωής της—συμπεριλαμβανομένων 

των φάσεων πριν την ανατροφοδότηση, κατά τη διάρκεια της ανατροφοδότησης και μετά την 

ανατροφοδότηση. Για να καλυφθεί αυτό το κενό, η διατριβή υιοθετεί μια ολιστική προσέγγιση 

για την αξιολόγηση της αποτελεσματικότητας της ανατροφοδότησης στην τροποποίηση της 

οδηγικής συμπεριφοράς και στη βελτίωση της οδικής ασφάλειας. 

 

Για την επίτευξη αυτών των στόχων, εφαρμόστηκε μια σειρά μεθοδολογικών βημάτων. Τα 

βήματα αυτά περιγράφονται και απεικονίζονται γραφικά στο Σχήμα Ι. Το μεθοδολογικό πλαίσιο 

παρέχει μια δομημένη προσέγγιση για την επίτευξη των στόχων της διατριβής. 

 

Ως πρώτο βήμα, πραγματοποιήθηκε μια συστηματική ανασκόπηση βιβλιογραφίας για την 

αξιολόγηση της αποτελεσματικότητας της ανατροφοδότησης των οδηγών στο πλαίσιο φυσικών 

πειραμάτων οδήγησης. Οι μέθοδοι ανατροφοδότησης έχουν εξελιχθεί από συσκευές εντός 

οχήματος και αναφορές σε χαρτί σε προηγμένες, φιλικές προς τον χρήστη εφαρμογές για κινητά 

τηλέφωνα. Αυτές οι εξελίξεις επιτρέπουν τη συλλογή δεδομένων υψηλής ανάλυσης και την 

παροχή εξατομικευμένης ανατροφοδότησης βασισμένης σε δεδομένα. 

 

Ωστόσο, παραμένουν σημαντικά κενά όσον αφορά τη μακροπρόθεσμη βιωσιμότητα αυτών 

των αποτελεσμάτων αλλά και τις διαφοροποιημένες επιδράσεις των χαρακτηριστικών της 

ανατροφοδότησης. Ενώ οι μελέτες αναδεικνύουν την αποτελεσματικότητα της ανατροφοδότησης 

στη μείωση της υπερβολικής ταχύτητας, των απότομων συμβάντων και της χρήσης κινητού 

τηλεφώνου, η επίδραση του τύπου ανατροφοδότησης, της συχνότητάς της και των κινήτρων στη 

συμπεριφορά παραμένει ανεξερεύνητη. Επιπλέον, πολλές μελέτες παρατηρούν υποτροπή στις 

επικίνδυνες συμπεριφορές μόλις αφαιρεθεί η ανατροφοδότηση, απαιτώντας περαιτέρω 

διερεύνηση. 
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Με βάση τα αποτελέσματα της συστηματικής ανασκόπησης βιβλιογραφίας, διατυπώθηκαν τα 

ακόλουθα ερευνητικά ερωτήματα: 

 

1. Πώς επηρεάζει η ανατροφοδότηση τη συμπεριφορά του οδηγού όσον αφορά στην 

υπερβολική ταχύτητα και τη χρήση κινητού τηλεφώνου κατά την οδήγηση; 

 

2. Πώς επηρεάζει η ανατροφοδότηση τη συμπεριφορά του οδηγού όσον αφορά στα απότομα 

συμβάντα, όπως οι απότομες επιταχύνσεις και τα απότομα φρεναρίσματα; 

 

3. Τα διαφορετικά χαρακτηριστικά της ανατροφοδότησης (π.χ. βαθμολογίες, χάρτες, 

συγκρίσεις με άλλους οδηγούς, κίνητρα, παιχνιδοποίηση, επιβραβεύσεις) έχουν 

διαφορετικές επιδράσεις στη συμπεριφορά και την ασφάλεια του οδηγού; Ποιο 

χαρακτηριστικό έχει τον σημαντικότερο αντίκτυπο; 

 

4. Πώς επηρεάζει η επίδραση της ανατροφοδότησης μετά την ολοκλήρωση της φάσης της 

την μακροπρόθεσμη συμπεριφορά και ασφάλεια των οδηγών, και σε ποιο βαθμό 

διατηρούνται οι αλλαγές αφού αφαιρεθεί η ανατροφοδότηση; 

 

5. Πώς μπορούν να εφαρμοστούν προηγμένες στατιστικές τεχνικές για την κατανόηση των 

μηχανισμών της ανατροφοδότησης και την ανάπτυξη πιο εξατομικευμένων, βασισμένων 

σε δεδομένα προσεγγίσεων για την αλλαγή της οδηγικής συμπεριφοράς; 

 

Για την απάντηση αυτών των ερωτημάτων αναπτύχθηκε ένα ισχυρό μεθοδολογικό πλαίσιο, 

το οποίο συνδύασε θεωρητικές προσεγγίσεις και αρχές πειραματικού σχεδιασμού. Αυτό 

περιλάμβανε την εφαρμογή προηγμένων τεχνικών μοντελοποίησης, όπως Γενικευμένα Γραμμικά 

Μοντέλα μικτών επιδράσεων (GLMMs), Μοντέλα Δομικών Εξισώσεων (SEM) και Μοντέλα 

Ανάλυσης Επιβίωσης (Survival Analysis), καθώς και τον σχεδιασμό ενός πειράματος φυσικής 

οδήγησης. 

 

Πραγματοποιήθηκε ένα πείραμα φυσικής οδήγησης διάρκειας 21 μηνών, στο οποίο 

συμμετείχαν 230 οδηγοί. Οι συμμετέχοντες χωρίστηκαν σε τρεις ομάδες (οδηγοί αυτοκινήτων, 

επαγγελματίες οδηγοί βαν και μοτοσικλετιστές) και η οδηγική τους συμπεριφορά 

παρακολουθήθηκε σε έξι διακριτές φάσεις ανατροφοδότησης. Αυτές οι φάσεις ορίστηκαν ως εξής: 

• Φάση 1: Πρόσβαση σε βασικά δεδομένα διαδρομών και χαρακτηριστικά. 

• Φάση 2: Εισαγωγή βαθμολογιών με σκορ ανά διαδρομή. 

• Φάση 3: Προσθήκη χαρτών και σημαντικών στιγμών για περαιτέρω πληροφορίες 

διαδρομής. 

• Φάση 4: Ενεργοποίηση συγκρίσεων με συναδέλφους για την αξιολόγηση της απόδοσης 

των οδηγών. 

• Φάση 5: Εισαγωγή διαγωνισμών και προκλήσεων με επιβραβεύσεις για ασφαλή 

οδήγηση. 

• Φάση 6: Επιστροφή στη Φάση 1, με την αφαίρεση όλων των πρόσθετων 

χαρακτηριστικών ανατροφοδότησης. 

 

Συλλέχθηκαν δεδομένα υψηλής ανάλυσης από 106.776 διαδρομές, καλύπτοντας συνολικά 

1.317.573 χιλιόμετρα και 30.532 ώρες οδήγησης. Οι μετρήσεις συμπεριφοράς καταγράφηκαν 

χρησιμοποιώντας μη παρεμβατικούς αισθητήρες smartphone, διασφαλίζοντας μια αδιάκοπη και 
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ακριβή καταγραφή των οδηγικών συμπεριφορών. Αυτά τα δεδομένα αισθητήρων συμπληρώθηκαν 

από αυτό-αναφερόμενες πληροφορίες των συμμετεχόντων, παρέχοντας μια ολιστική κατανόηση 

των αντιλήψεων, συνηθειών και αλλαγών στη συμπεριφορά των οδηγών. Ο πειραματικός 

σχεδιασμός τηρήθηκε αυστηρά στις ηθικές προδιαγραφές, καθώς είχε εγκριθεί από την 

Επιτροπή Ερευνών και Δεοντολογίας του ΕΜΠ, και διασφάλιζε την πλήρη συμμόρφωση με τις 

κατευθυντήριες γραμμές του Γενικού Κανονισμού για την Προστασία των Δεδομένων. Η συνεχής 

επικοινωνία με τους συμμετέχοντες διατηρήθηκε καθ' όλη τη διάρκεια της μελέτης για την επίλυση 

τεχνικών ζητημάτων, τη διατήρηση της συμμετοχής και την παρακολούθηση της ομαλής 

εκτέλεσης του πειράματος. 
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Εικόνα Ι: Γραφική αναπαράσταση του συνολικού μεθοδολογικού πλαισίου της διδακτορικής διατριβής 

 

Ολοκληρωμένη Δέσμη 
Προηγμένων Μοντέλων Στατιστικής και Μηχανικής Μάθησης

Μεθοδολογικό Υπόβαθρο

Συλλογή και Επεξεργασία Δεδομένων Μεγάλης Κλίμακας

Μηχανισμός Ανατροφοδότησης Συμπεριφοράς Οδηγού 
μέσω Τηλεματικής

Θωρητικό Πλαίσιο

Γενικευμένα Γραμμικά Μικτά Μοντέλα (GLMM) 
Μοντέλα Δομικών Εξισώσεων (SEM)

Μοντέλα Ανάλυσης Επιβίωσης (Survival 
Analysis)

Πείραμα Φυσικής Οδήγησης

230 οδηγοί (αυτοκίνητα, φορτηγά, 
μοτοσικλετιστές)

Πείραμα σχεδιασμού εντός των υποκειμένων

6 διαφορετικές φάσεις ανατροφοδότησης

Επίδραση της 
ανατροφοδότησης 

στην οδηγική 
συμπεριφορά μέσω 

μοντέλων GLMM

Επίδραση μετά την 
ανατροφοδότηση 

μέσω μεθόδων 

Survival Analysis

Διαφορετικές 
επιδράσεις των 

χαρακτηριστικών 
ανατροφοδότησης 

μέσω προηγμένου 

Βιβλιογραφική Ανασκόπηση Ερευνητικές Ερωτήσεις

Συστήματα ανατροφοδότησης οδηγού

Πειραματικός σχεδιασμός

Προσεγγίσεις μοντελοποίησης

Εξεταζόμενοι δείκτες

1. Επίδραση της ανατροφοδότησης στη 
συμπεριφορά και την ασφάλεια

2. Διερεύνηση των επιπτώσεων των 
χαρακτηριστικών ανατροφοδότησης

3. Επίδραση μετά την ανατροφοδότηση στη 
μακροπρόθεσμη συμπεριφορά και την ασφάλεια
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Ακολούθως, πραγματοποιήθηκε επεξεργασία και καθαρισμός δεδομένων εκτενώς για να 

διασφαλιστεί η ποιότητα και η αξιοπιστία του συνόλου δεδομένων. Τα άκυρα ή ελλιπή δεδομένα 

διαδρομών εντοπίστηκαν συστηματικά και εξαιρέθηκαν, ενώ βασικές μετρήσεις συμπεριφοράς 

όπως η υπερβολική ταχύτητα, η χρήση κινητού τηλεφώνου κατά την οδήγηση, οι απότομες 

επιταχύνσεις και τα απότομα φρεναρίσματα τυποποιήθηκαν για την ανάλυση. Τα βήματα προ 

επεξεργασίας δεδομένων περιλάμβαναν τη μετατροπή των πρωτογενών δεδομένων των 

αισθητήρων σε ουσιαστικές μεταβλητές και την ενσωμάτωση των αυτό-αναφερόμενων 

δεδομένων για τη διασταύρωση των αποτελεσμάτων. Αυτή η αυστηρή προσέγγιση στη διαχείριση 

δεδομένων επέτρεψε τη δημιουργία ενός ισχυρού συνόλου δεδομένων, διευκολύνοντας 

λεπτομερείς στατιστικές αναλύσεις και διασφαλίζοντας την ακρίβεια των ευρημάτων που 

παρουσιάζονται στη διατριβή. 

 

Προηγμένες στατιστικές τεχνικές εφαρμόστηκαν για την ανάλυση των επιδράσεων της 

ανατροφοδότησης σε κρίσιμους δείκτες οδήγησης, όπως η υπερβολική ταχύτητα, η χρήση κινητού 

τηλεφώνου, οι απότομες επιταχύνσεις και τα απότομα φρεναρίσματα. Η ανάλυση 

πραγματοποιήθηκε σε τρεις βασικούς πυλώνες: 

 

1. Επίδραση της Ανατροφοδότησης: Αυτός ο πυλώνας αξιολόγησε τις άμεσες επιδράσεις 

της ανατροφοδότησης i) στη συμπεριφορά του οδηγού, με έμφαση στην υπερβολική 

ταχύτητα για τους μοτοσικλετιστές και την απόσπαση προσοχής λόγω χρήσης κινητού 

τηλεφώνου για οδηγούς αυτοκινήτων, και ii) στην ασφάλεια των οδηγών, με έμφαση στα 

απότομα φρεναρίσματα και επιταχύνσεις για οδηγούς αυτοκινήτων και επαγγελματίες 

οδηγούς σε αυτοκινητόδρομους. Χρησιμοποιήθηκαν Γενικευμένα Γραμμικά Μοντέλα 

Μικτών Επιδράσεων (GLMMs) για την αξιολόγηση των επιδράσεων της 

ανατροφοδότησης, λαμβάνοντας υπόψη τις ατομικές διαφορές και τους συμφραζόμενους 

παράγοντες. 

 

2. Επιδράσεις των Διαφορετικών Χαρακτηριστικών Ανατροφοδότησης: Αναπτύχθηκε 

ένα Μοντέλο Δομικών Εξισώσεων (SEM) για την εξερεύνηση των πολύπλοκων σχέσεων 

μεταξύ χαρακτηριστικών ανατροφοδότησης (π.χ. βαθμολογίες, χάρτες, συγκρίσεις με 

άλλους οδηγούς, κίνητρα, παιχνιδοποίηση, επιβραβεύσεις), μετρικών έκθεσης και 

αποτελεσμάτων ασφάλειας. Το μοντέλο επέτρεψε την ταυτόχρονη ανάλυση πολλών 

μεταβλητών και των αλληλεπιδράσεών τους. 

 

3. Επιδράσεις Μετά την Ανατροφοδότηση: Μελέτη των μακροπρόθεσμων αλλαγών στη 

συμπεριφορά και ασφάλεια των οδηγών, με ιδιαίτερη έμφαση στην υποτροπή των 

συμπεριφορών οδήγησης μετά την απόσυρση της ανατροφοδότησης κατά την τελευταία 

φάση του πειράματος. Χρησιμοποιήθηκαν μέθοδοι Ανάλυσης Επιβίωσης για την εξέταση 

μοτίβων υποτροπής σε διάφορους δείκτες, όπως οι απότομες επιταχύνσεις, τα απότομα 

φρεναρίσματα, η υπερβολική ταχύτητα και η χρήση κινητού τηλεφώνου κατά την 

οδήγηση. Αυτές οι αναλύσεις βασίστηκαν σε καμπύλες Kaplan-Meier, μοντέλα Cox-PH 

με παραγοντική τυχαιότητα, μοντέλα Επιταχυνόμενου Χρόνου Αποτυχίας (Weibull AFT) 

με ετερογένεια, και Τυχαία Δάση Επιβίωσης για την αξιολόγηση και σύγκριση της 

προβλεπτικής ικανότητας και των ευρημάτων κάθε μοντέλου. 
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Η σύνθεση όλων των αναλύσεων που πραγματοποιήθηκαν στο πλαίσιο αυτής της διατριβής 

κατέληξε σε έναν μηχανισμό ανατροφοδότησης συμπεριφοράς του οδηγού με πολυάριθμα 

πρωτότυπα και ενδιαφέροντα αποτελέσματα, τα οποία συζητούνται παρακάτω. 

 

Κύρια Ευρήματα 

 

Επίδραση Ανατροφοδότησης στη Συμπεριφορά των Οδηγών 

 

Η διερεύνηση των επιπτώσεων της ανατροφοδότησης στη συμπεριφορά και την ασφάλεια των 

οδηγών απέδωσε σημαντικά ευρήματα σε διαφορετικές ομάδες χρηστών, περιβάλλοντα οδήγησης 

και μετρικές συμπεριφοράς. Συνολικά, κατά τη διάρκεια των δύο φάσεων του πειράματος 

καταγράφηκε και αναλύθηκε ένα μεγάλο σύνολο δεδομένων 3.537 διαδρομών από ένα δείγμα 

13 μοτοσικλετιστών. Η χρήση Γενικευμένων Γραμμικών Μοντέλων Μεικτών (ΓΓΜΜ) 

αποτελεσμάτων με τυχαίες παρεμβολές και τυχαίες κλίσεις για τη συνολική διάρκεια του ταξιδιού 

αποκάλυψε ότι η παροχή ανατροφοδότησης στους μοτοσικλετιστές σχετικά με τις επιδόσεις 

οδήγησής τους κατά τη διάρκεια της φάσης 2 του πειράματος οδήγησε σε στατιστικά σημαντική 

μείωση του ποσοστού υπερβολικής ταχύτητας κατά τη διάρκεια ενός ταξιδιού. Ειδικότερα, 

στα μοντέλα που αναπτύχθηκαν η ανατροφοδότηση του αναβάτη φαίνεται να μειώνει το ποσοστό 

υπερβολικής ταχύτητας, έχοντας λόγο κινδύνου exp(β=-0,145) = 0,865 για το συνολικό μοντέλο 

(μείωση 13,5%) και exp(β=-0,031) = 0,970 και exp(β=-0,420) = 0,657 για τους αστικούς (μείωση 

3,0%) και αγροτικούς (34,3%) τύπους δρόμων αντίστοιχα. Τα αποτελέσματα αυτά αναδεικνύουν 

την αποτελεσματικότητα της ανατροφοδότησης στη στόχευση συμπεριφορών υψηλού κινδύνου, 

προσφέροντας μια βάση για επεκτάσιμες παρεμβάσεις στην εκπαίδευση των αναβατών και στο 

σχεδιασμό πολιτικής. 

 

Αντίστοιχα, η απόσπαση προσοχής, ιδιαίτερα λόγω χρήσης κινητού τηλεφώνου, εξετάστηκε 

σε αστικά και υπεραστικά περιβάλλοντα και αυτοκινητόδρομους μέσω μοντέλων ΓΓΜΜ για 65 

οδηγούς αυτοκινήτων σε 21.167 διαδρομές. Η ανατροφοδότηση προέκυψε ως ισχυρός 

περιοριστικός παράγοντας στη χρήση κινητού τηλεφώνου κατά την οδήγηση συνολικά (β = 

−0.4276, p < 2e−16), ιδιαίτερα σε αστικά περιβάλλοντα (β = −0.3687, p < 2e−16). Ωστόσο, η 

επίδρασή της ήταν ασθενέστερη σε υπεραστικά περιβάλλοντα (Estimate = −0.1180, p < 2e−16) 

και απροσδόκητα θετική σε αυτοκινητόδρομους (β = 0.5490, p < 2e−16), υποδεικνύοντας 

αντισταθμιστικές συμπεριφορές ή μια μειωμένη αντιληπτή επικινδυνότητα απόσπασης σε οδικούς 

άξονες υψηλής ταχύτητας. Η σημαντική μεταβλητότητα στους τυχαίους συντελεστές (SD = 

1.4024 συνολικά) υπογραμμίζει τις σημαντικές ατομικές διαφορές στη βασική συμπεριφορά, ενώ 

οι τυχαίες κλίσεις για τη διάρκεια διαδρομής (SD = 0.2827 συνολικά) δείχνουν ποικίλες 

αντιδράσεις σε παρατεταμένες διαδρομές. 

 

Στον τομέα των απότομων συμβάντων, όπως οι επιταχύνσεις και τα φρεναρίσματα, οι μηχανισμοί 

ανατροφοδότησης έδειξαν επίσης σημαντικές βελτιώσεις στη συμπεριφορά. Τα αποτελέσματα 

από την ανάλυση 65 οδηγών αυτοκινήτων κατά τις πρώτες δύο φάσεις του πειράματος 

αποκάλυψαν σημαντική μείωση στις απότομες επιταχύνσεις (12%) και στα απότομα 

φρεναρίσματα (10%), και οι δύο αλλαγές ήταν στατιστικά σημαντικές (p < 0.001). Τα μοντέλα 

ΓΓΜΜ ενισχύουν περαιτέρω αυτά τα ευρήματα, καθώς η ανατροφοδότηση συνδέθηκε σταθερά 

με μειωμένες συχνότητες απότομων γεγονότων, ιδιαίτερα σε αστικά και υπεραστικά 

περιβάλλοντα. Σημαντικό είναι ότι οι δείκτες σχετικού κινδύνου για τη διάρκεια της ταχύτητας 

και της διαδρομής υποδεικνύουν ισχυρές θετικές συσχετίσεις με τα απότομα γεγονότα, αν και η 
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ανατροφοδότηση φαίνεται να μετριάζει αυτές τις επιδράσεις σε κάποιο βαθμό κατά τη Φάση 2 

του πειράματος. 

 

Οι επαγγελματίες οδηγοί, λόγω των παρατεταμένων ωρών και αποστάσεων οδήγησης, 

αποτέλεσαν επίσης βασικό πεδίο εξερεύνησης. Χρησιμοποιώντας μοντέλα ΓΓΜΜ που 

βαθμονομήθηκαν σε ένα σύνολο δεδομένων από 5.345 διαδρομές από 19 επαγγελματίες οδηγούς, 

η ανάλυση αποκάλυψε ότι η συμμετοχή σε ένα κοινωνικό πλαίσιο παιχνιδοποίησης με κίνητρα 

οδήγησε σε αξιοσημείωτες βελτιώσεις στα απότομα συμβάντα των επαγγελματιών οδηγών. 

Κατά τη φάση του διαγωνισμού, η πιθανότητα απότομων επιταχύνσεων μειώθηκε κατά έναν 

συντελεστή (β= 0.348p < 0.001), ενώ τα απότομα φρεναρίσματα μειώθηκαν κατά έναν 

συντελεστή (β= 0.404, p < 0.001), υποδεικνύοντας την αποτελεσματικότητα της παιχνιδοποίησης 

στην προώθηση ασφαλέστερων πρακτικών οδήγησης. Επιπλέον, η διάρκεια της διαδρομής 

παρουσίασε θετική συσχέτιση με τα απότομα γεγονότα, καθώς η αύξηση της διάρκειας οδήγησης 

κατά 1 δευτερόλεπτο αύξησε τις πιθανότητες απότομων επιταχύνσεων και φρεναρισμάτων κατά 

1.558 και 1.564, αντίστοιχα, αναδεικνύοντας τις σωρευτικές επιδράσεις της παρατεταμένης 

οδήγησης. Η ενσωμάτωση τυχαίων μεταβλητών στα μοντέλα ανέδειξε σημαντική μεταβλητότητα 

στη βασική οδηγική συμπεριφορά, υπογραμμίζοντας την ανάγκη για εξατομικευμένες 

παρεμβάσεις. 

 

Επιδράσεις των Διαφορετικών Χαρακτηριστικών Ανατροφοδότησης στη Συμπεριφορά των 

Οδηγών 

 

Η ανάλυση μέσω του Μοντέλου Δομικών Εξισώσεων (ΜΔΕ) παρείχε σημαντικές γνώσεις για 

την επίδραση των διαφοροποιημένων χαρακτηριστικών ανατροφοδότησης στη συμπεριφορά και 

την ασφάλεια των οδηγών, συγκεκριμένα στην υπερβολική ταχύτητα, τα απότομα φρεναρίσματα 

και τις απότομες επιταχύνσεις. Το σύνολο δεδομένων, που περιλάμβανε 73.869 διαδρομές από 

175 οδηγούς αυτοκινήτων για διάστημα 21 μηνών, προσέφερε μια ισχυρή βάση δεδομένων για 

τη μοντελοποίηση. Τα αποτελέσματα του ΜΔΕ εντόπισαν δύο λανθάνουσες μεταβλητές, δηλαδή 

την ανατροφοδότηση και την έκθεση ως κρίσιμες επιρροές. Το μοντέλο παρουσίασε άριστα μέτρα 

καλής προσαρμογής, με δείκτη συγκριτικής προσαρμογής (CFI) = 0,940, δείκτη Tucker-Lewis 

(TLI) = 0,944, μέσο τετραγωνικό σφάλμα προσέγγισης (RMSEA) = 0,049 και τυποποιημένο μέσο 

τετραγωνικό υπόλοιπο (SRMR) = 0,025, υποδεικνύοντας μια ισχυρή και καλά καθορισμένη δομή. 

 

Μεταξύ των χαρακτηριστικών ανατροφοδότησης που αναλύθηκαν, η Κάρτα αποτελεσμάτων 

αναδείχθηκε ως το πιο επιδραστικό χαρακτηριστικό, με την υψηλότερη θετική εκτίμηση (β= 

2.076, p < 0.001), αποδεικνύοντας τον ισχυρό του ρόλο στην προώθηση ασφαλέστερων 

συνηθειών οδήγησης μέσω της άμεσης τροποποίησης επικίνδυνων συμπεριφορών. Παρομοίως, 

το χαρακτηριστικό των χαρτών έδειξε ισχυρή επίδραση (β = 1.646, p < 0.001), τονίζοντας τη 

σημασία της χωρικής επίγνωσης για τη βελτίωση των πρακτικών οδήγησης. Η λειτουργία 

σύγκρισης με άλλους οδηγούς (peer comparison) επηρέασε θετικά τη συμπεριφορά (β = 1.215, p 

< 0.001), ενώ τα χαρακτηριστικά των διαγωνισμών και προκλήσεων αποδείχθηκαν ιδιαίτερα 

αποτελεσματικά (β = 2.053, p < 0.001) ενισχύοντας τους οδηγούς να υιοθετήσουν ασφαλέστερες 

οδηγικές συμπεριφορές μέσω παιχνιδοποίησης. 

 

Σε ό,τι αφορά τις μετρικές οδηγικής συμπεριφοράς, η ανατροφοδότηση μέσω τηλεματικής μείωσε 

σημαντικά τον χρόνο υπερβολικής ταχύτητας (β = -0.214, p < 0.001) και τα απότομα 

φρεναρίσματα (β = -0.027, p < 0.001). Ωστόσο, μια αύξηση στις απότομες επιταχύνσεις (β = 
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0.026, p < 0.001) υποδηλώνει την ανάγκη περαιτέρω βελτίωσης των συστημάτων 

ανατροφοδότησης για την αντιμετώπιση απρόβλεπτων συνεπειών. Οι παράγοντες έκθεσης 

διαδραμάτισαν επίσης σημαντικό ρόλο στη διαμόρφωση της συμπεριφοράς των οδηγών, με την 

έκθεση στην πρωινή αιχμή να συσχετίζεται με αυξημένη ανάληψη κινδύνου (β = 2,473, p < 0,001), 

πιθανότατα λόγω της πίεσης του χρόνου κατά τις ώρες μετακίνησης. Αντίθετα, η έκθεση στην 

απογευματινή αιχμή συσχετίστηκε με λιγότερο επιθετική συμπεριφορά (β= -1,360, p < 0,001), 

παρέχοντας πληροφορίες σχετικά με τις χρονικές διακυμάνσεις στα πρότυπα οδήγησης. 

 

Η ανάλυση παλινδρόμησης επιβεβαίωσε αυτά τα ευρήματα, αναδεικνύοντας την αλληλεπίδραση 

μεταξύ των μεταβλητών έκθεσης και των χαρακτηριστικών ανατροφοδότησης. Ενώ η έκθεση 

επηρέασε θετικά την υπερβολική ταχύτητα (β = 0,326, p < 0,001), οι μηχανισμοί 

ανατροφοδότησης μετρίασαν αποτελεσματικά αυτή τη συμπεριφορά. Το χαρακτηριστικό 

«ανταγωνισμός και προκλήσεις», ειδικότερα, έδειξε υποσχόμενο να μετριάσει τις απότομες 

επιταχύνσεις (β = -0,001, p < 0,001). Τα περιστατικά απότομου φρεναρίσματος μειώθηκαν επίσης 

σημαντικά από την ανατροφοδότηση, ενισχύοντας το ρόλο της ανατροφοδότησης στην προώθηση 

ασφαλέστερων οδηγικών πρακτικών. Η ανάλυση συνδιακύμανσης αποκάλυψε περαιτέρω ισχυρές 

αλληλεπιδράσεις μεταξύ επικίνδυνων συμπεριφορών, όπως η υπερβολική ταχύτητα και το 

απότομο φρενάρισμα, υπογραμμίζοντας την ανάγκη για ολοκληρωμένα συστήματα 

ανατροφοδότησης που αντιμετωπίζουν πολλαπλές πτυχές της συμπεριφοράς του οδηγού. 

 

Οι πρακτικές επιπτώσεις αυτών των ευρημάτων είναι ουσιαστικές. Τα χαρακτηριστικά 

ανατροφοδότησης, ιδίως εκείνα που αξιοποιούν εξατομικευμένους πίνακες αποτελεσμάτων, 

χωρικά εργαλεία και στοιχεία παιχνιδοποίησης, υπόσχονται πολλά για τη βελτίωση της ασφάλειας 

των οδηγών. Οι εξατομικευμένες παρεμβάσεις που στοχεύουν σε συγκεκριμένες συμπεριφορές 

και ώρες της ημέρας θα μπορούσαν να ενισχύσουν περαιτέρω την αποτελεσματικότητα αυτών των 

συστημάτων. Ωστόσο, περιορισμοί όπως ο αποκλεισμός της χρήσης κινητού τηλεφώνου από το 

τελικό μοντέλο και οι πιθανές μεροληψίες επιλογής λόγω της εθελοντικής φύσης της συμμετοχής 

θα πρέπει να αντιμετωπιστούν σε μελλοντικές έρευνες. 

 

Μετά την Ανατροφοδότηση Επιδράσεις στη Μακροπρόθεσμη Συμπεριφορά των Οδηγών 

 

Οι τεχνικές Ανάλυσης Επιβίωσης εφαρμόστηκαν σε ένα σύνολο δεδομένων 24.904 διαδρομών 

από 31 οδηγούς αυτοκινήτων, με κάθε οδηγό να έχει υλοποιήσει τουλάχιστον 20 διαδρομές κατά 

τη φάση μετά την ανατροφοδότηση, για τη διερεύνηση των μακροπρόθεσμων επιδράσεων της 

τηλεματικής ανατροφοδότησης στη συμπεριφορά του οδηγού. Η ανάλυση επικεντρώθηκε σε 

μοτίβα υποτροπής όσον αφορά στη χρήση κινητού τηλεφώνου, την υπερβολική ταχύτητα, τα 

απότομα φρεναρίσματα και τις απότομες επιταχύνσεις. Οι μέθοδοι που χρησιμοποιήθηκαν 

περιλάμβαναν καμπύλες Kaplan-Meier, μοντέλα Cox-PH με frailty, μοντέλα Weibull AFT με 

ετερογένεια σε ομάδες, και Random Survival Forests. Τα ευρήματα καταδεικνύουν την 

αποτελεσματικότητα των παρεμβάσεων ανατροφοδότησης στην επίτευξη σημαντικών 

βραχυπρόθεσμων βελτιώσεων συμπεριφοράς κατά τη φάση της ανατροφοδότησης. Ωστόσο, η 

φάση μετά την ανατροφοδότηση αποκάλυψε ποικίλες τάσεις υποτροπής, υπογραμμίζοντας 

την ανάγκη για συνεχιζόμενες παρεμβάσεις για τη διατήρηση αυτών των βελτιώσεων με την 

πάροδο του χρόνου. 

 

Η ανάλυση επιβίωσης Kaplan-Meier τόνισε τις τάσεις υποτροπής, δείχνοντας μια σταδιακή 

μείωση της βελτιωμένης συμπεριφοράς στις διαδοχικές διαδρομές κατά τη φάση μετά την 
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ανατροφοδότηση. Για τις απότομες επιταχύνσεις, οι πιθανότητες επιβίωσης μειώθηκαν από 

84,8% στις 50 διαδρομές στο 49,2% στις 150 διαδρομές. Παρόμοιες τάσεις παρατηρήθηκαν 

για τα απότομα φρεναρίσματα και την υπερβολική ταχύτητα, με τις πιθανότητες επιβίωσης να 

μειώνονται περίπου στο 40,3% και 46,8%, αντίστοιχα, έως τη διαδρομή 150. Αυτά τα μοτίβα 

υπογραμμίζουν τη μεταβατική φύση των επιδράσεων της ανατροφοδότησης και την ανάγκη 

για μηχανισμούς συνεχούς ενίσχυσης. Η χρήση κινητού τηλεφώνου παρουσίασε ελαφρώς 

μεγαλύτερη ανθεκτικότητα, με τις πιθανότητες επιβίωσης να παραμένουν πάνω από 80% στις 100 

διαδρομές, αλλά η σταδιακή υποτροπή ήταν εμφανής με την πάροδο του χρόνου. 

 

Μεταξύ των μοντέλων ανάλυσης επιβίωσης που εφαρμόστηκαν, το μοντέλο Επιταχυνόμενου 

Χρόνου Αποτυχίας (Weibull AFT) με ετερογένεια αναδείχθηκε ως ιδιαίτερα ισχυρό εργαλείο 

για την ανάλυση των δυναμικών υποτροπής, ισορροπώντας την προβλεπτική ακρίβεια και την 

ερμηνευσιμότητα. Οι τιμές C-index κυμάνθηκαν μεταξύ 0.677 και 0.773, με το μοντέλο να 

επιτυγχάνει τη μεγαλύτερη προβλεπτική ικανότητα για την υποτροπή στη χρήση κινητού 

τηλεφώνου (C-index = 0.773), υποδεικνύοντας ισχυρή διακριτική ικανότητα στον εντοπισμό 

οδηγών με αυξημένο κίνδυνο υποτροπής. Κύριοι προβλεπτικοί παράγοντες όπως η ηλικιακή 

ομάδα [35-54] (β = 0.165, p = 0.041), η διάρκεια διαδρομής (β = -0.022, p < 0.001), και η 

αυτοαναφερόμενη επιθετικότητα (πλησιάζοντας τη στατιστική σημαντικότητα στο p = 0.089) 

αναδείχθηκαν, παρέχοντας χρήσιμες πληροφορίες για τη συμπεριφορά υποτροπής. Το μοντέλο 

επίσης κατέγραψε ετερογένεια μεταξύ οδηγών μέσω ενσωμάτωσης τυχαίων παραμέτρων, με 

τα αποτελέσματα ετερογένειας να δείχνουν σημαντική μεταβλητότητα στους χρόνους επιβίωσης. 

 

Για την υποτροπή στην υπερβολική ταχύτητα, το μοντέλο Weibull AFT πέτυχε C-index = 0.700, 

με σημαντικούς προβλεπτικούς παράγοντες, όπως η διάρκεια διαδρομής (β = -0.022, p < 0.001) 

και οι πρωινές ώρες αιχμής (β = -0.096, p = 0.004). Η διάρκεια διαδρομής αναδείχθηκε ως ο 

κυρίαρχος προβλεπτικός παράγοντας, μειώνοντας σταθερά τους χρόνους επιβίωσης σε όλους 

τους δείκτες υποτροπής, υπογραμμίζοντας τον ρόλο της παρατεταμένης οδήγησης στη 

συμπεριφορική υποτροπή. Αντίστοιχα, στην ανάλυση υποτροπής των απότομων φρεναρισμάτων, 

το μοντέλο πέτυχε μέτρια προβλεπτική ακρίβεια (C-index = 0.724) με σημαντικές συνεισφορές 

από μεταβλητές όπως η ηλικιακή ομάδα [35-54] (β = 0.360, p = 0.010) και η χωρητικότητα 

κινητήρα (>1400cc) (β = -0.508, p = 0.012). Αυτά τα ευρήματα δείχνουν ότι οι νεότερες ηλικιακές 

ομάδες και οι οδηγοί οχημάτων με μεγαλύτερους κινητήρες είναι πιο επιρρεπείς σε υποτροπή. 

 

Το μοντέλο Τυχαίων Δασών Επιβίωσης (Random Survival Forest) παρουσίασε ανώτερη 

προβλεπτική απόδοση σε ορισμένους εξεταζόμενους δείκτες, διακρινόμενο στην καταγραφή μη 

γραμμικών αλληλεπιδράσεων και πολύπλοκων σχέσεων μεταξύ προβλεπτικών παραγόντων. Με 

τιμές Root Mean Squared Error (RMSE) έως 85.87 και σφάλματα πρόβλεψης εκτός δείγματος 

(OOB) της τάξης του 24,3% για την υποτροπή στη χρήση κινητού τηλεφώνου, το RSF εντόπισε 

κρίσιμους προβλεπτικούς παράγοντες, όπως η διάρκεια διαδρομής, οι τάσεις επιθετικής οδήγησης, 

και το μέγεθος του κινητήρα του οχήματος. Η ευελιξία του μοντέλου στην επεξεργασία 

ποικίλων προβλεπτικών παραγόντων και η αποκάλυψη λεπτομερών δυναμικών το καθιστούν 

πολύτιμο εργαλείο για προβλεπτικές αναλύσεις. Ωστόσο, η «μαύρο κουτί» φύση του μοντέλου και 

η εξάρτησή του από μεγαλύτερα σύνολα δεδομένων περιορίζουν την ερμηνευσιμότητά του και τη 

χρησιμότητά του για επεξηγηματικούς σκοπούς. 

 

Συνολικά, συγκρίνοντας τα μοντέλα, το Weibull AFT ξεχωρίζει για την ισορροπία 

ερμηνευσιμότητας και προβλεπτικής ακρίβειας, καθιστώντας το ιδιαίτερα κατάλληλο για 
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περιβάλλοντα που απαιτούν εφαρμόσιμες γνώσεις σχετικά με τη δυναμική της επιβίωσης. 

Αντίθετα, το μοντέλο Τυχαίων Δασών Επιβίωσης είναι πιο κατάλληλο για καθαρά προβλεπτικούς 

στόχους όπου η καταγραφή μη γραμμικών σχέσεων και πολύπλοκων αλληλεπιδράσεων είναι 

κρίσιμη, αν και η έλλειψη διαφάνειας περιορίζει τη χρησιμότητά του στην κατανόηση των 

υποκείμενων μηχανισμών συμπεριφοράς. Αυτά τα ευρήματα υπογραμμίζουν τη σημασία της 

ευθυγράμμισης της επιλογής μοντέλου με τους ερευνητικούς στόχους. Για μελέτες που 

επικεντρώνονται στην κατανόηση των δυναμικών της συμπεριφοράς και στον σχεδιασμό 

παρεμβάσεων, το μοντέλο Weibull AFT παρέχει αξιόπιστες πληροφορίες. Αντίθετα, όταν η 

ακρίβεια πρόβλεψης είναι πρωταρχικής σημασίας, το RSF αποτελεί ανώτερη εναλλακτική λύση. 

 

Παρόλο που η δατριβή παρέχει πολύτιμες γνώσεις για τη δυναμική της ανατροφοδότησης και της 

υποτροπής των οδηγών, περιορισμοί όπως το σχετικά μικρό δείγμα, η απουσία δεδομένων 

κυκλοφοριακών συνθηκών και η μακροσκοπική εστίαση πρέπει να σημειωθούν. Μελλοντική 

έρευνα θα μπορούσε να ενσωματώσει πιο λεπτομερή δεδομένα, όπως τις κυκλοφοριακές 

δυναμικές και τις αποφάσεις των οδηγών κατά τη διάρκεια της οδήγησης, για την παροχή 

βαθύτερης κατανόησης των συμπεριφορικών μοτίβων. Η εφαρμογή προηγμένων τεχνικών 

μοντελοποίησης, όπως οι τυχαίες παράμετροι με ετερογένεια-μέση, θα μπορούσε να ενισχύσει 

περαιτέρω την ανάλυση, λαμβάνοντας υπόψη τη μεταβλητότητα μεταξύ οδηγών. 

 

Καινοτόμες Επιστημονικές Συνεισφορές 

 

Οι καινοτόμες συνεισφορές της παρούσας διδακτορικής διατριβής αποτελούνται από πέντε 

πρωτότυπες επιστημονικές συνεισφορές, όπως περιγράφονται παρακάτω και απεικονίζονται στο 

Σχήμα II. 

 

 
Εικόνα II: Καινοτόμες συνεισφορές της διδακτορικής διατριβής 
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Εκτεταμένη Συλλογή Δεδομένων Φυσικής Οδήγησης 

 

Η παρούσα διατριβή αποτελεί ένα σημαντικό βήμα προς τα εμπρός στην έρευνα πειραμάτων 

φυσικής οδήγησης (Naturalistic Driving - ND), αξιοποιώντας μη παρεμβατικές μεθόδους 

συλλογής δεδομένων που βασίζονται σε αισθητήρες smartphone. Σε αντίθεση με τις παραδοσιακές 

προσεγγίσεις, αυτή η μεθοδολογία ελαχιστοποιεί τις παρεμβάσεις στους συμμετέχοντες, 

επιτρέποντας την ανεμπόδιστη καταγραφή πραγματικών οδηγικών συμπεριφορών. Το σύνολο 

δεδομένων καλύπτει ένα μεγάλο δείγμα οδηγών (230), σε ποικίλα οδηγικά περιβάλλοντα και 

τύπους οχημάτων, συμπεριλαμβανομένων οδηγών αυτοκινήτων, μοτοσικλετιστών και 

επαγγελματιών οδηγών βαν. Αυτή η ποικιλία διασφαλίζει ότι τα ευρήματα είναι όχι μόνο 

αντιπροσωπευτικά, αλλά λαμβάνουν επίσης υπόψη τις διαφοροποιήσεις μεταξύ δημογραφικών 

χαρακτηριστικών οδηγών και κατηγοριών οχημάτων. 

 

Η υψηλή χρονική ανάλυση των δεδομένων προσφέρει λεπτομερείς πληροφορίες για τη 

συμπεριφορά οδήγησης σε επίπεδο διαδρομής, παρέχοντας μια βαθιά κατανόηση της δυναμικής 

της οδηγικής συμπεριφοράς. Επιπλέον, η μακροπρόθεσμη συλλογή δεδομένων για 21 μήνες, που 

καλύπτει πολλές φάσεις ανατροφοδότησης και διαφορετικά οδικά περιβάλλοντα, προσδίδει 

μοναδική αξία στη μελέτη. Καταγράφοντας αλλαγές στη συμπεριφορά με την πάροδο του χρόνου, 

η διατριβή γεφυρώνει ένα κρίσιμο κενό στην υπάρχουσα έρευνα ND, η οποία συχνά βασίζεται 

σε βραχυπρόθεσμες παρατηρήσεις. Αυτή η μακροπρόθεσμη προοπτική επιτρέπει την αξιολόγηση 

της διατηρησιμότητας των αλλαγών στη συμπεριφορά και των τάσεων υποτροπής, προσφέροντας 

μια ισχυρή βάση για την ανάπτυξη προσαρμοστικών και βιώσιμων παρεμβάσεων για τη βελτίωση 

της οδικής ασφάλειας. Η μεθοδολογία αυτή θέτει νέα πρότυπα για τα πειράματα ND, 

ανοίγοντας τον δρόμο για πιο κλιμακούμενες, οικονομικά αποδοτικές και τεχνολογικά προηγμένες 

μελέτες οδηγικής συμπεριφοράς. 

 

Πολυτροπική Προσέγγιση Ανάλυσης Οδηγικής Συμπεριφοράς 

 

Αυτή η διατριβή υιοθετεί μια πολυτροπική προσέγγιση, δίνοντας έμφαση στη σημασία της 

κατανόησης της οδηγικής συμπεριφοράς σε διαφορετικές ομάδες χρηστών οδού και διαφορετικά 

περιβάλλοντα. Συμπεριλαμβάνοντας οδηγούς αυτοκινήτων, μοτοσικλετιστές και 

επαγγελματίες οδηγούς βαν, η έρευνα αναγνωρίζει την ανάγκη μελέτης ευάλωτων χρηστών 

οδού, τους οι μοτοσικλετιστές, οι οποίοι αντιμετωπίζουν αυξημένους κινδύνους, καθώς και 

επαγγελματιών οδηγών, οι οποίοι περνούν εκτεταμένες ώρες οδηγώντας. Αυτή η περιεκτική 

προσέγγιση διασφαλίζει μια πλήρη αξιολόγηση της ανατροφοδότησης μέσω τηλεματικής, 

αναδεικνύοντας τη σημασία της σε διαφορετικά προφίλ κινδύνου και επίπεδα έκθεσης. 

 

Η έρευνα εξετάζει την επίδραση των αστικών και υπεραστικών περιβαλλόντων, αλλά και 

αυτοκινητόδρομων, λαμβάνοντας υπόψη τις διαφορετικές προκλήσεις που θέτει κάθε τύπος οδού. 

Αυτή η περιληπτική προσέγγιση αποκαλύπτει ότι η αποτελεσματικότητα της ανατροφοδότησης 

δεν είναι ομοιόμορφη· συμπεριφορές όπως η χρήση κινητού τηλεφώνου ή η υπερβολική 

ταχύτητα αντιδρούν διαφορετικά στις παρεμβάσεις, ανάλογα με το οδικό περιβάλλον. Για 

παράδειγμα, οι μοτοσικλετιστές μπορεί να επωφεληθούν περισσότερο από ανατροφοδότηση που 

στοχεύει στην επίγνωση τους κατάστασης, ενώ οι επαγγελματίες οδηγοί ενδέχεται να απαιτούν 

εξατομικευμένες παρεμβάσεις που αντιμετωπίζουν την κόπωση και την επαναλαμβανόμενη 

έκθεση σε καταστάσεις υψηλού κινδύνου. 
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Ενσωματώνοντας αυτήν την ποικιλία ομάδων χρηστών και συμφραζομένων, η διατριβή παρέχει 

πρακτικές πληροφορίες για υπεύθυνους χάραξης πολιτικής, υποστηρικτές τους οδικής 

ασφάλειας και προγραμματιστές στον κλάδο της τεχνολογίας. Τονίζει τη σημασία της ανάπτυξης 

εξατομικευμένων συστημάτων ανατροφοδότησης που ανταποκρίνονται στις μοναδικές ανάγκες 

ευάλωτων χρηστών οδού, τους μοτοσικλετιστές, και επαγγελματίες οδηγούς, οι οποίοι 

συμβάλλουν σημαντικά στη δραστηριότητα οδικής κυκλοφορίας. Αυτή η περιεκτική προσέγγιση 

υποστηρίζει τη δημιουργία προσαρμοστικών, ευαίσθητων στο πλαίσιο παρεμβάσεων, 

βελτιώνοντας τελικά την οδική ασφάλεια για όλους τους χρήστες. 

 

Ολοκληρωμένη Δέσμη Μοντέλων Τριών Πυλώνων 

 

Αυτή η διατριβή χρησιμοποιεί μια ολοκληρωμένη σειρά προηγμένων στατιστικών και 

τεχνικών μηχανικής μάθησης, προσαρμοσμένων για την αντιμετώπιση της πολυδιάστατης 

φύσης της ανάλυσης οδηγικής συμπεριφοράς. Ενσωματώνοντας Γενικευμένα Γραμμικά Μικτά 

Μοντέλα (GLMMs), Μοντέλα Δομικών Εξισώσεων (SEMs) και Τεχνικές Ανάλυσης Επιβίωσης 

(όπως καμπύλες Kaplan-Meier, μοντέλα Cox-PH με παραγοντική τυχαιότητα, μοντέλα 

Επιταχυνόμενου Χρόνου Αποτυχίας (Weibull AFT) με ετερογένεια, και Τυχαία Δάση Επιβίωσης), 

η διατριβή παρέχει ένα αυστηρό αναλυτικό πλαίσιο ικανό να αποκαλύψει τόσο γραμμικές όσο και 

μη γραμμικές σχέσεις μεταξύ των μεταβλητών. Κάθε μοντέλο επιλέγεται προσεκτικά ώστε να 

ευθυγραμμίζεται με τους ερευνητικούς στόχους, εξισορροπώντας την προβλεπτική ακρίβεια με 

την ερμηνευσιμότητα για να διασφαλίσει πρακτικές πληροφορίες. 

 

Αυτή η δέσμη μοντέλων επιτρέπει την εξερεύνηση πολύπλοκων φαινομένων, όπως η 

αλληλεπίδραση μεταξύ χαρακτηριστικών ανατροφοδότησης, οδηγικών συμπεριφορών και 

παραγόντων πλαισίου, όπως η ώρα της ημέρας ή ο τύπος δρόμου. Για παράδειγμα, τα μοντέλα 

επιβίωσης καταγράφουν μοναδικά τη δυναμική της υποτροπής, προσφέροντας νέες γνώσεις για 

τις τάσεις συμπεριφοράς μετά την αφαίρεση της ανατροφοδότησης. Οι τεχνικές μηχανικής 

μάθησης ενισχύουν περαιτέρω την ανάλυση, συλλαμβάνοντας λεπτές, μη γραμμικές 

αλληλεπιδράσεις, διασφαλίζοντας ότι τα μοντέλα είναι εξοπλισμένα για την αντιμετώπιση της 

πολυπλοκότητας των πραγματικών δεδομένων οδήγησης. Το καινοτόμο αυτό αναλυτικό πλαίσιο 

όχι μόνο αυξάνει τη μεθοδολογική αυστηρότητα της έρευνας αλλά και καταδεικνύει το δυναμικό 

της συνδυαστικής χρήσης παραδοσιακών στατιστικών μεθόδων και τεχνολογιών μηχανικής 

μάθησης για μελέτες οδηγικής συμπεριφοράς. 

 

Σε Βάθος Ανάλυση Μετά την Ανατροφοδότηση Επιδράσεων 

 

Αυτή η διατριβή είναι από τις πρώτες που αναλύει σε βάθος τις επιδράσεις μετά την 

ανατροφοδότηση στη συμπεριφορά του οδηγού, χρησιμοποιώντας προηγμένες στατιστικές και 

τεχνικές μηχανικής μάθησης, αντιμετωπίζοντας ένα κρίσιμο κενό στην υπάρχουσα έρευνα. Μέσω 

μεθόδων ανάλυσης επιβίωσης, όπως τα Weibull AFT και Random Survival Forest, η μελέτη 

αξιολογεί μακροπρόθεσμες αλλαγές στη συμπεριφορά και μοτίβα υποτροπής μετά την απόσυρση 

της ανατροφοδότησης. Αυτές οι τεχνικές επιτρέπουν τη λεπτομερή εξερεύνηση των παραγόντων 

που επηρεάζουν την υποτροπή σε επικίνδυνες συμπεριφορές, όπως η υπερβολική ταχύτητα, τα 

απότομα γεγονότα και η χρήση κινητού τηλεφώνου, παρέχοντας πρακτικές πληροφορίες για τον 

σχεδιασμό βιώσιμων στρατηγικών παρέμβασης. 
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Τα ευρήματα αποκαλύπτουν τη σημασία προσαρμοστικών συστημάτων ανατροφοδότησης που 

μπορούν να διατηρήσουν τις βελτιώσεις στη συμπεριφορά με την πάροδο του χρόνου. Για 

παράδειγμα, η ανάλυση επιβίωσης έδειξε ότι η διάρκεια της διαδρομής και η ώρα της ημέρας 

επηρεάζουν σημαντικά τη δυναμική υποτροπής, υπογραμμίζοντας την ανάγκη για μηχανισμούς 

ανατροφοδότησης που να λαμβάνουν υπόψη το πλαίσιο. Αυτή η καινοτόμος εστίαση στη φάση 

μετά την ανατροφοδότηση παρέχει ένα νέο πλαίσιο για την κατανόηση της διατηρησιμότητας 

των βελτιώσεων που προκύπτουν από την ανατροφοδότηση, επιτρέποντας πιο ανθεκτικές και 

αποτελεσματικές παρεμβάσεις οδικής ασφάλειας. Επιπλέον, καθορίζει ένα πρότυπο για τη 

μελλοντική έρευνα ώστε να ενσωματώσει μακροπρόθεσμες προοπτικές στην αξιολόγηση 

στρατηγικών τροποποίησης οδηγικής συμπεριφοράς. 

 

Μηχανισμός Ανατροφοδότησης Οδηγού ως Ολιστικό Σύστημα 

 

Η παρούσα διατριβή προσεγγίζει μοναδικά τον μηχανισμό ανατροφοδότησης ως ένα ολιστικό 

σύστημα, εξετάζοντας ολόκληρο τον κύκλο ζωής του μέσω ενός πολυπαραμετρικού 

αναλυτικού πλαισίου. Αναλύοντας συστηματικά τις φάσεις πριν την ανατροφοδότηση, κατά τη 

διάρκεια της ανατροφοδότησης και μετά την ολοκλήρωσή της, η διατριβή παρέχει μια 

ολοκληρωμένη κατανόηση του πώς η ανατροφοδότηση επηρεάζει τη συμπεριφορά των οδηγών 

με την πάροδο του χρόνου. Η ενσωμάτωση διαφόρων χαρακτηριστικών ανατροφοδότησης, όπως 

οι βαθμολογίες, οι χάρτες, τα εργαλεία σύγκρισης και τα στοιχεία παιχνιδοποίησης, επιτρέπει την 

αξιολόγηση των επιμέρους και συνδυαστικών τους επιδράσεων στην τροποποίηση της 

συμπεριφοράς. 

 

Αυτή η πολυφασική προοπτική δεν εστιάζει μόνο στις άμεσες αλλαγές στη συμπεριφορά αλλά 

ρίχνει φως και στα μακροπρόθεσμα μοτίβα και τις τάσεις υποτροπής. Για παράδειγμα, ενώ οι 

βαθμολογίες και τα στοιχεία διαγωνισμού είναι ιδιαίτερα αποτελεσματικά στη μείωση της 

υπερβολικής ταχύτητας, η επίδρασή τους σε άλλες συμπεριφορές, όπως οι απότομες επιταχύνσεις, 

απαιτεί περαιτέρω βελτίωση. Το συστημικό αυτό πλαίσιο προχωρά πέρα από τις απομονωμένες 

αξιολογήσεις της ανατροφοδότησης, προσφέροντας ένα κλιμακούμενο, βασισμένο σε δεδομένα 

πλαίσιο σχεδιασμού και εφαρμογής παρεμβάσεων μέσω τηλεματικής του οδηγού. Τα 

ευρήματα τονίζουν το δυναμικό προσαρμοστικών συστημάτων ανατροφοδότησης για τη βιώσιμη 

βελτίωση της οδηγικής συμπεριφοράς, συμβάλλοντας τελικά σε ασφαλέστερα οδικά 

περιβάλλοντα. 
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1 Introduction 
 

1.1 Road Safety Overview 
 

1.1.1 Road safety statistics 

 

Road safety is a critical public health and societal issue, as road traffic crashes claim millions of 

lives and cause severe injuries globally every year. Beyond the tragic loss of life, these incidents 

impose immense emotional and economic burdens on families and communities. Vulnerable road 

users, such as pedestrians, cyclists, and motorcyclists, are particularly at risk, necessitating the 

implementation of comprehensive safety measures, infrastructure improvements, and awareness 

campaigns. 

 

Over the last decade, although substantial advances have been made in enhancing road safety, road 

crashes continue to pose a significant public health challenge worldwide. Road crashes, resulting 

in injuries and fatalities, are the 12th leading cause of death globally across all age groups, with 

young people aged 5-29 being at the greatest risk. In 2021, road crashes led to approximately 1.19 

million fatalities globally (World Health Organization; 2023.), equating to a mortality rate of 15 

deaths per 100,000 people, while the European Commission published that in 2023, the fatal 

crashes in Europe were 20,400 (European Road Safety Observatory, 2024). 

 

In 2022, Greece experienced a total of 10,487 road crashes resulting in death or injury, marking a 

0.3% increase compared to 2021, when 10,454 such incidents were recorded (Figure 1.1). 

Specifically, the casualties in 2022 included 654 fatalities, 664 serious injuries, and 11,961 minor 

injuries, reflecting increases of 4.8%, 8.9%, and 1.8%, respectively, compared to 2021 (624 

fatalities, 610 serious injuries, and 11,746 minor injuries).  

 

 
Figure 1.1: Numbers of road crashes in Greece during 2021-2022  

[Source: Hellenic Statistical Authority, 2024]  
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Notably, of the 654 fatalities, 257 (39.3%) were in passenger vehicles, 212 (32.4%) involved two-

wheel vehicles (including mopeds), and 112 (17.1%) were pedestrians. These figures underscore 

the significant risks faced by vulnerable road users and highlight the urgent need for targeted safety 

measures to protect them. 

 

1.1.2 Human risk factors 

 

There are a significant number of risk factors identified in literature, which affect accident 

probability. The most important risk factors recognized in literature are human factors (speeding, 

distracted driving, driving under the influence of alcohol and other psychoactive substances etc.), 

unsafe road infrastructure, unsafe vehicles and inadequate law enforcement of traffic laws (WHO, 

2023). Human factors are likely to be the most important cause of road traffic fatalities and injuries 

every year and therefore the importance of quantifying the influence of driver’s behavior on crash 

risk is extremely high. Ιt has been observed that a large percentage of crashes is due to human error 

(exclusively or not), a percentage cited to be as high as 95% (Singh, 2015).  

 

Distracted driving, as one of the most important human factors that influence crash risk, has been 

attracting the attention of researchers in the past decades. Mobile phone use (handheld or hands-

free) and complex conversation (at mobile phone or with passengers) appear to be the most critical 

in-vehicle distraction factors (Papantoniou et al., 2017). Given that mobile usage is an inevitable 

part of the everyday driving process and is expected to increase over the years  (Charlton, 2009), 

its impact on driving behavior in traffic and road safety is particularly crucial and merits further 

investigation. The literature so far has shown that when drivers are using mobile phones while 

driving, several impacts manifest on their behavior expressed in terms of loss of control, response 

to incidents, or crash occurrence (Bellinger et al., 2009; Fitch et al., 2015). 

 

Speeding has also been the subject of extensive research in the transportation field. Excess and 

inappropriate speed are responsible for a high proportion of the mortality and morbidity that result 

from road crashes (Elvik et al., 2004; Nilsson, 2004). In high-income countries, speed contributes 

to about 30% of deaths on the road, while in some low-income and middle-income countries, speed 

is estimated to be the main contributory factor in about half of all road crashes (ITF, 2018). Elvik 

et al. (2019) engaged in relevant research by first questioning whether speed is still as important 

for road safety as it was in the past, taking into account the penetration of constantly evolving 

vehicle safety systems in the global automotive market. After reviewing recent research studies 

regarding the impact of speed on road safety, they conclude that speed remains an important risk 

factor both for crash occurrence and for injury severity. 

 

Furthermore, apart from speeding and distracted driving, more recent studies highlight the 

importance of investigating the phenomenon of harsh events in greater detail, as they have been 

associated with driving risk assessment, risk level correlation and classification (Bonsall et al., 

2005; Gündüz et al., 2018; Vaiana et al., 2014). This is because harsh driving events, such as harsh 

accelerations and harsh brakings, indicate an overall aggressive and unsafe driving behavior, 

unsafe distance from adjacent vehicles, possible near misses, lack of concentration, increased 

reaction time, poor driving judgement or low level of experience. From a research scope, during 

recent years harsh or safety-critical events have been adopted as crash surrogate measures and the 

understanding of related opportunities and challenges in their interpretation is under increased 

examination (e.g. Tarko, 2018; Johnsson et al., 2018). 
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Although both harsh accelerations and harsh brakings are associated with unsafe driving behavior, 

they constitute two different types of events and should therefore examined as such. More 

specifically, harsh acceleration events may reveal high levels of anxiety and anger while driving 

(Stephens et al., 2009; Roidl et al., 2014) leading to a risky driving behavior characterized by 

drivers’ involvement in situations of high risk. Harsh brakings may indicate driver struggle to 

anticipate the occurrence of a critical situation, which most of the time would not have occurred 

at the first place if it were not for driver’s inattention, high speed development, inadequate 

distances from adjacent vehicles and other unsafe behavior indicators. As a result, harsh breaking 

events harsh are often used to locate safety critical events in Naturalistic Driving (ND) data 

(Hanowski et al., 2005; Jansen & Wesseling, 2018). 

 

Additionally, given the strong correlation between harsh events and driving risk, it is not surprising 

why harsh accelerations and harsh brakings have been investigated by insurance industry in the 

context of usage-based motor insurance (UBI) schemes (Boquete et al., 2010; Paefgen et al., 2013), 

allowing for more behavioral parameters being used in UBI models. Harsh events, in combination 

with other driving behavioral indicators such as speeding and distracted driving are being 

increasingly used by Pay How You Drive (PHUD) Usage Based Insurance schemes as the critical 

risk factor indicators in terms of driving behavior (Tselentis et al., 2017). 

 

1.1.3 Smartphone data exploitation 

 

Technological advancements during recent decades have led to the development of a wide array 

of tools and methods in order to record driving behavior and measure various aspects of driving 

performance. The most common methodology applied included driving simulators (Papantoniou 

et al. 2014), questionnaires (Matthews et al., 1998) combined with simulators and naturalistic 

driving experiments (Toledo et al., 2008; Birrell et al., 2014), while the most common method of 

monitoring driving measures included recorders that relate to the car engine (Zaldivar et al., 2011; 

Backer-Grøndahl & Sagberg, 2011) and smartphones (Vlahogianni & Barmpounakis, 2017). As 

shown from previous research (Ziakopoulos et al., 2020), smartphones and their sensors are 

increasingly used as informative devices for monitoring driver behavior because they present many 

advantages due to high market penetration rates, Internet of Things (IOT) connectivity as well as 

low cost and ease of use in data collection. The exploitation of the various sensors for the purpose 

of transport and safety research allows for continuous, inexpensive and fast data collection, with 

plenty of studies confirming and even improving the reliability of smartphone measurement data 

implementing state-of-the-art machine learning and big data algorithms (Ghose et al., 2016, 

Tselentis et al., 2018). 

 

In that environment, the high penetration rate of smartphones and social networks nowadays 

provide new opportunities and features to monitor and analyze driver behavior. Apart from the 

wide smartphone application capabilities and the low cost and ease of use in data collection, 

experiments under naturalistic conditions with the use of smartphones allow for drivers to be 

recorded under normal driving conditions and without any influence from external parameters, 

resulting in being considered as one of the most appropriate methods for the assessment of driving 

behavior. 

 

Smartphones are equipped with a variety of sensors, such as motion sensors (e.g. accelerometer 

and gyroscope), position sensors (e.g. magnetometer), global navigation satellite system (GNSS) 
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receivers, environmental sensors (barometers, photometers, and thermometers), microphones, 

cameras, etc. As a result, the exploitation of the various sensors for the purpose of transportation 

and road safety research allows for continuous, inexpensive and fast data collection, with plenty 

of studies confirming and even improving the reliability of smartphone measurement data 

implementing state-of-the-art machine learning and big data algorithms (Ghose et al., 2016; 

Tselentis et al., 2018). Vlahogianni and Barmpounakis (2017) examined the use of smartphones as 

an alternative for driving behavior analysis and they concluded that the smartphone-based 

algorithms may accurately detect four distinct patterns (braking, acceleration, left cornering and 

right cornering) with an average accuracy comparable to other popular detection approaches based 

on data collected using a fixed position device.  

 

Many studies have shown promising results using data collected through smartphone sensors under 

naturalistic driving conditions. By conducting naturalistic driving experiments by means of mobile 

phone, researchers aim either at examining the effect of various driving behavior indicators on 

driver performance and cash risk (Tselentis et al., 2018, Yannis et al., 2017) or analyzing and 

modeling driver profiles (Castignani et al., 2015; Mantouka et al., 2019). These studies also 

investigate unsafe behaviors such as speeding (Kontaxi et al., 2023; Richard et al., 2013), mobile 

phone use (Papantoniou et al., 2021; Ziakopoulos et al., 2023), harsh driving events and driver 

aggressiveness (Frantzola et al., 2022; Precht et al., 2017) and driver fatigue (Dingus et al., 2006; 

Wang et al., 2022). Additionally, researchers have developed technologies and machine learning 

algorithms to detect these behaviors (Shahverdy et al., 2020; Shi et al., 2019; Zhang et al., 2022) 

and technologies that provide feedback to drivers  (Braun et al., 2015; Gu et al., 2019).  

 

1.1.4 Driver feedback in road safety studies 

 

Feedback to drivers has been shown to be a highly effective method for enhancing road safety. 

Feedback itself has long been acknowledged as a powerful tool for shaping behavior in diverse 

areas, including education, healthcare, and human resource management  (Archer, 2010; Hattie & 

Timperley, 2007; London & Smither, 2002). In traffic and road safety, the importance of feedback 

can be highlighted through several key points such as behavior modification, enhanced awareness, 

reduction in crash rates, stress and fatigue management, integration with advanced technologies 

and promotion of a road safety culture.  

 

Many studies have examined the effect of feedback, however there is very little research that 

quantify the exact effect on driver behavior, as in many cases the drivers were recorded after the 

feedback system/mechanism had been applied, without monitoring a baseline period. A naturalistic 

driving experiment (Meuleners et al., 2023) was conducted for 57 car drivers with a control and 

intervention group for 11 weeks through a smartphone application and the drivers received a text 

message after the completion of the trip with personalized feedback about the participant’s risky 

driving behavior. Four separate Generalized Estimating Equations (GEE) linear regression models 

were developed for each driving indicator and the results showed that the treatment effects for 

feedback were consistently in the expected positive direction. Another recent study (Chen & 

Donmez, 2022) conducted a 16-week ND experiment including 3 phases (i.e. baseline, different 

types of feedback, follow-up without feedback) and provided real-time and post-drive feedback to 

drivers.  
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Results showed that real-time feedback alone and in conjunction with financial incentives were 

effective in raising speed limit compliance. It is also interesting to note that the effects did not 

sustain when feedback and incentives were removed. The post feedback effect is an aspect that 

should be further investigated as the few studies that have dealt with the matter have not come to 

conclusive results (Peer et al., 2020; Soleymanian et al., 2019), while some showing both positive 

(Ghamari et al., 2022a) and negative (Merrikhpour et al., 2014) effects. 

 

The methods used in studies examining the effect of driver feedback vary widely. After 

establishing the context and research questions, methodologies employed in these studies, are also 

important to be discussed. Many studies (Hari et al., 2012; Husnjak et al., 2015; Mazureck & 

Hattem, 2006) initially focus on basic correlation tests, presenting critical summary statistics that 

compare the feedback and non-feedback phases or groups. These basic statistical comparisons 

serve as a foundation for understanding the immediate effects of driver feedback. 

 

However, relying solely on basic correlation tests can be limiting, as these methods do not account 

for the complexity and multifaceted nature of driving behavior. As a result, several studies employ 

these basic methods as a preliminary step before moving on to more advanced statistical modeling. 

For instance, (Kontaxi et al., 2021a; Toledo & Lotan, 2006) use initial correlation analyses as a 

data exploration phase. This phase is crucial for identifying key patterns and relationships, which 

then inform the development of sophisticated statistical models that can better capture the nuances 

of driver behavior and the impact of feedback. 

 

Advanced methodologies, such as multivariate regression models, machine learning algorithms, 

and time-series analyses, are increasingly being used to understand the effects of driver feedback 

in a more comprehensive manner (Aidman et al., 2015; Bell et al., 2017a) . These methods allow 

researchers to control for various confounding factors, explore interactions between multiple 

variables, and predict outcomes based on complex data patterns. For example, the use of machine 

learning techniques like supervised learning algorithms (e.g., XGBoost) has proven effective in 

modeling the contributions of different driving features to the decision to engage in risky 

behaviors, such as mobile phone use while driving (Ziakopoulos et al., 2023). 

 

1.2 Objectives of the Dissertation 
 

Taking the previous into consideration, the primary objective of this dissertation is to examine the 

driver behavior telematics feedback mechanism. The dissertation adopts a comprehensive 

approach to explore feedback's role in modifying driving behavior, with a focus on three key 

pillars:  

 

1. Assessing the impact of feedback on driving behavior of different road user groups (car 

drivers, professional van drivers, and motorcyclists) in various road environments.  

 

2. Investigating the effects of different feedback features across the experimental phases. 

 

3. Analyzing the long-term, post-feedback effects on driving behavior.  
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To achieve these objectives, a 21-month naturalistic driving experiment was thoroughly designed 

and implemented, involving 230 drivers across six distinct feedback phases. High-resolution data 

were collected using precise, non-intrusive smartphone sensors, complemented by self-reported 

data to provide a holistic understanding of driver perceptions and behavioral changes. A 

multiparametric analytical framework was employed to comprehensively examine the function of 

the feedback mechanism, encompassing the pre-feedback, feedback, and post-feedback phases 

during the naturalistic driving experiment. This approach provided valuable insights into the entire 

feedback mechanism, while also exploring the sustainability of feedback-induced improvements 

over time. 

 

A variety of advanced statistical methods are employed to address the research objectives, 

including Generalized Linear Mixed Effects Models, Structural Equation Models, and Survival 

Analysis Models. Specifically, survival analysis techniques such as Kaplan-Meier curves, the Cox 

Proportional Hazards Model with Frailty, the Weibull Accelerated Failure Time Model with 

Clustered Heterogeneity, and Random Survival Forests are used to examine feedback effects over 

time. By leveraging these methods, this dissertation aims to enrich academic understanding while 

offering practical applications for enhancing road safety. The findings from this thesis have the 

potential to inform the development of more effective driver feedback systems that could 

significantly improve safety outcomes and enhance the overall road safety and insurance domains. 

 

1.3 Methodology of the Dissertation 
 

To achieve the scientific objectives of this doctoral dissertation, a series of methodological steps 

were carefully implemented. These steps are outlined in this subsection and visually depicted in 

Figure 1.2. The methodological framework provides a structured approach to achieving the 

objectives of this dissertation. 

 

The methodological framework began with an extensive literature review, which explored key 

aspects of driver feedback systems under naturalistic driving conditions. This review focused on 

experimental design, feedback types, modeling approaches, and key indicators for evaluation. This 

phase guided the formulation of research questions, including the impact of feedback on behavior 

and safety, the effects of feedback features, and the post-feedback influence on long-term driver 

behavior. 

 

Building on the findings of the literature review, a comprehensive methodological background was 

developed, combining theoretical modelling approaches and experimental design principles. This 

included the application of advanced modeling techniques, such as Generalized Linear Mixed 

Effects Models (GLMMs), Structural Equation Models (SEMs), and Survival Analysis Models, 

alongside the design of a naturalistic driving experiment. The experimental setup involved a cohort 

of 130 drivers, encompassing car drivers, van professionals, and motorcyclists, evaluated over six 

feedback phases using a within-subjects design. 

 

The research utilized data from the BeSmart Research Project, focusing on key driving indicators 

such as speeding and mobile phone use as measures of risky behavior, and harsh accelerations and 

harsh brakings as proxies for safety-critical events. The analysis unfolded in three key pillars: 
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1. Impact of feedback: This phase assessed the immediate effects of feedback on driving 

behavior (e.g., speeding, mobile phone use, harsh events frequency) across the three driver 

groups. 

 

2. Effects of different feedback features: A Structural Equation Model (SEM) was developed 

to explore the relationship between feedback features and driving behavior factors, 

revealing the differential impact of feedback elements. 

 

3. Post-feedback effects: A survival analysis was conducted to examine the long-term 

influence of feedback mechanisms. Models such as Cox Proportional Hazards, Accelerated 

Failure Time (AFT), and Random Survival Forests (RSFs) were applied and compared to 

identify the best-fitting model. 
 

By employing this comprehensive methodology, the driver behavior telematics feedback 

mechanism is effectively achieved. The integration of an extensive literature review, advanced 

modeling techniques, and a well-structured naturalistic driving experiment provided a robust 

framework to investigate the impact of feedback on driver behavior. The research focused on 

critical driving indicators such as speeding, mobile phone use, harsh accelerations, and harsh 

braking events, ensuring a holistic assessment of the impact of driver feedback on critical driver 

risk factors. The systematic analysis of immediate feedback effects, the different influence of 

feedback features, and the long-term impact of feedback mechanisms culminated in actionable 

insights for designing and implementing telematics feedback systems. These findings lay the 

foundation for a scalable and data-driven feedback mechanism aimed at improving driving 

behavior, reducing risky behaviors, and enhancing road safety. 
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Figure 1.2: Graphical representation of the overall methodological framework  

of the doctoral dissertation  

111.00    

Comprehensive Suite 
of Advanced Statistical and Machine Learning Models

Methodological Framework

Large-Scale Data Collection and Processing

The driver behavior telematics feedback 
mechanism

Theoretical Framework

Generalized Linear Mixed Effects Models
Structural Equation Models
Survival Analysis Models

Naturalistic Driving Experiment

230 drivers (car, van, motorcyclists)
A within-subjects design experiment

6 different feedback phases

Impact of feedback 
on driving behavior 

indicators via 

GLMMs

Post-feedback 
effect via 

Survival Analysis 
methods

Effects of different 
feedback features 

via advanced 

SEM model 

Literature Review Research Questions

Driver feedback system
Experimental design

Modelling approaches
Examined indicators

1. Impact of feedback on behavior and safety
2. Investigation of feedback features effects
3. Post-feedback effect on long-term driver 

behavior and safety



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism 

 

46 

 

1.4 Structure of the Dissertation 
 

The remainder of this doctoral dissertation is organized in nine sections which are briefly described 

within this subsection.  

 

Section 2 provides a review of the scientific literature of naturalistic driving studies that investigate 

the effect of feedback on driving behavior. The review synthesizes the different types of feedback 

utilized in naturalistic driving studies and the technologies employed to deliver driver feedback. 

Subsequently, the methodologies used by researchers to design and evaluate the effectiveness of 

driver feedback (i.e. experimental design and statistical analysis) are examined, and finally 

evidence-based findings on the impact of feedback on driver behavior are discussed.  

 

Section 3 describes the overall methodological framework employed to achieve the objectives of 

this doctoral dissertation and delves into the theoretical foundations of the analytical methods and 

models utilized throughout the dissertation. Specifically, it provides an in-depth overview of 

descriptive and inferential statistical approaches and advanced modeling techniques, such as 

Generalized Linear Mixed-Effects Models (GLMM), Structural Equation Models (SEM) and 

Survival Analysis methods. These methods are complemented by discussions on interpreting 

coefficients and evaluating model goodness-of-fit. 

 

Section 4 outlines the naturalistic driving experiment conducted to achieve the objectives of the 

dissertation. It begins by detailing the experimental design, including the recruitment process of 

participants and the sample distribution and characteristics of participants drivers. The six distinct 

experimental phases during the naturalistic driving process are also presented. Following this, the 

section introduces the smartphone application used in the experiment, covering its data collection 

system, data processing and feature engineering, and the metadata and driver behavior indicators 

generated for analysis. Additionally, the structure and content of the carefully designed 

questionnaire are discussed, accompanied by statistical summaries of the responses. Lastly, the 

section addresses big data processing, focusing on data integration, organization, and the structure 

of the developed database. 

 

Section 5 investigates the impact of feedback on driver behavior, focusing on speeding among 

motorcyclists and distraction using mobile phone use while driving in car drivers. Both analyses 

begin with an introduction to the respective topics, followed by descriptive statistics and 

preliminary analysis to provide a comprehensive understanding of the datasets. Generalized Linear 

Mixed-Effects Models are then employed in both cases to assess the effects of feedback on 

speeding and distraction, leveraging their ability to account for variability among participants and 

contextual factors. The findings from these models are then discussed, highlighting the shared 

insights into how feedback mechanisms influence driver behavior, while also addressing the 

specific nuances of each case.  

 

Section 6 examines the impact of feedback on driver safety, specifically focusing on harsh braking 

and harsh accelerations among car drivers and professional drivers on highways. Generalized 

Linear Mixed-Effects Models are applied in both analyses to evaluate the effects of feedback on 

the frequency of harsh driving events, accounting for individual differences and contextual factors. 

The results from these models are discussed, emphasizing the effectiveness of feedback 

mechanisms in reducing unsafe driving behaviors for both driver groups. 
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Section 7 investigates the effects of different feedback features on driver behavior, providing a 

comprehensive analysis of how different feedback characteristics influence driving outcomes. The 

section begins with an introduction to the topic, followed by descriptive statistics and preliminary 

analysis to establish the context and key trends in the data. Structural Equation Models (SEMs) 

are then employed to explore the complex relationships between feedback features, driver 

behavior, exposure metrics and safety outcomes, allowing for the simultaneous analysis of multiple 

variables and their interactions. The results are discussed in detail, highlighting the critical 

feedback features that most significantly impact driver behavior. 

 

Section 8 focuses on the post-feedback effects on long-term driver behavior, with a particular 

emphasis on understanding the relapse of driving behaviors following the withdrawal of feedback 

phases. Survival analysis methods are employed to investigate relapse patterns across various 

indicators, including harsh accelerations, harsh braking, speeding behavior, and mobile phone use 

while driving. These analyses leverage Kaplan-Meier curves, Cox-PH models with frailty, Weibull 

AFT models with clustered heterogeneity, and Random Survival Forests to evaluate and compare 

the predictive power and insights offered by each model. The results provide a detailed 

understanding of the sustainability of feedback-induced behavior improvements and highlight key 

factors influencing relapse. 

 

Section 9 presents the conclusions of the thesis and discusses the contribution to knowledge, the 

limitations as well as the recommendations for further research.  

 

Lastly, a complete list of the bibliographical references is provided.   
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2 Literature Review 
 

2.1 Introduction 
 

Over the last decade, substantial advances have been made in enhancing road safety, yet road 

crashes continue to pose a significant public health challenge worldwide. In 2021, road crashes led 

to approximately 1.19 million fatalities globally (World Health Organization; 2023.), equating to 

a mortality rate of 15 deaths per 100,000 people. Numerous studies have explored the key factors 

contributing to traffic crashes, consistently identifying human behavior as the leading cause.  

 

Research indicates that human error is responsible for approximately 95% of road crashes (Singh, 

2015) highlighting the crucial role of driver behavior in accident prevention. Understanding these 

behaviors allows for the development of tailored interventions that address common risky 

practices, such as distracted driving, speeding, and driving under the influence, which are critical 

to improving road safety. In this context, driver feedback appears to be an essential tool for 

improving driver behavior, ultimately reducing road crashes. Additionally, considering that drivers 

generally perceive their performance to be better than they actually drive, feedback seems a 

required tool that can lead to proper self-assessment on the part of the drivers (Amado et al., 2014). 

 

2.1.1 Definition of driver feedback 

 

Feedback has long been recognized as an effective method for influencing behavior across various 

fields such as education, health interventions, and human resource management (Archer, 2010; 

Hattie & Timperley, 2007; London & Smither, 2002). This technique has proven to be instrumental 

in advancing learning, enhancing task performance, and fostering positive behavioral changes 

(DiClemente et al., 2001; Thurlings et al., 2013). 

 

But what exactly is meant by driver feedback? In the context of driving, driver feedback refers to 

information provided about driver performance, typically focused on the status of the driver-

vehicle system (Donmez et al., 2007). However, the concept of feedback extends beyond merely 

presenting information; it inherently includes an evaluative dimension. This evaluative aspect is 

crucial because it provides a benchmark against which the receiver can measure their actions or 

performance. For example, driver feedback does not merely inform drivers about their actions, 

such as speeding or harsh braking patterns, but also evaluates these actions against safe driving 

standards or performance benchmarks. 

 

Driver feedback can be distinguished in terms of delivery method, context and timing. Feedback 

may be delivered through smartphones, in-vehicle devices, dashboards, etc., providing drivers with 

personalized information on their driving behavior, score ranking, comparison with peers, 

instructions and recommendations on safe driving, as well as motivations and rewards (Feng & 

Donmez, 2013). Moreover, a common separation is between real-time vs. post-trip feedback 

(Choudhary et al., 2021; Zhao & Wu, 2012). When providing drivers with real-time feedback, they 

can correct their behavior instantly, e.g. get complied with the speed limits when the speed warning 

is activated inside the vehicle. On the other hand, post-trip feedback typically concerns a summary 

of the overall driving performance after the trip, allowing drivers to reflect on their behavior and 

gradually improve it. In the following sections, driver feedback will be thoroughly explored, 

through the analysis of the reviewed studies. 
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2.1.2 Background and knowledge gaps  

 

Many studies have been carried out on driving behavior and naturalistic studies which mainly: (i) 

examine the recording of behavior and proceed to analyses and models for driver profiling 

(Castignani et al., 2015; Mantouka et al., 2019) or (ii) examine specific unsafe behaviors such as 

speeding (Kontaxi et al., 2023; Richard et al., 2020), mobile phone use (Akritidou et al., 2023; 

Papadimitriou et al., 2019; Papantoniou et al., 2021), aggressiveness (Precht et al., 2017), harsh 

events (Frantzola et al., 2022; Ziakopoulos et al., 2022a) and fatigue (Dingus et al., 2006; J. Wang 

et al., 2022). Additionally, an array of technologies and machine learning algorithms have been 

developed to identify such behaviors (Shahverdy et al., 2020; Shi et al., 2019; X. Wang et al., 2022) 

and provide feedback to drivers (Braun et al., 2015; Gu et al., 2019), although these studies often 

lack baseline comparisons.  

 

The landscape of naturalistic driving studies has been shaped significantly by several key review 

papers, each contributing unique insights into driver behavior, technological integration, and 

psychological aspects of driving safety. A thorough systematic review on analyzing driver behavior 

under naturalistic driving conditions was conducted by (H. Singh & Kathuria, 2021a), in which 

the authors laid the groundwork for understanding driver behavior outcomes derived from 

naturalistic driving studies, contributing to outlining broad patterns in driver behavior. Another 

systematic review using the PRISMA method was conducted by (Ahmed et al., 2022) highlighting 

that driver behavior is the most studied topic using naturalistic driving concluding that naturalistic 

studies could be effectively utilized to refine driving behavior enhancement. 

 

It is worth noting that, despite growing interest from automotive manufacturers and transportation 

researchers in driver behavior, limited research exists on quantifying the direct impact of driver 

feedback on road safety by comparing driver performance before and after receiving said feedback. 

A study focusing on the impact of telematics on road safety and the transformative effects it has 

had on driver safety behavior through different methods of incentives (Ziakopoulos et al., 2022b). 

While feedback was considered, it was not the exclusive focus of the study. On a related note, 

(Boylan et al., 2024) in their more recent review, highlight that while telematics has been effective 

in monitoring driving behavior and assessing insurer risk through variables like speeding, braking, 

and distance, the effects of telematics-based feedback on driver behavior remain largely unknown. 

Despite the dominance of machine learning in analyzing telematics data, there are still gaps in 

understanding how different types of feedback influence behavior change. 

 

In (Michelaraki et al., 2021) a critical overview was conducted on the advancements in online 

gaming platforms and tools that provide safety support to drivers after their trips using different 

modes of transportation, such as cars, trucks, buses and trains. The research indicates that offering 

feedback through methods like alerts, game-like features, guidance and introducing consequences 

or incentives could improve driver performance and reduce the likelihood of road crashes. (Koppel 

et al., 2019) reviewed studies that have investigated mindfulness interventions, as potential 

behavioral prevention strategies among risky drivers, while other studies reviewed the role of 

feedback in promoting safe and eco-friendly driving behaviors (Rios-Torres & Malikopoulos, 

2016; H. Singh & Kathuria, 2021b). 

 

Similarly, (Feng & Donmez, 2013) and (D. Tselentis et al., 2020) reviewed driver feedback 

contextually using research from both naturalistic studies and driving simulators, with the first 
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study proposing a cognitive model for driver-feedback interaction, offering a framework for future 

feedback design and empirical research, although lacking a comprehensive review on driver 

feedback and its impact on driver behavior and safety. 

 

Building on this background, the current review focuses specifically on the effect of driver 

feedback. Addressing the research gap identified in a recent bibliometric analysis by (Yang et al., 

2023), which highlighted the need for more robust evaluation of interventions in real driving 

conditions, this review aims to contribute to a deeper understanding of driver behavior.  

 

Despite considerable contributions in the existing literature, no review to date has thoroughly 

examined the impact of feedback within naturalistic driving studies, making this review both 

innovative and essential. By merging insights from various research domains, the present research 

aims to enrich academic understanding while offering practical applications for enhancing road 

safety. The findings from this review have the potential to inform the development of more 

effective driver feedback systems that could significantly improve safety outcomes and enhance 

the overall road safety and insurance domains. 

 

2.1.3 Review objective 

 

Due to the widespread inclusion of driver feedback devices in naturalistic driving studies, a need 

remains in the literature for empirical and systematic investigation regarding their effects in driver 

safety. This review aims to: 

• Synthesize the different types of feedback utilized in naturalistic driving studies and the 

technologies employed to deliver driver feedback. 

• Examine the methodologies used by researchers to design and evaluate the effectiveness 

of driver feedback (i.e. experimental design and statistical analysis). 

• Present evidence-based findings on the impact of feedback on driver behavior and safety. 

 

Following the Introduction section, this section is organized as follows. Section 2.2 presents the 

methodology used for the synthesis of this systematic review employing the PRISMA approach. 

Section 2.3 showcases the results from the reviewed studies in terms of feedback types, 

experimental framework, modelling approaches, and ultimately the impact of driver feedback on 

behavior and safety. In section 2.4 the main findings are elaborated and the implications for road 

safety and current practices are pinpointed. Furthermore, limitations of current research alongside 

the directions for future research are discussed. Finally, in section 2.5 key conclusions of the 

current section are drawn. 

 

2.2 Review Methodology 
 

To gain a deeper understanding of the impact of driver feedback on road safety and considering 

the extensive range of studies in this area, the method of systematic review was chosen to 

effectively consolidate the existing literature. The present review was conducted in alignment with 

the Preferred Reporting Items for Systematic Reviews And Meta-analyses (PRISMA) statement 

guidelines (Moher et al., 2015; Page et al., 2021). 

 

2.2.1 Search strategy and selection criteria 
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The sources of information for the current study were ScienceDirect, TandFonline, IEEExplore. 

IEEE journals, Google Scholar, and TRID. These databases were searched using keyword variation 

of {“(driving OR driver) AND (behavior OR safety) AND (feedback OR intervention)”} and 

“{(naturalistic OR telematics OR UBI OR “real conditions”)}.” Only peer-review academic 

journal and conference articles were selected for the authors to maintain control over quality of the 

inputs. From all the selected studies identified in the final search (n =29), backward referencing 

was applied to check for any other available literature that was missed during the initial search, 

leading to 34 studies in conclusion. 

 

The selection of studies for inclusion in the systematic review is illustrated in Figure 2.1. A total 

of 597 records were identified from all the database sources using the combined keyword searches. 

42 duplicate records were screened out, and the remaining articles (n = 555) were screened based 

on the titles and abstract, to determine whether each study fulfils the criteria to further be examined 

for the review. After the exclusion of 402 records that were not in the criteria list (which is shown 

below), 153 full text articles were assessed for eligibility. A full-text review of each included study 

was conducted and the following data items were extracted into a prepared data extraction sheet: 

reference, country of the study, sample size of the experiment, driver demographics (gender and 

age), experimental design including experimental groups, feedback phases and experiment 

duration, data collection method, means of feedback provided, timing of feedback, feedback 

content, monitored risk indicators, analysis method, feedback effects and post-feedback effects. 

 

2.2.2 Inclusion and exclusion criteria 

 

The main reasons for exclusion from the systematic review were the following: 

• Driving simulator studies 

• Qualitative studies / self -reported studies 

• Studies focused on the technical aspects of a feedback or intervention driver system  

• Advanced Driver Assistance Systems (ADAS) studies 

• Autonomous driving or automated/autonomous vehicles 

 

The scope of the present review is cautiously restricted to studies examining driver feedback under 

naturalistic driving conditions, in other words, real-world driving scenarios. As a result, driving 

simulator studies were excluded, with the review focusing exclusively on naturalistic driving 

studies. To elucidate, naturalistic driving studies are specifically designed to capture driver 

behavior under real-world conditions, eschewing any form of experimental manipulation. These 

studies are invaluable in providing insights into the interaction between drivers, their vehicles, and 

the surrounding environment during routine driving (Ziakopoulos et al., 2020). In simulated 

environments, drivers often behave differently than they would in real-world settings (Caird et al., 

2018; Zöller et al., 2019), and it was critical to ensure that possible discrepancies would not 

compromise the accuracy of present findings.  

 

There are many reasons why drivers behave differently in a driving simulator experiment; reduced 

risk awareness, making participants less cautious, and the unfamiliarity with simulator controls, 

which can feel unnatural. Psychological factors like lower arousal and the artificial environment 

also contribute, leading to behavior that does not fully reflect real-world driving, resulting in 

different results between the two study methods (Wijayaratna et al., 2019). For similar reasons, 

qualitative studies and self-reported data were also excluded from this review, as they lack the 
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objective, real-world behavioral data necessary for a comprehensive assessment of the impact of 

driver feedback on road safety. 

 

Additionally, the current review emphasizes a critical distinction: Since the primary objective 

presently is to understand the impact of driver feedback on human factors, several studies were 

excluded as they predominantly centered on the technological aspects of driver assistance 

applications or car systems. Studies focusing on Advanced Driver Assistance Systems (ADAS) 

tend to be more oriented towards technological details, primarily aiming to evaluate the efficacy 

and interaction of specific driver assistance technologies in enhancing safety. Often, they use 

naturalistic driving experiments to assess the impact of the driving context parameters on the 

design, development and evaluation of ADAS (Fleming et al., 2019; Orlovska et al., 2020). As a 

result, these two approaches are frequently found together in literature. By distinguishing between 

these two types of studies, this review fosters a more nuanced comprehension of driver interactions 

and responses to feedback in various contexts. Nonetheless, the reader can refer to (Furlan et al., 

2020; Moujahid et al., 2018) for studying the mechanisms and effects of ADAS on road safety. 

 

Lastly, a group of studies that was also excluded were studies regarding autonomous driving or 

self-driving cars. The primary reason for this exclusion is the fundamental difference between 

human-driven and autonomous vehicles in terms of overall behavior, driving adjustments and 

safety interventions. Feedback systems designed for human drivers focus on modifying behavior, 

while autonomous driving studies primarily investigate the technological capabilities of vehicles 

to operate independently of human input (Fleming et al., 2019), therefore the two groups are not 

directly comparable. 
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Figure 2.1: Flowchart for articles selection for systematic review 

 

2.3 Review Findings 
 

The findings from the systematic literature review reveal several interesting aspects of driver 

feedback, including the different types of driver feedback systems, the experimental frameworks 

used in the studies, the various analysis methods applied, and finally and most significantly, the 

impact of feedback on driving behavior and safety. The details of the examined studies are 

summarized in Table 2.1 (ordered from newest to oldest). 
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2.3.1 Types of driver feedback systems 

 

The reviewed studies utilized a variety of feedback systems to examine the effect on driver 

behavior and road safety, each differing in how the feedback was delivered and when it was 

provided to drivers in relation to their trips. As illustrated in Table 1, the most widespread systems 

used in the experiments include (i) smartphone applications, (ii) in-vehicle systems, (iii) text 

messages, and (iv) personalized websites and platforms (Figure 2.2). Each type of feedback system 

is designed to encompass different contexts, ranging from real-time alerts to post-trip summaries, 

often tailored to the specific driving behavior parameter(s) being monitored during the naturalistic 

driving experiment.  

 

 
 

Figure 2.2: Types of driver feedback systems utilized in the reviewed studies 

 

Furthermore, it can be observed that the types of driver feedback systems appear to evolve over 

time, largely driven by progress in technology, access to new platforms, and the increasing 

sophistication of data collection methods. In the early 2000s, feedback systems were relatively 

simple, focusing on in-vehicle devices and written reports, reflecting the technological restrictions 

of that period. Subsequently, as internet connectivity became more advanced, web-based 

applications started to lead at the driver feedback concept, allowing drivers and fleet managers to 

access detailed driving performance reports online, while more recent studies have adopted even 

more sophisticated feedback mechanisms utilizing smartphone applications, telematics, and 

machine learning algorithms, providing personalized, data driven insights. In the following 

paragraphs, the various types of feedback used in this review will be discussed. 
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Table 2.1. Systematic review table of reviewed studies  

Reference 
Sample 

size 

Driver 

characteristics 
Experimental design 

Data 

collection 

Means of 

feedback 

Timing  

of 

feedback 

Feedback 

content 

Monitored 

risk 

indicators  

Analysis  

method 

Feedback  

effects 

Post-feedback 

effects 

Gender  Age 
Experimental 

groups 

Feedback 

phases 

Durati

on 

Ziakopoulo

s 

et al. 2023 

176 car 

drivers 

55% 

female 

drivers 

all 

ages 

one group / 

within-subjects 

design 

• baseline 

• scorecard 

• maps  

• peer 

  comparison 

• competitions 

• no feedback 

21 

months 

smartphone 

application 

smartphone 

application 
post trip 

personalized 

scorecard and 

gamification 

speeding, 

harsh 

acceleration, 

harsh 

braking, use 

of mobile 

phone 

supervised ML 

XGBoost 

algorithms and 

SHAP values  

positive impact in 

reducing mobile 

phone use 

NA 

Meuleners  

et al., 2023 

57 car 

drivers 

44% 

female 

drivers 

17-

20 

years 

old 

• control 

• intervention 

• baseline 

• personalized 

  feedback 

11 

weeks 

smartphone 

application 

text 

message 
post trip 

personalized 

feedback 

about the 

participant’s 

risky driving 

behavior 

speeding, 

harsh 

acceleration, 

harsh braking 

four separate 

Generalized 

Estimating 

Equations 

(GEE) linear 

regression 

models 

no statistical 

difference in the 

driving outcomes 

examined; however, 

the treatment effects 

for feedback were 

consistently in the 

expected positive 

direction 

NA 

Molloy  

et al., 2023 

70 car 

drivers 

46% 

female 

drivers 

18-

25 

years 

old 

(M=

20,S

D=1.

68) 

• control 

• feedback *1 

• feedback*2 

• feedback*3 

• feedback*4 

• feedback to 4 

  groups 

• feedback to 3 

  groups 

• feedback to 2 

  groups 

• feedback to 1 

  group 

• no feedback  

6 

months 

Advanced 

Driver 

Awareness 

System 

graphical 

information 

from the 

researcher. 

post trip 

driver’s 

speeding 

performance 

speeding, 

maximum 

speed 

5 × 6 mixed 

repeated 

measures 

ANOVA and 

Tukey HSD 

(honest 

significant 

difference) post 

hoc test 

control group 

showed the worst 

speed compliance, 

while feedback 

provided on only 

one or two 

occasions was the 

most 

effective 

positive for 

low-speed 

zone 

(50km/h) 

Ghamari  

et al., 2022 

1,289 bus 

and 104 

taxi 

drivers 

all 

male 

drivers 

> 20 

years 

old 

• control 

• intervention 

• baseline 

• text message 

• no feedback 

17 

weeks 

telematics 

device 

text 

message 

weekly 

feedback 

score ranking 

and peer 

comparison  

speeding, 

harsh 

acceleration, 

harsh 

braking, 

harsh turning 

Mann-Whitney 

U-Test and 

Generalized 

Estimating 

Equations 

(GEE)  

bus drivers: 

significant positive 

effect in stages 1 

and 2. taxi drivers: 

significant positive 

effect in stage 1  

positive; the 

reformed 

behavior 

persisted in 

bus drivers 

even after the 

intervention  

Kontaxi  

et al., 2021  

65 car 

drivers 

54% 

female 

drivers 

all 

ages 

one group / 

within-subjects 

design 

• baseline 

• scorecard 

22 

weeks 

smartphone 

application 

smartphone 

application 
post trip 

personalized 

scorecard 

speeding, 

harsh 

acceleration, 

harsh 

braking, use 

of mobile 

phone 

t-test analyses 

and Generalized 

Linear Mixed 

Models 

significant decrease 

in instances of harsh 

accelerations (12%), 

brakings (10%), and 

speeding (40%) in 

phase 2 

ΝΑ 
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Reference 
Sample 

size 

Driver 

characteristics 
Experimental design 

Data 

collection 

Means of 

feedback 

Timing  

of 

feedback 

Feedback 

content 

Monitored 

risk 

indicators 

Analysis  

method 

Feedback  

effect 

Post feedback 

effect 

Gender  Age 
Experimental 

groups 

Feedback 

phases 

Durati

on 

Chen & 

Donmez, 

2021 

58 car 

drivers 

45% 

female 

drivers 

all 

ages 

• real-time only  

• real-time and 

financial 

  incentives 

• real-time and 

post-drive 

  feedback           

• baseline 

• feedback 

• no feedback 

16 

weeks 

in-vehicle 

device 

in-vehicle 

visual 

feedback 

device and 

website 

real-time 

and post-

drive 

speed limit 

compliance 

via the in-

vehicle 

display and 

post-drive 

summary 

speed limit 

compliance 

linear mixed-

effects model 

and mixed-

effects beta 

regression  

significant positive 

effect on real-time 

feedback alone and 

in conjunction with 

financial incentives, 

but not on post-drive 

feedback  

negative: the 

effects did not 

sustain when 

feedback and 

incentives 

were removed  

Stevenson  

et al., 2021  

174 car 

drivers 

67% 

female 

drivers 

18-

50 

years 

old 

• control group 

• driver 

  feedback 

• driver 

  feedback plus 

  incentives  

one phase / 

between-

subjects design 

28 

weeks 

OBD / 

smartphone 

application 

text 

message, 

online 

dashboard 

or 

smartphone 

application 

post trip 

and 

weekly 

summary 

personalized 

scorecard 

speeding, 

harsh 

acceleration, 

harsh braking 

Generalised 

Estimating 

Equation (GEE) 

models and 

two-sided tests  

composite measure 

of risky driving was 

statistically 

significant 

improved, but not 

speeding, harsh 

acceleration and 

harsh braking  

NA 

Peer  

et al., 2020  

130 car 

drivers 

45% 

female 

drivers 

<25 

years 

old 

• app-based 

  feedback only 

• app-based 

  feedback and 

  financial 

  incentives  

• baseline 

• feedback 

• no feedback 

18 

weeks 

OBD / 

smartphone 

application 

smartphone 

application 
post trip 

scorecard and 

map-based 

overview 

speeding, 

harsh 

acceleration, 

harsh 

braking, 

harsh 

cornering, use 

of mobile 

phone 

χ2 or Fisher-

exact tests and 

OLS 

regressions  

positive effect on 

safety-relevant 

driving behavior; 

higher if feedback 

was combined with 

an incentive for safe 

driving 

due to limited 

data, no 

conclusive 

results  

Camden  

et al., 2019 

92 car 

drivers 
NA NA 

one group / 

within-subjects 

design 

• baseline 

• driver 

  awareness 

• feedback 

66 

weeks 

OBD / 

Geotab 

telematics 

device 

online web-

based 

instruction 

program 

post trip 

personalized 

web-based 

instructions  

speeding, 

harsh 

acceleration, 

harsh 

braking, 

harsh 

cornering 

Wilcoxon 

signed-rank 

tests 

feedback resulted in 

statistically 

significant 

reductions in the 

rate of harsh braking 

by 52.17%, harsh 

cornering by 

51.35%, and 

speeding by 73.93%  

NA 

Soleymania

n  

et al., 2019 

40,527 

car 

drivers 

48% 

female 

drivers 

M: 

39.3 
NA NA 

26 

weeks 

telematics 

device 

telematics 

device 

immediat

e and 

daily 

feedback  

UBI score 

harsh 

breaking, 

driven 

distance 

Fixed-Effects 

Regression 

Analysis  

decrease of daily 

average harsh 

braking frequency 

by an average of 

21% 

suggestive 

but not 

conclusive 

positive post 

feedback 

effect 

evidence  

Sullman,  

2019 

34 car 

drivers 

80% 

female 

drivers 

NA 
 • control 

• intervention 

• baseline 

• feedback 

34 

weeks 

in-vehicle 

data 

monitors 

(IVDM) 

IVDM and 

email 

real-time 

and 

weekly 

feedback 

in-vehicle 

alerts and 

personalized 

feedback 

speeding, 

harsh 

acceleration, 

harsh 

braking, 

seatbelt use 

ANOVA, F-

tests 

significant reduction 

in the number of 

risky driving 

behaviors/100 km 

and increase in 

seatbelt use 

NA 
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Reference 
Sample 

size 

Driver 

characteristics 
Experimental design 

Data 

collection 

Means of 

feedback 

Timing  

of 

feedback 

Feedback 

content 

Monitored 

risk 

indicators 

Analysis  

method 

Feedback  

effect 

Post feedback 

effect 

  Gender Age 
Experimental 

groups 

Feedback 

phases 

Durati

on 
        

Pozueco  

et al., 2017 

158 car 

drivers 

36% 

female 

drivers 

all 

ages 

• feedback 

  based on the 

  engaged gear 

• feedback 

  based on 

  harsh events 

• baseline 

• feedback 

Scenar

io #1: 

3 

months 

Scenar

io #2: 

11 

months 

OBD-II 

interface 

feedback 

device 
real-time 

types of 

efficiency 

recommendat

ions 

driving speed, 

rpms, 

acceleration 

Kruskal–Wallis 

test  

feedback during 

longer periods of 

time results in 

improvement in the 

use of recommended 

gears of around 

9.22% 

NA 

Bell  

et al., 2017 

315 

professio

nal truck 

drivers 

NA NA 
 • control 

• intervention 

• baseline 

• real-time 

  feedback 

• video 

  watching  with  

  supervisors 

• no feedback 

20 

months 

in-vehicle 

monitoring 

system 

including 

two camera 

views 

small box-

like device 

and one-on-

one 

coaching 

between 

supervisor 

and driver  

real-time 

and post 

trip 

light 

indications 

and view and 

assessment of 

videos 

aggressive 

driving, 

texting on 

hand-held 

phone, hands 

off the wheel, 

driving the 

wrong way, 

belt use 

logistic 

regression and 

generalized 

estimating 

equation (GEE)  

intervention group: 

significantly greater 

reduction in odds of 

risky driving 

behaviors during 

Coaching + IDF 

feedback periods, 

but not in IDF 

feedback periods 

separately 

significant 

smaller 

decline of 

risky driving 

behavior 

Toledo & 

Shiftan,  

2016 

314 car 

drivers 

15% 

female 

drivers 

18-

21 

years 

old 

one group / 

within-subjects 

design 

• baseline 

• feedback to| 

  the lowest 

  safety  

  scores drivers 

• feedback to 

  all drivers 

12 

months 

in-vehicle 

data 

recorder 

verbal 

feedback 

and written 

reports 

post trip 

and bi-

weekly 

personalised 

score and 

comparison 

with peers 

braking, 

lateral 

acceleration, 

speeding 

Poisson 

regression 

model and two-

paired t-test 

analysis  

reduction of of 8% 

in safety incidents 

and 3–10% in fuel 

consumption, with a 

larger reduction 

obtained for large 

vehicles 

NA 

Aidman  

et al., 2015 

15 car 

drivers 

1% 

female 

drivers 

21-

59 

years 

old 

(M = 

41.3, 

SD =

 11.1

) 

• feedback off / 

  feedback on 

• feedback on / 

  feedback off 

• baseline 

• feedback 

4-8 

weeks 

in-vehicle 

Optalert 

Alertness 

Monitoring 

System 

in-vehicle 

dashboard 

display 

with 

auditory 

and visual 

warnings 

real-time 
drowsiness 

score 

levels of 

drowsiness, 

drivers’ own 

ratings of 

lane keeping, 

safe distance 

keeping and 

responsivenes

s 

univariate linear 

mixed models 

reduced peak 

drowsiness (lower 

maximum JDS 

scores), improved 

self-reported 

alertness (reduced 

sleepiness in KSS) 

and drivers’ own 

ratings of headway 

NA 

Rolim  

et al., 2016 

40 light-

duty 

vehicles 

drivers 

45% 

female 

drivers 

M: 

43.4, 

S.D.: 

12.2  

• control 

• intervention 

• baseline 

• feedback 

6 

months 

on-board 

device 

written 

report 

weekly 

feedback 

personalized 

scorecard and 

fuel 

consumption 

information  

speeding, 

engine speed, 

braking and 

acceleration 

Paired t-tests 

decreases between 

5% and 28% in 

average speed, fuel 

cut off, excess rpm 

and excess 

speeding; negative 

feedback higher 

rates compared to 

positive feedback  

NA 
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Reference 
Sample 

size 

Driver 

characteristics 
Experimental design 

Data 

collection 

Means of 

feedback 

Timing  

of 

feedback 

Feedback 

content 

Monitored 

risk 

indicators 

Analysis  

method 

Feedback  

effect 

Post feedback 

effect 
Gender Age 

Experimental 

groups 

Feedback 

phases 

Durati

on 

Ellison  

et al., 2015 

106 car 

drivers 

58% 

female 

drivers 

all 

ages 

one group / 

within-subjects 

design 

• baseline 

• feedback and  

  financial  

  incentives 

10 

weeks 

in-vehicle 

GPS device 

website and 

financial 

incentives 

post trip 

driving 

behavior 

indicators and 

remaining 

financial 

incentive 

speeding, 

acceleration, 

braking  

ANOVA 

analyses and 

multilevel 

regression risk 

model 

intervention was 

successful in 

reducing speeding 

risk scores, and by 

extension, the risks 

of involvement in a 

casualty crash 

NA 

Merrikhpou

r  

et al., 2014 

37 car 

drivers 

46% 

female 

drivers 

all 

ages 

one group / 

within-subjects 

design 

• baseline 

• feedback 

• no feedback 

16 

weeks 

in-vehicle 

device  

in-vehicle 

display and 

website 

real-time 

and 

weekly 

feedback 

speed limit 

compliance, 

safe headway 

maintenance 

and reward 

points  

speeding and 

headway 

Cluster analysis 

and Mixed 

linear models  

both cluster groups 

improved in 

speeding during 

intervention and 

post-intervention 

phase, while only 

cluster B improved 

in headways  

behavior 

indicators 

decreased 

slightly in the 

post-

intervention 

phase, but 

still better 

than the 

baseline 

Husnjak  

et al., 2014 

22 car 

drivers 
ΝΑ ΝΑ NA ΝΑ ΝΑ 

telematics 

device 

dashboard 

online 

portal 

post trip NA 

speeding, 

harsh 

braking, 

accelerating 

and cornering 

events 

summary 

statistics 

positive impact with 

an average reduction 

of parameters 

related to accident 

risk of 38% 

NA 

Birrell  

et al., 2014 

40 car 

drivers 

25% 

female 

drivers 

>21 

years 

old 

one group / 

within-subjects 

design 

• baseline 

• feedback 

50 min 

route 

OBD II 

port / 

adapted 

LDW 

camera / 

smartphone 

in-vehicle 

smart 

driving 

system 

real-time  

in-vehicle 

smart driving 

feedback  

headway, lane 

departure, 

gear speed, 

acceleration 

and braking 

ANOVA 

analyses  

increase in mean 

headway to 2.3 sec 

and reduction in 

time spent traveling 

closer than 1.5 sec 

to the vehicle in 

front 

NA 

Farah  

et al., 2014 

217 car 

drivers 

all 

male 

drivers 

17-

22 

years 

old 

• control group 

• individual  

  feedback 

• family  

  feedback 

• parental 

  training 

one phase / 

between-

subjects design 

12 

months 

in-vehicle 

data 

recorder 

web-based 

application 

and in-

vehicle 

display 

real-time 

and post 

trip 

driving 

aggressivenes

s level and 

summary 

report on trip 

information 

and events 

events rates 

One-way 

ANOVA 

analysis 

significant 

improvement of the 

driving behavior by 

means of events 

rates  

NA 

Newnam  

et al., 2014 

16 work-

related 

car 

drivers 

44% 

female 

drivers 

M= 

45.0 

one group / 

within-subjects 

design 

• baseline 

• feedback 

• no feedback 

5 

weeks 
OBD II 

written 

report 

weekly 

feedback 

personalized 

feedback on 

speeding, 

comparison 

with peers 

and goal 

setting 

speeding 

A Wilcoxon 

Signed Ranks 

Test  

the majority of 

drivers reduced their 

overall number of 

over-speed 

violations from pre 

to post intervention 

suggestive 

but not 

conclusive 

positive post 

feedback 

effect 

evidence 
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Reference 
Sample 

size 

Driver 

characteristics 
Experimental design 

Data 

collection 

Means of 

feedback 

Timing  

of 

feedback 

Feedback 

content 

Monitored 

risk 

indicators 

Analysis  

method 

Feedback  

effect 

Post feedback 

effect 

Gender Age 
Experimental 

groups 

Feedback 

phases 

Durati

on 

Reagan  

et al., 2013 

50 car 

drivers 

48% 

female 

drivers  

M=2

7.8  

• control group 

• driver  

  feedback 

• driver  

  feedback plus  

  incentives  

• baseline 

• feedback 

• no feedback 

4 

weeks 

in-vehicle 

device  

alerting 

system 
real-time 

auditory and 

visual 

advisory 

signals when 

speeding 

speeding 

A series of 3 × 4 

mixed factorial 

ANCOVAs 

incentive system 

resulted in 

significant 

reductions in 

speeding, while the 

feedback system led 

to modest changes  

NA 

Strömberg  

et al., 2013 

54 bus 

drivers 
NA NA 

• access to 

  system & 

  training 

• access to 

  system  

• control group 

• baseline 

• feedback 

6 

weeks 

in-vehicle 

device 

in-vehicle 

system and 

training 

real-time 

and post 

trip 

information 

histograms on 

driving 

behavior 

indicators and 

fuel 

consumption 

speeding, 

idle, rollout, 

harsh 

deceleration 

A standard F-

test for within-

subject design 

and a 

Kolmogorov–

Smirnov two-

sample one-

tailed test 

feedback led to 

reduced frequency 

of harsh 

decelerations, 

speeding and 6.8% 

reduction in fuel 

consumption and  

NA 

Hari  

et al., 2012 

15 light 

commerc

ial 

vehicles 

NA NA 

one group / 

within-subjects 

design 

• baseline 

• feedback 

4 

weeks 

OBD / 

CAN 

device 

instrument 

panel 

display 

real-time 

two sets of 

light emitting 

diodes 

(LEDs) 

showing short 

term and 

long-term 

driver 

performance 

engine speed, 

acceleration 

and inertial 

power 

surrogate 

summary 

statistics and 

cumulative 

probability 

distribution 

reduction in harsh 

accelerations and 

early gear shifting 

into higher gears 

NA 

Takeda  

et al., 2012 

33 car 

drivers 
NA NA 

• control 

• intervention 

• baseline 

• feedback 

two 

1.5 h 

driving 

session

s 

continuous 

data 

recorders / 

front-

viewed 

camera 

web 

application 
post trip 

illustration of 

hazardous 

situations on 

an actual 

driving map 

and summary 

statistics 

speeding, 

harsh 

deceleration, 

harsh 

acceleration, 

risky steering, 

following 

distance, 

ignoring a 

traffic light 

summary 

statistics 

the number of 

detected hazardous 

scenes decreased by 

approximately 50% 

for the non-expert 

drivers  

positive effect 

but not 

reliable 

results due to 

very small 

sample 

Hickman & 

Hanowski,  

2011 

100 truck 

drivers  

all 

male 

drivers 

M=4

7.0  

• control 

• intervention 

• baseline 

• feedback 

17 

weeks 

On-board 

monitoring 

devices 

(two video 

cameras 

and three 

acceleromet

ers) 

in-vehicle 

system and 

training 

real-time 

and post 

trip 

feedback light 

on the OBSM 

device when 

an event was 

detected and 

interactions 

with fleet 

safety 

managers 

safety–critical 

events  

paired sample t-

tests 

significant reduction 

in the mean rate of 

safety-related 

events/10,000 miles 

traveled from the 

Baseline to 

Intervention phases; 

group A: 39.9%, 

group B: 52.2%  

NA 
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Reference 
Sample 

size 

Driver 

characteristics 
Experimental design 

Data 

collection 

Means of 

feedback 

Timing  

of 

feedback 

Feedback 

content 

Monitored 

risk 

indicators 

Analysis  

method 

Feedback  

effect 

Post feedback 

effect 

Gender Age 
Experimental 

groups 

Feedback 

phases 

Durati

on 

Bolderdijk 

et al., 2011 

141 car 

drivers 

40% 

female 

drivers 

M=2

4.4, 

SD= 

2.2 

• control 

• intervention 

• baseline 

• feedback and  

  reward 

• feedback and  

  reward 

• no feedback 

8 

weeks 

in-vehicle 

GPS device 

personalize

d website 
post trip 

speed 

violations, 

mileage, 

nighttime 

driving, and 

financial 

inventives in 

a form of 

discount 

speeding 

mixed design 

through Huynh–

Feldt tests 

PAYD is estimated 

to have reduced 

volitional speeding 

by 14% 

the incentive 

group 

increased 

speeding 

when the 

financial 

incentive was 

removed 

Farmer et 

al., 2010 

84 car 

drivers 

55% 

female 

drivers 

16-

17 

years 

old 

• alert and web 

  feedback 

• alert then web 

  feedback 

• web only 

• control  

• baseline 

• feedback 

• no feedback 

24 

weeks 

in-vehicle 

device 

in-vehicle 

alert and 

website  

real-time 

and post 

trip 

audible alerts 

immediately 

following 

each event / 

website: 

mapping of 

the location 

and nature of 

each event 

speeding, 

harsh 

braking, 

harsh 

acceleration, 

seat belt 

nonuse  

Poisson 

regressions  

improvements in 

seat belt use when 

parents were 

informed, and even 

greater when in-

vehicle alerts were 

activated; reductions 

in speeding only in-

vehicle alerts were 

activated 

performance 

decreased 

during the 

post-feedback 

phase but still 

better than 

baseline; but 

no 

statistically 

significant 

changes 

Toledo et 

al., 2008 

191 car 

drivers 

2% 

female 

drivers 

M=4

1.0 

one group / 

within-subjects 

design 

• baseline 

• feedback 

9 

months 

in-vehicle 

data 

recorder 

website post trip 

summary 

reports on 

driving 

behavior 

speeding, 

lane 

changing, 

harsh 

acceleration, 

harsh braking 

and harsh 

turning  

ANOVA 

analyses 

significant reduction 

of 38% in crash 

rates, but not in fault 

crash rates  

Positive 

effect but not 

reliable 

results due to 

no sufficient 

data 

McGehee 

et al., 2007 

26 car 

drivers 

54% 

female 

drivers 

16-

17 

years 

old 

one group / 

within-subjects 

design 

• baseline 

• feedback 

• no feedback 

12 

months 

event-

triggered 

video 

recording 

system 

two LED 

lights on 

the face of 

the recorder 

and parent/ 

teen 

mentoring 

sessions 

real-time 

and post 

trip 

real-time alert 

when 

threshold 

value was 

exceeded / 

weekly report 

card on 

unsafe 

behaviors and 

seatbelt use 

speeding, 

harsh 

acceleration, 

harsh 

braking, 

following 

distance, 

signs, belt 

use, near 

crash and 

crash events 

t-tests  

significant decrease 

in events for the 

more at-risk teen 

drivers 

high-

frequency 

drivers 

maintained a 

low number 

of safety-

relevant 

events 

Mazureck 

& Hattem, 

2006  

62 car 

drivers 

2% 

female 

drivers 

M=4

7.0  

one group / 

within-subjects 

design 

• baseline 

• feedback 

24 

weeks 

in-car 

technology 

system 

in-vehicle 

dashboard 

and website 

real-time 

driver points 

based on 

driving 

behavior 

speeding and 

headway 

summary 

statistics 

significant increase 

of the percentage of 

kilometers traveled 

within the speed 

limit (26%) driven a 

safe distance from 

the car in front 

(33%) 

most drivers 

returned to 

their old 

habits after 

the feedback 

phases 
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Reference 
Sample 

size 

Driver 

characteristics 
Experimental design 

Data 

collection 

Means of 

feedback 

Timing  

of 

feedback 

Feedback 

content 

Monitored 

risk 

indicators 

Analysis  

method 

Feedback  

effect 

Post feedback 

effect 

Gender Age 
Experimental 

groups 

Feedback 

phases 

Durati

on 

Toledo & 

Lotan, 2006  

33 car 

drivers 
NA NA 

one group / 

within-subjects 

design 

• baseline 

• feedback 

5-6 

months 

in-vehicle 

data 

recorder 

personal 

web pages 
post trip 

records on 

personalized 

behavior and 

comparison 

with peers  

speeding, 

lane 

changing, 

harsh 

acceleration, 

harsh braking 

and harsh 

turning  

summary 

statistics and 

linear 

regression 

the average driving 

risk indices reduced 

by 38% in the first 

month that feedback 

was provided 

by the 5th 

month, 

driving risk 

indices were 

back to the 

initial values 

and even 

slightly 

higher 

Wouters & 

Bos, 2000  

840 

different 

types of 

vehicles 

NA NA 
• control 

• intervention 

• baseline 

• feedback 

24 

months 

accident 

data 

recorder / 

OBD 

provided by 

the fleet 

owners 

post trip NA accident rates 
summary 

statistics 

average estimated 

accident reduction 

of some 20% 

NA 
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2.3.1.1 Smartphone application 

 

Most of the reviewed recent studies utilized smartphone applications to deliver feedback to drivers 

(Kontaxi et al., 2021b; Meuleners et al., 2023; Peer et al., 2020; Stevenson et al., 2021; 

Ziakopoulos et al., 2023). Smartphones are equipped with a wide range of sensors like 

accelerometers, gyroscopes, GNSS receivers, and cameras, and thus provide an effective way to 

collect driving data for analysis and feedback. Once driving is detected, sensors data are collected, 

processed using advanced machine learning and big data techniques, and meaningful driving 

indicators are generated and subsequently analyzed. After this procedure, smartphone applications 

typically provide personalized scorecards or driving performance information after trips regarding 

safety indicators such as speeding, harsh events and mobile phone usage while driving.  

 

The design of these applications may vary; for example, (Meuleners et al., 2023) and (Stevenson 

et al., 2021) used an existing telematics application with a 0-5 scoring system, featuring a color-

coded scale, namely green code for safe (no-risk driving), amber for some at-risk driving and red 

for at-risk driving. From a different perspective, (Kontaxi et al., 2021b) implemented a customized 

app with a score range of 0-100, alongside a 5-star system. 

 

One of the key advantages of using smartphone-based feedback in driving behavior experiments 

is the accessibility and convenience it offers. This method is low-cost once the back-end is 

established, and it enables the easier engagement of participants in the study. While smartphone 

applications do have limitations – such as noisy camera-based indices or high battery consumption 

– ongoing advancements in technology (e.g. real-time edge computations) can significantly 

enhance the use of smartphone-based naturalistic driving studies in research (Grimberg et al., 

2020). Context-wise, smartphone applications used in the examined studies included a variety of 

feedback features; from personalized scorecards and map-based overviews to gamification and 

comparison with peers. In particular, (Ziakopoulos et al., 2023) found that the variety of feedback 

context across different experimental phases significantly influenced mobile phone use, with each 

different feature of feedback having a distinct impact on driver behavior. The present finding 

suggests that further investigation into the impact of different feedback features is necessary. 

 

2.3.1.2 In-vehicle devices 

 

Feedback delivered through in-vehicle systems was another widely used method. These devices 

have become an integral part of modern driver behavior monitoring systems, also offering real-

time and post-trip feedback aimed at enhancing road safety. In-vehicle feedback systems typically 

use in-vehicle data monitors/recorders or OBD (I or II) for driver data collection (Amarasinghe et 

al., 2016; Pérez et al., 2010). Equipped with sensors and advanced communication technologies, 

they track various aspects of driving behavior, such as speed, braking, acceleration, and seat belt 

use. Over the years, in-vehicle systems have evolved from simple alert mechanisms to more 

sophisticated tools that offer detailed visual, auditory, and sometimes even haptic feedback. The 

devices vary in the manners in which they provide drivers with feedback in terms of both timing 

and content. For example, (Chen & Donmez, 2021) used an in-vehicle visual feedback device for 

driver speed compliance, while other studies employed auditory feedback; either through verbal 

prompts via the in-vehicle device (G. Toledo & Shiftan, 2016) or alerts when drivers engaged in 

risky behaviors such as speeding, harsh events, seat belt use, etc. (Sullman, 2020). Some in-vehicle 

devices combined auditory and visual signals to alert drivers to unsafe behaviors (Aidman et al., 

2015; Reagan et al., 2013).  
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It is noteworthy that in-vehicle feedback devices primarily focus on delivering real-time feedback, 

which is one of the main advantages of in-vehicle data monitors, particularly when compared to 

smartphone applications (Grimberg et al., 2020). However, in many studies, feedback was also 

provided post-trip in the form of written reports or websites, offering summary reports on driving 

behavior indicators in various formats, i.e. histograms (Strömberg & Karlsson, 2013), via mapping 

of the location and nature of each event (Farmer et al., 2010), personalized score/reward points 

(Farah et al., 2014; Mazureck & Van Hattem, 2006; Merrikhpour et al., 2014) or even comparison 

with peers (Toledo & Shiftan, 2016). 

 

2.3.1.3 Websites and platforms 

 

Other studies have utilized a variety of platforms to deliver personalized feedback to drivers, 

including websites (Bolderdijk et al., 2011; Ellison et al., 2015; Takeda et al., 2012; Toledo et al., 

2008; Toledo & Lotan, 2006), a dashboard online portal (Husnjak et al., 2015), and written reports 

(Newnam et al., 2014; Rolim et al., 2016). The website used in (Ellison et al., 2015) and the 

dashboard online portal in (Husnjak et al., 2015) were similar in terms of logging, feedback 

display, and providing participants with information about their driving behavior, as well as 

tracking their remaining incentives, as both studies also examined the effects of monetary 

incentives on driving behavior alongside driver feedback. An interesting aspect of these websites 

was that researchers could use the number of logins as a proxy for participants' exposure to the 

provided information (such as frequency of risky behaviors and remaining incentives), allowing 

for safer and more accurate analysis results. 

 

In some cases, feedback was provided in graphical form, directly from researchers, allowing 

drivers to visually assess their driving behavior (Molloy et al., 2023). Additionally, certain 

feedback systems offered recommendations or instructions on how to improve driving behavior 

(Camden et al., 2019). More precisely, in (Camden et al., 2019), apart from providing feedback to 

the participant, a Geotab device wirelessly transmitted data on risky driving behaviors to the 

Predictive Coach program, which automatically assigned educational courses targeting specific 

behaviors once a driver exceeded a predefined threshold. For example, if a driver exceeded the 

speed limit three times in a single day, they were assigned an online course designed to reduce 

speeding, with alerts sent to both the driver and their manager to ensure course completion within 

seven days. 

 

2.3.1.4 Telematics devices 

 

Furthermore, telematics devices have also been used for delivering driver feedback and examining 

its impact on driver safety. Both (Soleymanian et al., 2019) and (Ghamari et al., 2022) leveraged 

telematics for looking deeper to understanding the role of feedback through score ranking and 

Usage Based Insurance (UBI) score, aiming to understand how feedback influences driver 

behavior. As noted in the introduction, driver telematics have been extensively employed over the 

past two decades, yet only a small number of studies have quantitatively examined the impact of 

feedback on driver safety through telematics systems (Boylan et al., 2024). Data protection issues 

are a frequent reason why insurance companies are reluctant to give researchers access to large 

datasets collected from their customers (McDonnell et al., 2021). The lack of access makes it 

difficult to examine feedback mechanisms in-depth or perform more comprehensive patterns 

analyses on the broader demand upon driver safety. Consequently, many telematics studies require 
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collaboration with the insurance industry or are limited to small custom-built systems and findings 

can be more difficult to generalize across larger populations. 

 

2.3.2 Experimental framework 

 

The importance of the experimental framework of each feedback-oriented study has been 

emphasized in scientific research, as it serves the foundation for producing valid, reliable and 

interpretable results (Cash et al., 2016; Leik, 1997). In the context of naturalistic studies, a well-

constructed experimental framework allows researchers to isolate the specific effects of various 

feedback mechanisms on driving behavior (van Schagen & Sagberg, 2012). In the present review, 

the experimental framework of considered studies is examined across the following key aspects: 

sample characteristics (size, gender balance and age), experimental design, risk indicators, 

feedback phases (i.e., number and content of phases), and the experimental duration. 

 

2.3.2.1 Sample characteristics 

 

The sample size is crucial in an experiment for ensuring reliability and generalization of the results. 

The reviewed studies varied widely in terms of the sample size, including samples from small 

groups of 15 drivers (Aidman et al., 2015) tο large-scale studies with over 40,000 drivers 

(Soleymanian et al., 2019). This variation seems logical for two main reasons: first, the recruitment 

in such experiments can be challenging and second, because each study has its own objectives, 

research questions and often target groups. Nevertheless, larger sample sizes, such as (Pozueco et 

al., 2017) with 158 drivers, offer a higher statistical power and potentially more reliable 

conclusions. 

 

As for driver characteristics, the reviewed studies demonstrate a wide range of gender 

representation and age groups. More precisely, the gender composition varies, with some studies 

having a balanced representation of both males and females, such as (Ziakopoulos et al., 2023) 

with 55% of the participants being female, and (Ellison et al., 2015) with 58% female participants, 

while others focus entirely on male drivers (Farah et al., 2014; Ghamari et al., 2022). This 

variability could affect result generalizability, as male and female drivers may respond differently 

to feedback interventions. It is worth noting that the representation of female drivers seems to be 

inconsistent among the studies, ranging from as low as 1% in (Aidman et al., 2015) to 67% in 

(Stevenson et al., 2021). 

 

In terms of age, many studies are related to a specific age group, mostly young drivers who remain 

a group that is globally linked with a higher probability of crash risk (A. F. Williams, 2003). For 

example, (Farmer et al., 2010; Meuleners et al., 2023) investigated the impact of feedback on 

young drivers aged 13-22, while other studies, like (Hickman & Hanowski, 2011) examined older 

drivers (mean age of 47-year-old). The variety in both gender and age makes it possible to draw 

conclusions regarding the way different demographics respond to feedback, but further analyses 

with more inclusion of sample characteristics would improve understanding of how generalizable 

these findings are across a diverse population of drivers. 

 

2.3.2.2 Experimental design 

 

Two primary experimental designs emerge from the reviewed studies: within-subjects design and 

between-subjects design. Within-subject design is frequently used in studies where all participants 
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experience multiple phases of feedback and act as their own control group (Birrell & Fowkes, 

2014; Hari et al., 2012; Kontaxi et al., 2021b; Merrikhpour et al., 2014; Newnam et al., 2014; 

Toledo & Shiftan, 2016; Ziakopoulos et al., 2023). The key advantage of this design is the reduced 

variability and increased statistical power due to each subject acting as their own control. In other 

words, since each driver is exposed to both baseline (pre-feedback) and feedback phases, 

researchers can directly detect the effects of the feedback mechanisms on driving behavior, 

reducing the variability related to individual differences. However, these studies are not without 

concerns that must be addressed. For instance, carryover effects and fatigue effects pose significant 

risks. In longer studies, behavior in one phase might influence behavior in subsequent phases 

(carryover), while fatigue can cause participants to become tired over time, impacting their 

performance in later phases (Nichols & Maner, 2008). 

 

Certain studies (Farah et al., 2014; Reagan et al., 2013; Rolim et al., 2016; Stevenson et al., 2021) 

adopted the between-subjects design, where different groups of drivers received different types of 

feedback or no feedback at all (control group) through one experimental phase, allowing 

researchers to examine and analyze driving behavior across different conditions of feedback 

influence. The main advantage of this design is the reduced risk of carryover effects, as each 

participant is exposed to only one condition, allowing for clearer comparisons across feedback 

conditions without the cofounding influence of multiple phases. However, this design comes with 

some concerns as well, the most critical being the fact that the design requires a larger sample size 

to ensure that the differences across the groups are not due to chance, as variability across 

individuals can musk true effects (Charness et al., 2012). 

 

However, most of the studies in the reviewed literature utilized a combination of both within-

subjects and between-subjects designs to maximize the strengths of each approach (Bell et al., 

2017; Bolderdijk et al., 2011; Chen & Donmez, 2021; Farmer et al., 2010; Ghamari et al., 2022; 

Hickman & Hanowski, 2011; Molloy et al., 2023; Pozueco et al., 2017; Strömberg & Karlsson, 

2013). The combination can range from simple control/intervention group or baseline/feedback 

phase distinctions to more complex designs. For example, Chen & Donmez (2021) compare three 

feedback types: (i) real-time only, (ii) real-time with financial incentives, and (iii) real-time 

combined with post-drive feedback, across three phases: (i) baseline, (ii) feedback, and (iii) no 

feedback, enabling the evaluation of the effects of various feedback mechanisms on driver 

behavior. Such a design allows researchers to control for individual differences (as in within-

subjects designs) while at the same time avoiding risks like carryover effects and fatigue through 

the use of between-subjects design.  

 

In addition, this mixed type of approach allows for more sophisticated analyses, enabling 

researchers to capture both group-level differences and individual changes over time, providing a 

more comprehensive understanding of feedback mechanisms. There are additional nuances as 

well. Indicatively, (Molloy et al., 2023) took a quite different approach, aiming to examine the 

effect of feedback frequency. The experimental design utilized a 5 × 6 mixed repeated measures 

structure. The feedback variable was the only between-groups factor, consisting of five levels: (i) 

a control group with no feedback, (ii) feedback provided once, (iii) feedback provided twice, (iv) 

feedback provided three times, (v) feedback provided four times. Results revealed an interesting 

finding: that the most effective feedback frequency was when it was provided once or twice. 
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2.3.2.3 Monitored risk indicators 

 

According to the reviewed studies, the most common monitored indicators include speeding, harsh 

braking, harsh acceleration, and use of mobile phone while driving. These driving parameters are 

frequently selected in road safety studies, as they constitute some of the most critical risk factors 

contributing to road crashes that can be measured in real-time and serve as basis for feedback 

provision. For example, speeding (both considering the time spent driving above speed limits and 

the degree to which those limits were exceeded) has been highly correlated with not only the 

frequency of road crashes, but their severity as well (Aarts & Van Schagen, 2006). Harsh events 

are also linked with aggressive and stressful behavior (Stephens & Groeger, 2009), while they have 

also been used as surrogate safety measures in historical crash investigations (Nikolaou et al., 

2023). The literature has also pinpointed mobile phone use as a major cause of distracted driving, 

which can lead to a high likelihood of involvement in road crashes (Caird et al., 2008). Apart from 

being critical risk factors, these behaviors can be also effectively monitored via naturalistic driving 

experiments and potentially improved through driver feedback. 

 

A few studies also track more specific behaviors, such as seatbelt use (Farmer et al., 2010; Sullman, 

2020) and drowsiness levels (Aidman et al., 2015). This diversity in monitored indicators ensures 

that a broad spectrum of risky driving behaviors has the potential to be addressed, from aggressive 

driving to minor traffic violations. However, core behaviors like speeding and harsh events (e.g., 

acceleration, braking) remain a priority across most studies due to their strong correlation with 

crash risks. 

 

2.3.2.4 Feedback phases 

 

As shown in Table 1, feedback is often administered across multiple phases, which can range from 

baseline only to more complex designs with personalized scorecards, competitions or financial 

incentives. As per the aforementioned, between-subjects design studies used only one phase and 

examined feedback between different groups of participants. Apart from those studies, other 

studies utilized two phases: baseline and a single phase of feedback (Farmer et al., 2010; Rolim et 

al., 2016). These studies typically focused on immediate behavior changes post-feedback without 

considering how prolonged feedback or multiple interventions affect long-term behavior.  

 

In that context, (Meuleners et al., 2023) created two phases in their experiment: (a) a three-week 

baseline period with no intervention and (b) an eight-week intervention period for the intervention 

group, while the control group did not receive any feedback on their driving behavior throughout 

the study. However, the majority of reviewed studies used multiple feedback phases from three to 

six phases. For instance, (Ziakopoulos et al., 2023) included phases such as scorecards, maps and 

highlights, peer comparisons, and competitions to measure cumulative effects on driving behavior. 

These phases allow for a more nuanced understanding of how different types of feedback affect 

drivers' behaviors over time and under various contexts.  

 

Furthermore, it should be noted that about a third of the total studies introduced a final phase with 

no feedback, returning drivers to the baseline phase, as they started. The inclusion of this phase 

makes it possible to examine the post-feedback effect on drivers, i.e. whether there is a sustained 

positive impact (if any) on their behavior after receiving feedback for one or more phases in the 

experiment. Did the participants maintain their shift to safer behavior with reduced risks, or did 

drivers regress back to risky behaviors after an initial improvement phase? Studies with no 
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feedback phase at the end of the experiment are crucial for determining the long-lasting effects of 

feedback mechanisms and whether they need to be periodically refreshed to maintain their 

effectiveness. 

 

2.3.2.5 Experimental duration  

 

Regarding the duration of each experiment, it is observed that the length of the experiment varies 

widely across studies, ranging from just a few weeks to several months or even years. For instance, 

(Aidman et al., 2015; Hari et al., 2012; Hickman & Hanowski, 2011) only provided feedback over 

a few weeks. It is important to underline that all these studies examined real-time feedback and 

did not examine post-feedback effects. This means that feedback duration appears to be correlated 

closely with the structure of the experiment design, and thus influenced by researcher limitations. 

Short-term studies are ideal for examining immediate reactions to feedback. A significant number 

of the studies, such as (Toledo & Lotan, 2006) and (Rolim et al., 2016), used feedback periods that 

spanned several months. These studies are better suited to understanding behavior changes that 

evolve over a longer time span, as they provide insights into how drivers adapt to feedback beyond 

the initial phase. On the contrary, studies like (Ziakopoulos et al., 2023) (21 months) and (Wouters 

& Bos, 2000) (24 months) showed the most extensive feedback periods, being able to determine 

the long-lasting effects of feedback mechanisms.  

 

Nevertheless, the length of a naturalistic driving experiment surely depends on a variety of factors, 

such as study objectives, intervention style and evidently practical constraints that are not in the 

researchers’ direct control. On that note, an interesting finding from the reviewed studies is that 

the baseline period is usually shorter than the feedback phase(s), giving the participants enough 

time to adjust their behavior and observe any differences between the phases.  

 

2.3.3 Modelling approaches  

 

The reviewed studies utilized various modelling approaches to assess the impact of driver 

feedback, as shown analytically in Table 1. In summary, it can be observed that most analytic 

methods focus on assessing the correlations between driving-related factors before and after the 

feedback is provided, in order to draw some conclusions on the effect of driver feedback, following 

methods established in traffic psychology. The employed methods include both simpler 

approaches, such as correlation tests and more complex statistical methods that delve deeper into 

the driver feedback mechanisms.  

 

2.3.3.1 Choice of analysis method  

 

It is important to note that the choice of analysis method used in each study depends on the 

experimental design (within-subjects design vs. between-subjects design). For example, within-

subjects design studies (Birrell & Fowkes, 2014; Hari et al., 2012; Kontaxi et al., 2021b; 

Merrikhpour et al., 2014; Newnam et al., 2014; Toledo & Shiftan, 2016; Ziakopoulos et al., 2023) 

frequently use repeated measures and mixed-effects models to account for the multiple 

measurements taken from the same subjects, employing techniques such as ANOVA, mixed 

ANOVA, Generalized Estimating Equations (GEE), Wilcoxon signed-rank tests, and paired t-tests.  

 

In contrast, between-subjects design studies (Farah et al., 2014; Reagan et al., 2013; Rolim et al., 

2016; Stevenson et al., 2021) often use methods that compare means or distributions between two 
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independent groups, such as T-tests, Mann-Whitney U-Tests, ANOVA, ANCOVA, logistic 

regression, and Poisson regression (for binary and count data, respectively).  

 

Certainly, most of the studies (Bell et al., 2017; Bolderdijk et al., 2011; Chen & Donmez, 2021; 

Farmer et al., 2010; Ghamari et al., 2022; Hickman & Hanowski, 2011; Molloy et al., 2023; 

Pozueco et al., 2017; Strömberg & Karlsson, 2013) utilize a mix of both within-subjects and 

between-subjects designs depending on the specific setup of feedback phases using linear and 

logistic regression models, mixed-effects models, and cluster analysis. 

 

2.3.3.2 Basic and exploratory analysis methods 

 

Having established the experimental designs, the methodologies used in the reviewed studies can 

be explored. In terms of analysis, it is evident that several studies focus solely on basic correlation 

tests, displaying the critical summary statistics between the feedback and non-feedback phase or 

groups to assess the impact of driver feedback. Although these methods are relatively simple, 

several earlier studies relied on descriptive statistics for a clear understanding of the effects of 

feedback on driver behavioral indicators or safety (Hari et al., 2012; Husnjak et al., 2015; 

Mazureck & Van Hattem, 2006; McGehee et al., 2007; Rolim et al., 2016; Takeda et al., 2012; 

Wouters & Bos, 2000). For instance, (Mazureck & Van Hattem, 2006) examined speeding and 

headway during a baseline and a feedback phase comparing the two phases to observe any change 

due to driver feedback, concluding to quantified portions of the percentage of kilometers travelled 

within the speed limit and the number of kilometers driven a safe distance from the car in front. 

 

In contrast, in other studies, these methods are often used as an initial data exploration phase 

preceding the creation of more sophisticated statistical models (Kontaxi et al., 2021b; Toledo & 

Lotan, 2006). Simple statistical summaries between feedback and non-feedback phases or groups 

can highlight trends, to be later examined more rigorously using advanced statistical techniques. 

 

2.3.3.3 ANOVA and test hypothesis 

 

The Analysis of Variance (ANOVA) and hypothesis testing are well-known techniques involving 

the comparison of means and variances between groups to test hypotheses. Within studies 

concerning driver feedback, ANOVA tests are used to compare multiple groups (Ellison et al., 

2015; Molloy et al., 2023; Sullman, 2020; Toledo et al., 2008), while t-tests compare two groups 

(Hickman & Hanowski, 2011; Kontaxi et al., 2021b; McGehee et al., 2007; Rolim et al., 2016; 

Toledo & Shiftan, 2016). Advancing one step further, Post-hoc tests like Tukey HSD and Huynh–

Feldt tests are performed following ANOVA to adjust for multiple comparisons and sphericity, 

respectively (Bolderdijk et al., 2011; Molloy et al., 2023). In that context, (Reagan et al., 2013) 

implemented a series of 3 × 4 mixed factorial ANCOVA, a type of ANOVA with controlling linear 

effect of covariate variables by using regression analysis in the aim of examining the different 

types of feedback provided. The covariates were used to control for driving exposure, included 

measurements of miles driven over the 4-week trials, considering the respective speed limit zones 

in the study analysis. 

 

On the other hand, non-parametric tests are used when data does not meet the assumptions of 

parametric tests, such as normal distribution. Tests like the Mann-Whitney U test were used by 

(Ghamari et al., 2022) to compare feedback phases in terms of score ranking, while Wilcoxon 

signed-rank were employed to examine the differences of speeding (Newnam et al., 2014) during 
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the different experimental phases, or other monitored risk indicators, e.g. harsh braking and 

cornering (Camden et al., 2019). In addition, (Pozueco et al., 2017) applied the Kruskal-Wallis test 

to compare performance between sub-groups in terms of gender and age, providing interesting 

findings regarding the effect of demographics on driver feedback. (Strömberg & Karlsson, 2013) 

used a Kolmogorov– Smirnov two-sample one-tailed test to examine comparisons of the effects 

of feedback in terms of idle time (%), over speed (%), harsh decelerations/100 km, time using bus 

momentum to roll out (%) and fuel consumption (liter/100 km). In this case, the researchers used 

the non-parametric test, because of the small number of data points. 

 

2.3.3.4 Regression and Machine Learning approaches 

 

Regression analysis methods are often used to understand relationships between variables, to 

accommodate different data structures, and to handle repeated measures or correlated data. Many 

of the reviewed studies have implemented regression models varying of course in the form of 

regression depending on the data distribution or even the response variable and the research 

questions. From simple regression models, such as ordinary least squares (OLS) in order to 

determine the factors affecting the score differences among the 4 different experiment phases (Peer 

et al., 2020); linear regression to calculate the individual risk index (Toledo & Lotan, 2006), to 

more complex regressions like linear mixed effects models to examine the effect of feedback as 

well as demographic characteristics on driving indicators (Chen & Donmez, 2021; Merrikhpour et 

al., 2014).  

 

Within a regression framework, (Soleymanian et al., 2019) deployed fixed-effects regression 

analysis to explore the number of daily hard brakes and capture the effect of negative signal on 

driving performance, while (Aidman et al., 2015) developed univariate linear mixed models to 

investigate drowsiness and performance metrics across the two different experimental conditions 

and identify whether there were any improvements during the feedback phase. Additionally, 

Poisson regression, often used for count data, has been selected as an appropriate analysis method 

when the dependent variable has been treated as rare unsafe driving behaviors or incidents in terms 

of rates, like in (Farmer et al., 2010). While (Kontaxi et al., 2021b) deployed Generalized Linear 

Mixed-Effects Models to model the frequencies of harsh events during baseline and feedback 

phase and examine the differences. It is critical to note that regression methods often face caveats 

such as endogeneity, multicollinearity and the assumption of normalcy, which researchers must 

anticipate and mitigate, to the extent that is possible within their study designs. 

 

Generalized Estimating Equations (GEE) are typically used when analyzing repeated measures 

with non-normal response variables. Linking that asset with the determined studies, studies that 

examined risk indicators in terms of driver performance scores/levels employed GEE models (Bell 

et al., 2017; Ghamari et al., 2022; Meuleners et al., 2023; Stevenson et al., 2021). For example, 

(Bell et al., 2017) used GEE to identify the differences between groups accounting for the same 

vehicles over time, while (Stevenson et al., 2021) used GEE models to account for repeated 

measures at the participant level. In the same context, (Meuleners et al., 2023) employed GEE to 

control for driving exposure. After conducting the GEE models, many studies also used binary 

logistic models to investigate the overall effect/score of feedback in a yes/no form of context.  

 

Finally, a recent study by (Ziakopoulos et al., 2023) applied supervised Machine Learning 

methods, namely XGBoost algorithms, to create classifiers for predicting drivers´ decisions related 

to the use of mobile phone while driving as function of naturalistic driving parameters, 
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questionnaire features and the variable of feedback phase. Additionally, SHAP values were 

computed to highlight for the most relevant features, increasing that way the model explainability.  

 

2.3.4 Impacts of driver feedback on driving behavior and road safety 

 

The reviewed studies reveal that feedback has a generally positive impact on driving behavior and 

safety, particularly when targeting specific risky driver behaviors like speeding, harsh events, and 

mobile phone use or when calculating driver crash risk based on the monitored driving behavior 

parameters.  

 

2.3.4.1 Impact on speeding behavior  

 

Speeding was the most monitored and analyzed risk indicator in the reviewed studies. Feedback 

resulted in reductions in speeding behavior, specifically in terms of the overall duration of time 

spent speeding during the trip, with values ranging from 5% as much as 74%. For example, 

(Mazureck & Van Hattem, 2006) reported a 26% reduction, (Kontaxi et al., 2021b) found a 40% 

decrease in the feedback phase where participants received a scorecard regarding their behavior, 

and (Camden et al., 2019) observed a remarkable 74% reduction in speeding instances. Some 

studies, such as (Ellison et al., 2015), did not quantify the reduction in percentages but did ascertain 

via statistical modeling that feedback reduced the speeding risk scores that participants received 

via personalized websites.  

 

An interesting finding from the reviewed studies is that feedback combined with financial 

incentives further enhances these positive effects. For example, (Chen & Donmez, 2021) reported 

that real-time feedback with financial incentives significantly improved speed limit compliance, 

particularly in the highway where typically higher speeds are observed, and consequently higher 

speeds above the speed limit. Similarly, (Bolderdijk et al., 2011) demonstrated that when 

participants received financial incentives in the form of discounts, along with post-trip feedback 

on their behavior, speeding was reduced by 14%. Moreover, (Reagan et al., 2013) found that 

incentive system resulted in significant reductions in speeding in comparison with the feedback 

system alone, which led to more modest changes. 

 

2.3.4.2 Impact on (harsh) acceleration and braking behavior 

 

Harsh braking and harsh acceleration are also frequently monitored behaviors, especially given the 

recent rise of surrogate safety measures as a prominent venue in road safety research. Within the 

studies examined, the impact of feedback on harsh braking ranged from a 10% reduction to as 

much as a 52% reduction. Camden et al. (2019) reported a 52.17% reduction in harsh braking and 

a 51.35% reduction in harsh cornering. (Kontaxi et al., 2021b) and (Soleymanian et al., 2019) also 

reported reductions in average harsh braking frequency, ranging between 10% and 52%. Similarly, 

(Strömberg & Karlsson, 2013) also investigated whether real-time and post trip feedback would 

have a positive impact on eco and safe driving behavior, resulting in reduced frequency of harsh 

decelerations. 

 

Some studies, such as (Stevenson et al., 2021), reported improvements in overall risky driving 

behaviors, but no reductions were shown to reported measures such as harsh acceleration or 

braking. These mixed overall results of the studies highlight that feedback positively induced 



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism 

 

71 

 

braking and acceleration, but factors including the type of feedback provided to participants, means 

of delivery and timing might also influence the effectiveness of such interventions. 

 

Fewer studies have focused directly on harsh accelerations as an individual risk factor and mostly 

these were nested within analyses focusing on the overall crash risk. Both (Hari et al., 2012) and 

(Kontaxi et al., 2021b) assessed the direct impact of feedback on harsh accelerations, reporting 

positive results, with the latter study finding a 12% reduction during the feedback phase compared 

to the baseline. Other studies however found no statistically significant improvements in harsh 

acceleration when compared to other risky behaviors such as speeding and harsh braking (Camden 

et al., 2019; Farmer et al., 2010; Pozueco et al., 2017). A plausible explanation of this discrepancy 

is that drivers may consider harsh acceleration to be weakly linked to risky driving behavior, 

meaning that their response to feedback on this particular behavior may lack a connection to safe 

driving and the related motivation.  

 

2.3.4.3 Impact on distracted driving behavior 

 

Mobile phone use while driving was another monitored risk indicator impacted by driver feedback. 

Although it was not examined as much as speeding and braking, both (Ziakopoulos et al., 2023) 

and (Camden et al., 2019) found a notable reduction in mobile phone use following feedback 

interventions, highlighting the importance of well-structured feedback systems in addressing 

distracted driving behaviors, which are closely linked to crash risk. However, some studies, such 

as (Stevenson et al., 2021), reported improvements in composite measures of risky driving but did 

not find significant effects on distracted driving or mobile phone use specifically. 

 

Nevertheless, mobile phone use while driving has traditionally been studied through driving 

simulators, where participants were instructed to text, talk, or browse on their phones while 

receiving real-time feedback (Backer-Grøndahl & Sagberg, 2011; Papantoniou et al., 2015). Again, 

this allowed for investigating the effects of distractions on driving behavior in safe but controlled 

environments, as well as the effects of immediate feedback on distracted driving. However, a series 

of recent advances in technology and use of Internet-of-Things (IoT) have opened new 

opportunities, i.e. sensors that can detect mobile phone usage while driving nearly continuously 

and without direct intervention (Camden et al., 2019; Stevenson et al., 2021). These developments 

allow researchers to measure distracted driving in the real world and identify how feedback affects 

mobile phone use behind the wheel.  

 

2.3.4.4  Impact on Crash Risk/ Safety incidents 

 

Several studies focused on the impact of feedback on crash risk in the form of a calculated rate of 

safety incidents. (Hickman & Hanowski, 2011; Husnjak et al., 2015; Takeda et al., 2011; Toledo 

& Shiftan, 2016), found reductions in safety incidents ranging from 8% to 52% following feedback 

interventions. Additionally, an earlier study by (Wouters & Bos, 2000) conducted during a two-

year span reported an estimated 20% reduction in accident rates after professional drivers received 

feedback on their driving behavior.  

 

In the same context, (Ghamari et al., 2022), recruited 1,289 bus drivers and 104 taxi drivers to 

examine the effect of peer comparison and performance feedback on their behavior. The primary 

outcome of the research was a driver score changing pattern throughout the study period, 

calculated by a neuro-fuzzy scoring system composed of four factors: speed violation, harsh 
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acceleration, harsh braking, and harsh turning. The researchers used the score as an overall 

performance safety score and found a significant positive effect for both groups during the 

feedback phase. 

 

(Peer et al., 2020) extends previous work by examining whether intrinsic motivation to change 

risky driving behavior is sufficient for feedback-driven improvements, or if higher effects depend 

on a further boost of extrinsic motivation through incentives that reinforce behavioral recurrence. 

This study conducted using a smartphone application collecting multiple safety-related driving 

behaviors (speeding, phone use, cornering and brake/acceleration events) aimed to evaluate the 

transferability of earlier findings from (Reagan et al., 2013) and (Mullen et al., 2015) – the latter 

using a driving simulator – to novice drivers and a broader range of driving behaviors. The study 

reported that feedback led to significantly enhanced driving behavior in terms of safety, but the 

effect was at its maximum when in addition to providing people with awareness regarding their 

violations and errors (e.g., informing them about numbers of exceedance through provision only), 

some type of incentive for safe driving were provided. 

 

2.3.4.5 Post-feedback effects 

 

The post-feedback effects of interventions vary significantly across the studies. In some cases, the 

behavioral changes resulting from feedback were sustained after the intervention period. For 

example, (Ghamari et al., 2022) found that bus drivers maintained their reformed behavior even 

after feedback was removed, indicating a lasting effect. Similarly, (Merrikhpour et al., 2014) 

reported that, although behavior indicators slightly decreased post-intervention, they remained 

better than the baseline, reflecting some persistence of the positive effects. (Molloy et al., 2023) 

also reported a sustainable improvement in speed compliance, but only for low-speed zones (i.e. 

50 km/h). 

 

However, some studies show that once feedback is withdrawn, drivers tend to revert to their 

previous behaviors. (Bolderdijk et al., 2011) observed that the incentive group increased their 

speeding once the financial incentives were removed, suggesting that the impact of feedback 

combined with incentives might not be sustained without continuous reinforcement. Likewise, 

(Toledo & Lotan, 2006) found that the initial reduction in driving risk indices disappeared after 

five months, with indices returning to or even exceeding their original levels. (Mazureck & Van 

Hattem, 2006) also noted that most drivers reverted to old habits after the feedback phase ended. 

 

Conversely, other studies (McGehee et al., 2007) that included formal follow-up in the form of 

coaching or ongoing monitoring, reported maintainable reductions in the number of safety-critical 

events per mile; high-frequency drivers receiving feedback through continuous reinforcement 

mechanisms such as training and performance improvement plans demonstrated continued ability 

to sustain behavioral change post-feedback. 

 

Certain studies indicate that feedback interventions yielded durable benefits (Soleymanian et al., 

2019; Takeda et al., 2011; Toledo et al., 2008), but these findings were deemed to be of low 

certainty due to limited data and/or attrition bias in the data. This illustrates one of the major 

challenges concerning experiments over long periods, as attrition due to study dropout before a 

formal end point is quite common. With repeated interventions or a drop-off in motivation 

stemming from long participation, drivers can lose engagement over time, potentially skewing the 

results and undermining the statistical power of the findings. This drop-off may not only affect the 
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reliability of the data but could also mask the true long-term effects of feedback, leaving open the 

question of whether behavior changes could have been sustained with continued participation.  

 

2.4 Discussion 
 

2.4.1 Elaboration of main findings 

 

The results of this systematic review demonstrate a positive overall effect of driver feedback on 

modifying driving behavior and enhancing road safety. Measuring the quantifiable impact of driver 

feedback, it appears that when drivers receive feedback during naturalistic driving studies, they 

may decrease speeding from 5% up to 74%, harsh events from 10% up to 52%, safety incidents 

from 8% to 52% and also reduce road crashes up to 20%.  

 

However, it is worth noting that the impact of driver feedback depends on several important 

contextual factors. Specifically: how is feedback provided, when it is delivered (timing), and what 

is the content of the feedback. Studies consistently indicate that real-time feedback results in the 

most immediate change at a behavior level; especially when it comes to reducing higher risk 

driving behaviors such as speeding or harsh braking (Camden et al., 2019; Chen & Donmez, 2021). 

Post-trip feedback also demonstrates effectiveness, particularly when combined with personalized 

reports or peer benchmarks (Peer et al., 2020). More precisely, only two of the reviewed studies 

compared the impact of post-trip and real-time delivered feedback, and the results are inconclusive 

with (Chen & Donmez, 2021) finding that only real-time feedback had a significant impact on 

speeding, while (Bell et al., 2017) found that risky driving behaviors reduced significantly less 

when drivers received only in-vehicle real-time feedback.  

 

The timing of feedback is undoubtedly a crucial factor to consider when designing an effective 

feedback mechanism and certainly warrants further research. An interesting study by (Dijksterhuis 

et al., 2015) used a driving simulator to examine the issue, concluding that both systems improved 

driving performance, though the initial advantage of the real-time feedback group diminished 

substantially over time. Nevertheless, the answer lies in the type of feedback that is provided; 

specific and actionable insights about safe driving tend to lead to more positive changes than 

general, non-specific assessments of unsafe behavior (Merrikhpour et al., 2014). 

 

In addition to how, when and what feedback to provide, another notable observation is the varying 

effectiveness of feedback depending on the frequency of its delivery. For instance, studies like 

(Molloy et al., 2023) found that driver feedback was more effective when provided only once or 

twice compared to multiple times. It is highly likely that the feedback mechanism suffers a 

reliability loss by reporting too frequently to drivers. This outcome underscores the need to find 

the optimal frequency of feedback to sustain the acquired improvement in driving behavior, but 

without triggering drivers with overload or desensitization.  

 

Another interesting finding from the review process is the high correlation of incentives to the 

effectiveness of feedback. Studies report that the provision of financial incentives can substantially 

increase behavioral gains when used in conjunction with real-time or post-trip feedback 

(Bolderdijk et al., 2011; Stevenson et al., 2021). Systems based on motivation incentives, such as 

price reductions in insurance premiums for safe driving or monetary rewards for absence of 

hazardous driving phenomena persuade drivers to continue their improved behavior in the long 

term. Nevertheless, it is also observed that when incentives are withdrawn, behavior can relapse 



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism 

 

74 

 

and some participants will revert to their old habits, such as in the case of (Bolderdijk et al., 2011). 

This highlights the need to create feedback and incentive mechanisms that incentivize persistence 

and sustainable behavioral change over time. 

 

In the context of experimental frameworks, findings suggest that most of the reviewed studies 

combine within-subjects with between-subjects design by examining feedback effects both on 

individual drivers and broader groups. This combination allows researchers to alleviate the 

concerns of carryover and fatigue effects, while guaranteeing valid and generalizable study results. 

Many studies explore the post-feedback effects as well (Bell et al., 2017b; Farmer et al., 2010; 

Ghamari et al., 2022b; Mazureck & Van Hattem, 2006; Molloy et al., 2023), revealing that in some 

cases, improvements in terms of driving behavior carry on even after the finishing point of the 

feedback phase. Yet, the permanence of these effects is inconsistent as some drivers return to 

unsafe behaviors when feedback is removed (Toledo & Lotan, 2006). The long-term effects of 

driver feedback are a common topic discussed in most of the reviewed studies, often emphasized 

as a challenging issue. The need for repeated experiments that are conducted sometime after the 

initial study is underlined in order to effectively examine the sustainability of the impact of 

feedback over time. 

 

As for the analyses used in the reviewed studies, most of the reviewed studies used conventional 

statistical models such as Generalized Estimating Equations (GEE), linear and logistic regression, 

and Analysis of Variance (ANOVA) to evaluate the impact of driver feedback on behavior and 

safety. Although these methods are useful and provide valuable insights, especially for hypothesis 

testing and group-level analysis, they are limited in capturing complex non-linear behaviors or 

patterns when dealing with larger datasets or several feedback phases. Particularly, there is a 

limited application of Machine Learning methods that may provide more advanced predictive 

modeling and a comprehensive understanding of specific driver behavior patterns. Such methods 

as random forests or gradient boosting may facilitate real-time personalization and feedback 

mechanism optimization. This gap suggests a future research opportunity to employ ML methods 

for greater adaptability and individuality in feedback systems. 

 

2.4.2 Implications for road safety and current practices 

 

The previous passages reveal the benefits of driver feedback on enhancing road safety, which in 

turn provides potential guidance for both policy and technological development. Feedback systems 

serve as a powerful instrument to impact driving behavior, especially when focusing on critical 

risk factors like speeding. Driven by new technological advancements, feedback systems are 

becoming more broadly viable, offering tools for deployment across different settings, from urban 

networks to rural roads. Integrating driver safety programs based on real-time and post-trip 

feedback creates a shortcut for transportation authorities and fleet managers to enhance driving 

performance. In addition to reducing risky driving behavior, these systems promote safer road use 

and facilitate advanced sustainable development goals. 

 

Given that smartphone applications and telematics devices provide a cost-effective way for 

continuous data acquisition, it is an appropriate method to monitor and make necessary 

modifications in various driving behaviors by insurance companies, particularly under the Usage-

Based Insurance (UBI) models (Tselentis et al., 2017). The systems enable insurers to better 

understand the risks associated with each driver and to price policies according to an individual's 

actual driving behavior. However, these research efforts are challenged by issues like privacy and 
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the availability of large datasets for analysis (Reimers & Shiller, 2019). The timing of feedback, 

its content, and incorporating financial incentives to support safety outcomes are important insights 

for insurers, stemming from this review. Focusing on these factors, car insurance companies can 

create a feedback mechanism that not only encourages sustained behavioral change and solves the 

engagement problem for the driver, but also promotes safe driving. 

 

Another promising emerging area for improving feedback processes is the integration of connected 

vehicles (CVs). Communications between vehicles (V2V) and infrastructure (V2I), collectively 

known as connected vehicle technology, can transform an individual vehicle into a node within a 

real-time information network. This connectivity has the potential to revolutionize driver feedback 

by exploiting near real-time updates on road conditions, historical and predicted hazards, as well 

as surrounding traffic behavior (Abdelkader et al., 2021). For example, feedback systems can be 

enabled in connected vehicles with predictive analytics to provide proactive alerts and customized 

instructions for drivers that leverage the knowledge of an entire network, thus not limited in their 

own driving behavior. Indeed, the input of feedback might play a far more extensive role in such 

systems and is expected to be increasingly simplified as connected vehicles will require more 

advanced feedback mechanisms that adapt to new forms of shared data and road interactions.  

 

Regardless of automation, the adoption and higher market penetration of feedback schemes will 

lead to the acquisition of more voluminous driver behavior data, which will lead to the refinement 

of feedback in turn. This course will initiate a virtuous circle that is well-placed to enhance the 

acceptance and feasibility of driver feedback as part of everyday driving. Within the research field, 

feedback and the related data have the potential to provide a broader and more accurate overall 

image of safety data within the transport network. Automated feedback data will be completely 

automated and as such will not suffer from delays, misclassifications, compatibility requirements 

and other issues such as underreporting. 

 

2.4.3 Limitations of current research and directions for future research 

 

The investigation of the impacts of driver feedback has revealed some valuable insights; however, 

this review additionally highlights several limitations in the existing literature that should be 

addressed in future research. An important gap in the reviewed studies is the lack of consideration 

of traffic conditions and how they may affect the effectiveness of driver feedback. There are a few 

studies that consider the type of the road, i.e. urban, rural or highway in their analyses (Birrell & 

Fowkes, 2014; McGehee et al., 2007; Strömberg & Karlsson, 2013). However, traffic data such as 

volume, speed, density etc. should also be incorporated into future naturalistic driving experiments 

for a more comprehensive and contextual understanding of how driving behavior and the 

effectiveness of driver feedback may be affected by external factors. In that context, weather 

conditions should also be accounted for in future studies when exploring the effectiveness of driver 

feedback. 

 

Another significant limitation in many of the reviewed studies is the reliance on self-selected 

participants who voluntarily chose to take part in such research experiments, except for a few 

studies that offered monetary incentives to participants (Chen & Donmez, 2021; Ghamari et al., 

2022). This approach may introduce selection bias, as these individuals might already possess 

higher levels of safety awareness or be more technologically apt compared to the general driving 

population. As a result, the outcomes of such studies may not fully represent the broader 

population, leading to potential overestimation of feedback effectiveness. Exploring this aspect 
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further in future studies could improve the design and interpretation of experiments by offering a 

more comprehensive view of how feedback impacts a wider, more diverse driving population. 

 

Furthermore, in one line of current research, a variety of intervention systems (e.g., context-

sensitive distraction warning systems (Kujala et al., 2024) require further development and 

comparison. The rapid advancements in artificial intelligence, mobile internet, and big data, have 

introduced an innovative approach to active driving behavior intervention through warning 

systems and workload generation tools (Yang et al., 2023). However, questions remain about their 

efficacy, including the extent to which drivers might rely too heavily on these systems and how 

they may affect driver’s workload and situational awareness. Future research should investigate 

these impacts to determine the proper division of labor between technology and drivers. 

 

A particularly overlooked area is the feedback provision for two-wheeler drivers, who are 

considered vulnerable road users. While some studies have explored feedback for motorcyclists 

under naturalistic conditions (Kontaxi et al., 2021a; Will et al., 2020; V. Williams et al., 2016), 

there remains a gap in understanding how feedback could better support safety among these 

drivers. Two-wheeler drivers face unique risks, such as reduced visibility to other road users and 

greater vulnerability in crashes, which require tailored feedback mechanisms. Future research 

should focus on developing and testing feedback systems specifically designed for two-wheelers, 

potentially incorporating real-time alerts and adaptive safety interventions to help mitigate their 

elevated risk. Comparable considerations can also be given to the provision of feedback for 

professional drivers as well, who face their own challenges and particularities. Given that the 

operation of in-vehicle information systems has very low safety impacts for professional drivers 

(Ziakopoulos et al., 2019) the development of related feedback systems is a promising, yet 

unexplored venue. 

 

Lastly, although data-driven methods such as machine learning algorithms have been widely used 

to identify dangerous driving behaviors, few innovative approaches have investigated how 

feedback itself can be beneficial for improving safety. Research often focuses on recognizing 

patterns without considering how feedback can alter driving behavior (Elamrani Abou Elassad et 

al., 2020; Lattanzi & Freschi, 2021). A critical avenue for investigation involves applying machine 

learning to better understand the mechanisms by which feedback works, leading to more 

individualized, data-driven approaches for driving behavior change. Future work could combine 

machine learning with driver feedback systems to produce dynamic, personalized feedback 

tailored to specific driving styles, enhancing long-term road safety. 

 

On that note, it is important to anticipate, or at least stay on track with, technological developments 

regarding new driver interaction venues that are being opened. These venues can be novel in terms 

of both the manner of feedback and the device itself. Indicative examples include smartwatches 

and similar wearables, which provide a very direct interaction manner with their wearer, which 

could open the possibility of tactile real-time driver feedback nudges. Moreover, and in parallel 

with automation, vehicle connectivity is ever increasing, and offers integration capabilities for 

many devices which can calculate and provide feedback. With the aforementioned developments 

in edge-computing applications, driving feedback can be provided on the spot, under real-time or 

almost real-time conditions, and can also be paired with related services such as e-call or rapid 

crash reporting as well. 
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2.5 Research Questions 
 

Based on the findings of the comprehensive literature review conducted within the framework of 

this Dissertation, several gaps and challenges in the existing body of knowledge have been 

identified. These gaps have informed the development of the following research questions, which 

aim to address critical aspects of the study and contribute to advancing understanding in this 

domain: 

 

1. How does feedback influence driver speeding and distracted behavior in terms of the 

percentage of trip time during which the speed limit was exceeded and mobile phone was 

used while driving? 

 

2. How does feedback influence harsh driving events, in terms of the number of harsh 

accelerations and harsh brakings? 

 

3. Do different feedback features (e.g., scorecards, maps, peer comparisons, motivations, 

gamification, rewards) have different effects on driver behavior? Which feature 

demonstrates the most significant impact?  

 

4. How does the post-feedback effect influence long-term driver behavior, and to what extent 

are the changes sustained after the feedback is removed? 

 

5. How can advanced statistical techniques be applied to understand the mechanisms of driver 

feedback and develop more individualized, data-driven approaches for driving behavior 

change? 
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3 Methodological Approach 
 

3.1 Overall Methodological Framework 
 

This section outlines the methodology employed to investigate the impact of driver feedback on 

driver behavior through a naturalistic driving experiment. The overall framework is visually 

represented in Figure 3.1, providing a structured approach to achieving the objectives of this 

dissertation. Subsequent sections delve deeper into the theoretical and experimental methods 

utilized. 

 

The methodological framework began with an extensive literature review, which explored key 

aspects of driver feedback systems under naturalistic driving conditions. This review focused on 

experimental design, feedback types, modeling approaches, and key indicators for evaluation. This 

phase guided the formulation of research questions, including the impact of feedback on behavior 

and safety, the effects of feedback features, and the post-feedback influence on long-term driver 

behavior. 

 

Building on the findings of the literature review, a comprehensive methodological background was 

developed, combining theoretical approaches and experimental design principles. This included 

the application of advanced modeling techniques, such as Generalized Linear Mixed Effects 

Models (GLMMs), Structural Equation Models (SEMs), and Survival Analysis Models, alongside 

the design of a naturalistic driving experiment (ND Experiment Design). The experimental setup 

involved a cohort of 130 drivers, encompassing car drivers, van professionals, and motorcyclists, 

evaluated over six feedback phases using a within-subjects design. 

 

The research utilized data from the BeSmart Research Project, focusing on key driving indicators 

such as speeding and mobile phone use as measures of risky behavior, and harsh accelerations and 

harsh brakings as proxies for safety-critical events. The analysis unfolded in three key pillars: 

 

1. Impact of feedback: This phase assessed the immediate effects of feedback on driving 

behavior (e.g., speeding, mobile phone use, harsh events frequency) across the three driver 

groups. 

 

2. Effects of different feedback features: A Structural Equation Model (SEM) was developed 

to explore the relationship between feedback features and driving behavior factors, 

revealing the differential impact of feedback elements. 

 

3. Post-feedback effects: A survival analysis was conducted to examine the long-term 

influence of feedback mechanisms. Models such as Cox Proportional Hazards, Accelerated 

Failure Time (AFT), and Random Survival Forests (RSFs) were applied and compared to 

identify the best-fitting model. 
 

By employing this comprehensive methodology, the driver behavior telematics feedback 

mechanism is effectively achieved. The integration of an extensive literature review, advanced 

modeling techniques, and a well-structured naturalistic driving experiment provided a robust 

framework to investigate the impact of feedback on driver behavior. The research focused on 

critical driving indicators such as speeding, mobile phone use, harsh accelerations, and harsh 

braking events, ensuring a holistic assessment of driver risk factors. The systematic analysis of 
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immediate feedback effects, the influence of different feedback features, and the long-term impact 

of feedback mechanisms culminated in actionable insights for designing and implementing 

telematics feedback systems. These findings lay the foundation for a scalable and data-driven 

feedback mechanism aimed at improving driving behavior, reducing risky behaviors, and 

enhancing road safety. 

 

 
Figure 3.1: Overall methodological framework of the doctoral dissertation   
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3.2 Theoretical Framework 
 

To address the objectives outlined in this PhD thesis, a robust theoretical framework was 

developed, leveraging both foundational and advanced statistical methodologies. This theoretical 

background builds upon existing statistical tools while incorporating innovative approaches 

tailored to the complexities of analyzing driver behavior and performance. The methodologies 

were selected and refined based on a comprehensive review of the relevant literature, as discussed 

in earlier chapters. This ensures that the selected approaches address the limitations and gaps 

identified in previous studies. 

 

A key finding from the literature review was that most studies rely on traditional statistical 

techniques, such as repeated measures ANOVA, descriptive statistics, or linear regression models. 

While these methods provide valuable insights, they are often limited in addressing the intricate 

dependencies and latent relationships inherent in driver performance data. The review also 

revealed that advanced techniques, such as Structural Equation Modeling (SEM) and Survival 

Analysis, remain underexplored in the field, despite their potential to address complex 

relationships and time-dependent variables. 

 

To build a comprehensive and innovative methodological foundation, the theoretical background 

of this thesis incorporates both conventional and advanced techniques. Descriptive statistics form 

the basis of the analysis, offering fundamental insights into the data distribution and relationships. 

Inferential tests, such as paired samples t-tests and Wilcoxon signed-rank tests, provide robust 

comparisons between experimental conditions, especially in cases where parametric assumptions 

are violated. 

 

The statistical modeling framework further expands into regression models, including General 

Linear Models (GLMs) and Generalized Linear Mixed Models (GLMMs), which accommodate 

the hierarchical structure of the data and enable the analysis of fixed and random effects. These 

models are enhanced by variations such as random intercepts and random slopes, which capture 

the heterogeneity of driver behavior across individuals and conditions. Structural Equation Models 

(SEMs) are introduced to explore latent relationships between exposure indicators and different 

features of driver feedback, providing a deeper understanding of their direct and indirect impacts 

on driving performance and safety. 

 

The methodological approach also incorporates advanced Survival Analysis techniques to examine 

time-to-event data, such as relapse of driving behavior after the end of feedback period. Kaplan-

Meier curves and Cox Proportional Hazards models with frailty terms assess survival probabilities 

under varying conditions, while Weibull Accelerated Failure Time (AFT) models and Random 

Survival Forests allow for more flexible modeling of time-dependent risks. A systematic model 

comparison ensures that the most appropriate techniques are applied for the respective research 

questions, contributing to the reliability and validity of the findings. 

 

This theoretical background not only integrates a wide range of statistical tools but also emphasizes 

their sequential and complementary application, ensuring that the analysis is comprehensive, 

robust, and capable of addressing the multifaceted nature of the feedback mechanism and its effect 

to driving behavior and safety. The following sections provide a detailed explanation of each 

methodological approach and its application within the context of this thesis. 
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3.2.1 Descriptive Analysis 

 

Descriptive analysis is a fundamental step in data analysis that provides a solid foundation for 

advanced statistical modeling. Before diving into complex models, it is crucial to understand the 

underlying structure and behavior of the data through summary statistics and visualizations. Key 

components of descriptive analysis include measures like the five-number summary (minimum, 

first quartile, median, third quartile, and maximum), which helps to capture the range, central 

tendency, and spread of the data. These metrics give an overview of the data's variability and 

highlight potential outliers that could skew the results of subsequent analyses. Additionally, 

calculating the standard deviation quantifies the degree of dispersion around the mean, offering 

insight into how tightly or loosely data points are distributed. 

 

3.2.2 Inferential statistical tests 
 

Inferential statistical tests are used to draw conclusions about a population based on sample data. 

These tests help evaluate hypotheses, determine relationships, and assess differences between 

groups or conditions. Unlike descriptive statistics, inferential tests use probability theory to 

determine whether observed patterns are statistically significant or could occur by chance. Two 

commonly used inferential tests for comparing paired data are the Paired Samples t-test and the 

Wilcoxon Signed-Rank Test, which are both designed to assess differences between two related 

groups. 

 

These tests are particularly useful in scenarios where the same subjects are measured under 

different conditions, such as pre-treatment and post-treatment measurements in clinical studies. 

The choice of test depends on whether the data meet assumptions of normality or require non-

parametric methods for analysis. 
 

3.2.2.1 Paired Samples t-test 
 

The Paired Samples t-test (also known as the Dependent Samples t-test) is a parametric test used 

to compare the means of two related groups. It assumes that the differences between paired 

observations are normally distributed.  

 

The test calculates the t-statistic as follows: 

 

𝒕 =
𝒅‾

𝒔𝒅/√𝒏
            (3.1) 

 

Where: 

 

• 𝑑‾ is the mean difference between the paired observations, 

• 𝑠𝑑 is the standard deviation of the differences, 

• 𝑛 is the number of pairs. 

 

The resulting t-statistic is compared against a critical value from the t-distribution table based on 

the degrees of freedom (df=n-1) and the desired significance level (α, typically 0.05). If the p-

value is below α, we reject the null hypothesis (H0), which states that the mean difference is zero.  
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Figure 3.2: Schematic diagram of a paired samples t-test 

 

In the above schematic diagram: 

 

• Each gray line represents a pair (before and after values for the same subject). 

• Blue and red markers show the mean for the "Before" and "After" groups, along with error 

bars indicating standard error. 

 
 

3.2.2.2 Wilcoxon signed-rank test  
 

The Wilcoxon Signed-Rank Test is a non-parametric alternative to the Paired Samples t-test, used 

when the data do not meet the normality assumption. This test compares the median of paired 

differences and is robust to outliers and skewed distributions. For instance, it can be used to assess 

whether a mindfulness program affects stress levels, where pre- and post-program stress scores are 

ranked and analyzed. 

 

The procedure involves ranking the absolute differences between paired observations, assigning 

positive or negative signs based on the direction of the difference, and calculating the test statistic 

WWW, which is the sum of signed ranks: 

 
𝑾 = ∑  𝑹𝒊

+            (3.2) 

 

Where 𝑅𝑖
+ are the ranks with positive differences. 

 

The test statistic is then compared to a critical value from the Wilcoxon Signed-Rank distribution 

or converted into a z-score for large samples: 
 

𝒛 =
𝑾−𝝁𝑾

𝝈𝑾
             (3.3) 

 

Where 𝜇𝑊 and 𝜎𝑊are the mean and standard deviation of the rank sum distribution under the null 

hypothesis. Like the t-test, if the p-value is below the significance level (α), the null hypothesis 

(H0: no difference in medians) is rejected. 
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Both tests provide valuable insights into paired data, with the Wilcoxon Signed-Rank Test offering 

a more robust solution when the normality assumption is violated. 

 

 
Figure 3.3: Schematic diagram of a Wilcoxon Signed-Rank Test 

 

In the above schematic diagram: 

 

• The bars represent the ranked differences between paired observations. 

• Green bars correspond to positive differences (the first variable is greater), while red bars 

represent negative differences (the second variable is greater). 

• The heights of the bars indicate the rank assigned to each absolute difference. 

• Positive ranks are displayed above the zero line, while negative ranks are below it. 

• The sum of these signed ranks is used to compute the test statistic for assessing whether 

the median difference is significantly different from zero. 

 

3.2.3 Generalized Linear Models 
 

Generalized Linear Models (GLMs) extend traditional regression methods by allowing the 

dependent variable to follow distributions from the exponential family, such as Poisson, binomial, 

or Gaussian. For count data, such as the frequency of harsh events (e.g., harsh braking or harsh 

acceleration) per trip, a Poisson distribution is typically used.  
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Figure 3.4: Example of a Poisson distribution (λ=5) 

 

Following Breslow and Clayton (1993), if 𝑦𝑖 represents the observed frequency of harsh events 

during trip 𝑖 and 𝜆𝑖 represents the predicted expected frequency, the GLM is specified as: 

 
𝑦𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆𝑖)            (4.4) 

 

The log of the expected frequency (𝜆𝑖) is then modeled via a linear predictor: 

 
𝑙𝑜𝑔(𝜆𝑖) = 𝛽0 + 𝛽𝑛𝑥𝑛 + 𝜀          (4.5) 

 

Where 𝛽 are the fixed-effect parameters (constant and coefficients) for 𝑛 independent variables, 

and 𝜀 is the error term. 

 

3.2.3.1 Generalized Linear Mixed-Effects Models  
 

Generalized Linear Mixed-Effects Models (GLMMs) extend GLMs by adding random effects to 

account for grouping or clustering in the data, such as repeated measures for the same drivers. This 

approach accounts for the variability in behavior between drivers that could influence the 

frequency of harsh events. The GLMM builds on the GLM framework by adding a random effect 

(𝑢𝑖) to the linear predictor: 

 

𝑙𝑜𝑔 (𝜆𝑖𝑗) = 𝛽0 + ∑  𝑛 𝛽𝑛𝑥𝑛𝑖𝑗 + 𝑢𝑖 + 𝜖         (4.6) 

 

Here, 𝜆𝑖𝑗is the expected frequency of harsh events for trip 𝑗 by driver 𝑖, and 𝑢𝑖 ~ 𝑁(0, 𝜎𝑠,0
2 ) 

represents the random effect for driver 𝑖, capturing unobserved heterogeneity. This structure 

ensures that differences between drivers are modeled explicitly, improving the accuracy of fixed-

effect estimates. 

 

For instance, a GLMM could model harsh braking events by accounting for predictors such as trip 

duration or distance, while also incorporating a random effect for each driver to reflect differences 

in their driving styles. 
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3.2.3.2 GLMM with Random Intercepts 
 

A GLMM with random intercepts models variability in the baseline frequency of harsh events 

across drivers while keeping the effect of predictors constant. The model is expressed as: 

 

𝑙𝑜𝑔 (𝜆𝑖𝑗) = 𝛽0 + ∑  𝑛 𝛽𝑛𝑥𝑛𝑖𝑗 + 𝑢𝑖         (4.7) 

 

Here, 𝑢𝑖 represents the random intercept for driver 𝑖, distributed as 𝑢𝑖 ~ 𝑁(0, 𝜎𝑢
2). This allows the 

model to account for differences in the baseline frequency of harsh events across drivers. 

 

For example, one driver might consistently have a higher baseline frequency of harsh braking, 

regardless of trip duration or speed. A random intercept captures this variation, allowing the fixed 

effects (e.g., trip duration) to be estimated without bias. 

 

3.2.3.3 GLMM with Random Slopes 
 

A GLMM with random slopes further extends the model by allowing the effect of a predictor, such 

as trip duration or distance, to vary across drivers. The model is specified as: 

 

𝑙𝑜𝑔 (𝜆𝑖𝑗) = 𝛽0 + (𝛽1 + 𝑢1𝑖)𝑥1𝑖𝑗 + ∑  𝑛≠1 𝛽𝑛𝑥𝑛𝑖𝑗 + 𝑢0𝑖      (4.8) 

 

Here, 𝑢0𝑖 is the random intercept for driver 𝑖, and 𝑢1𝑖 is the random slope for predictor 𝑥1𝑖𝑗 (e.g., 

trip duration), with 𝑢1𝑖 ~ 𝑁(0, 𝜎𝑢1
2 ). 

 

For instance, the impact of trip duration on the frequency of harsh braking events might vary 

between drivers. For one driver, longer trips might significantly increase the likelihood of harsh 

events, while for another, the effect might be weaker. A random slope allows the model to capture 

this variability, providing a more detailed understanding of driver-specific behaviors. 

 

3.2.3.4 Interpreting Coefficients and Goodness-of-fit metrics 

 

Coefficient result interpretation is more intuitive when using relative risk ratios (sometimes called 

incidence rate ratios). Relative risk ratios are obtained by transforming the predictor to obtain the 

frequency. For an increase of one unit in one specific variable, 𝑘, with all other parameters 

remaining equal, the predicted original frequency 𝜆𝑖 is multiplied by: 𝜆𝑘𝑖 = exp(𝛽𝑘𝑖) ∗  𝜆𝑖 

 

As (McCulloch, 2003) mentions, random effect models may use correlated independent variables 

as input, circumventing the limitations of traditional GLMs. Furthermore, it should be mentioned 

that for computational reasons during the GLMM fitting, the trip data underwent z-score scaling, 

a common standardization process which does not affect the obtained coefficients. Mathematically, 

for every parameter 𝑥 with a mean �̅� and a standard deviation 𝑆 a scaled value is obtained:   

 
𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = (𝑥 − �̅�)/𝑆            (4.9) 

 

The best-fitting model which contains the more informative variable combination and explains the 

highest degree of variance per given dataset is selected as the one with the minimum Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC).  
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AIC = −2𝑙𝑛 (𝐿) + 2𝑘           (4.10) 

 

Where: 

• 𝐿: Maximized likelihood of the model. 

• 𝑘: Number of parameters in the model. 

 
𝐵𝐼𝐶 = −2𝑙𝑛 (𝐿) + 𝑘𝑙𝑛 (𝑛)          (4.11) 

 

Where: 

• 𝑛: Number of observations. 

 

Finally, it is critical to note that the added value of any random effects is assessed by conducting a 

custom ANOVA (log-likelihood test) between the fixed effects GLM and any formulated GLMMs. 

 

3.2.4 Structural Equation Models 

 

Structural Equation Modeling (SEM) is a technique within the family of latent variable analysis. 

It is a multivariate method that supports both multiple-input and multiple-output modeling. In this 

study, SEM is used to formulate several unobserved constructs as latent variables from different 

types of variables collected through the naturalistic driving experiment.  

 

SEM is a widely recognized methodology with numerous applications. It has been employed in 

various studies to model complex interrelationships involving unobserved concepts expressed as 

latent variables. This includes applications in traffic engineering and road safety. For example, 

SEM has been used to model driving behavior and the probability of crash risk (Papantoniou et 

al., 2019; Wu & Wang, 2021) Additional examples include the use of SEM to connect task 

complexity and coping capacity with driving risk (Roussou et al., 2023) or perception of risk and 

driving tasks on road safety attitudes of drivers (Ram & Chand, 2016; Zhao et al., 2019).  

 

The underlying mathematical structure of SEMs can be defined as follows (Jöreskog & Sörbom, 

2001):  

 
𝜂  =  𝛽 𝜂  +  𝛾 𝜉  +  𝜀            (4.12) 

 

where η is a vector expressing the dependent variables, ξ expressing the independent variables, ε 

expressing the regression error term, β expressing the regression coefficients for the dependent 

variables, and γ expressing the regression coefficients for the independent variables. 

 

3.2.4.1 Path analysis 

 

Path analysis, a subset of SEM, focuses on modeling the structural relationships between variables. 

It visualizes these relationships using a path diagram, where arrows represent regression paths. For 

example, in a study analyzing driving behavior, latent variables such as "risk perception" (𝜉) might 

influence "event occurrence" (𝜂) through observed indicators like average speed, acceleration, or 

harsh braking events. Path analysis also allows for mediating effects, where one variable influences 

another indirectly through a third variable. 
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Path diagrams clarify the roles of explanatory variables, showing whether they act as correlated 

causes, mediated causes, or independent predictors. For instance, "trip duration" (𝑋1) and "driver 

age" (𝑋2) might have direct effects on "harsh braking" (𝑌1) while "trip speed" (𝑋3) mediates the 

relationship. This structured representation not only simplifies complex models but also facilitates 

hypothesis testing, enabling researchers to specify whether certain pathways are significant or not. 

 

 
 

Figure 3.5: Example of SEM path analysis created using the lavaan package in R 

 

The diagram represents a structural equation model (SEM) created using the lavaan package in R. 

This model combines measurement components (latent variables derived from observed 

indicators) and structural relationships (regressions and covariances). Below is a breakdown of the 

elements in the diagram: 

 

Latent Variables 

• ind60: A latent variable representing an unobserved construct measured by three observed 

indicators: x1, x2, and x3. These arrows indicate that the latent variable ind60 is inferred 

from the shared variance of these observed variables. 

• dem60: A latent variable representing another unobserved construct, measured by the 

observed indicators y1, y2, y3, and y4. These arrows suggest that the latent variable dem60 

is inferred from these observed variables. 

• dem65: A latent variable inferred from the observed indicators y5, y6, y7, and y8. 

 

Structural Relationships 

• Regression Paths: 

o The arrow from ind60 to dem60 indicates that the latent variable dem60 is regressed 

on ind60, meaning ind60 explains some portion of the variability in dem60. 
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o The arrows from ind60 and dem60 to dem65 represent a structural relationship 

where both ind60 and dem60 jointly explain the variability in dem65. 

 

Residual Covariances 

• Correlated Residuals: 

o The bidirectional arrows connecting y1 and y5, y2 and y4 and other pairs indicate 

residual covariances between the corresponding observed variables. 

 

Observed Variables 

• The observed variables (x1, x2, x3 and y1, y2, y3, y4, y5, y6, y7, y8) are directly measured 

in the dataset. These are used to infer the latent variables or are part of the structural 

relationships. The "x" variables (x1, x2, x3) are indicators for ind60, while the "y" variables 

(y1 to y8) serve as indicators for dem60 and dem65. 

 

3.2.4.2 Goodness-of-fit metrics 
 

In the realm of model configuration, Goodness-of-Fit measures play a crucial role in any statistical 

model assessment. The goodness-of-fit metrics utilized in the current analysis are listed below. 

 

The Comparative Fit Index (CFI) compares the fit of a hypothesized model with an independence 

model. Values range from 0 to 1, with over 0.90 generally accepted as a good fit. The formula is 

represented as follows: 

 

CFI = 1 −
𝑚𝑎𝑥(𝑥𝐻

2 −𝑑𝑓𝐻,0)

𝑚𝑎𝑥(𝑥𝐻
2 −𝑑𝑓𝐻,𝑥𝐼

2−𝑑𝑓𝑙)
         (4.13) 

 

where 𝑥𝐻
2  and 𝑑𝑓𝐻are the chi-square value and degrees of freedom of the hypothesized model, and 

𝑥𝐼
2 and 𝑑𝑓𝑙 are those of the independence model. 

 

The Tucker–Lewis Index (TLI) evaluates model parsimony, with values above 0.95 indicating a 

good fit. The formula is represented as follows: 

 

𝑇𝐿𝐼 =

𝑥𝐼
2

𝑑𝑓𝐼
−

𝑥𝐻
2

𝑑𝑓𝐻

𝑥𝐼
2

𝑑𝑓𝑙
−1

           (4.14) 

 

The Root Mean Square Error Approximation (RMSEA) measures the unstandardized discrepancy 

between the population and the fitted model, with values below 0.08 typically considered a good 

fit and values below 0.05 indicating an excellent fit. The formula is represented as follows: 

 

𝑅𝑀𝑆𝐸𝐴 = √
𝑥𝐻

2 −𝑑𝑓𝐻

𝑑𝑓𝐻(𝑛−1)
          (4.15) 

 

where 𝑥𝐻
2  is the chi-square value, 𝑑𝑓𝐻 is the degrees of freedom, and nnn is the sample size. 

 

The Standardized Root Mean Square Residual (SRMR) is the square root of the difference between 

the residuals of the sample covariance matrix and the hypothesized covariance model, with values 

below 0.05 indicating an excellent fit. The formula is represented as follows: 
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𝑆𝑅𝑀𝑅 = √
∑  𝑛

𝑖=1𝑗  ∑  𝑛
𝑗=1  (𝑠𝑖𝑗−𝜎𝑖𝑗)

2

𝑛(𝑛+1)/2
         (4.16) 

 

where 𝑠𝑖𝑗 is the observed covariance between variables 𝑖 and 𝑗, 𝜎𝑖𝑗 is the predicted covariance 

between variables 𝑖 and 𝑗 based on the model and 𝑛 is the number of observed variables. 

 

3.2.5 Survival Analysis 

 

Survival analysis is a branch of statistics designed to analyze time-to-event data, where the primary 

objective is to model the time until a specific event occurs, such as a failure, death, or, in driving 

contexts, the time until an adverse event like a harsh braking occurs. Unlike other statistical 

methods, survival analysis accounts for censored data, which arises when the event of interest has 

not occurred for some subjects during the study period. Survival analysis is widely used across 

disciplines, including medical research, engineering, and transportation safety (Klein & 

Moeschberger, 2003; Clark et al., 2003; Machin et al., 2006).  

 

Over the years, survival analysis has developed to be one useful technique of driving behavior 

investigation through the modeling of time to critical events-such as harsh braking, near-crashes, 

or collisions (Parmet et al., 2014; Shangguan et al., 2020; Samani & Mishra, 2024). This method 

explicitly allows researchers to consider censored data, such as trips with no adverse events 

occurring, while considering the impact of covariates like driver behavior and trip characteristics 

on event occurrence. 

 

Basic terminologies for the survival analysis for present study are defined as following 

(Washington et al., 2020): 

 

Event: In this study, an "event" is defined as a "relapse" in driving behavior, specifically when the 

driver’s harsh accelerations per 100 km exceed a predefined threshold. This threshold is calculated 

as the mean harsh acceleration rate observed during the feedback phase, a period of active 

intervention. Exceeding this threshold in the post-feedback phase signals a decline in driving 

behavior, which is considered an "event" for survival analysis purposes. 

 

Duration Variable (Time to Event): The duration variable in this analysis is represented by the 

number of trips taken until a relapse event occurs (i.e., harsh acceleration rate exceeds the feedback 

phase threshold). In survival analysis terms, the duration is a continuous random variable T with a 

cumulative distribution function F(t) and probability density function f(t). The survival analysis 

tracks the probability of a driver maintaining improved driving behavior over successive trips in 

the post-feedback phase. 
 

𝐹(𝑡) = 𝑃(𝑇 < 𝑡) = ∫  
𝑡

0
𝑓(𝑡)𝑑𝑡          (4.17) 

 

Survival Rate (S(t)): The survival rate S(t) gives the probability that a driver will maintain driving 

behavior below the harsh acceleration threshold for a given number of trips, denoted by t. This can 

be interpreted as the probability of no relapse occurring within that period. Mathematically,  
 

𝑺(𝒕) = 𝑷(𝑻 ⩾ 𝒕) = 𝟏 − 𝑭(𝒕)          (4.18) 
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where F(t) is the cumulative probability of a relapse occurring by trip t. 

 

Hazard Rate (h(t)): The hazard rate h(t) represents the conditional probability of a relapse 

occurring at a particular trip t, given that no relapse has occurred up until that trip. It provides an 

instantaneous risk of relapse at each point in time (number of trips). In this study, as the number 

of trips increases in the post-feedback phase, the probability of relapse also tends to increase, 

indicating a rising hazard rate over time. The hazard function h(t) can be defined as:  
 

ℎ(𝑡) =
𝑓(𝑡)

[1−𝐹(𝑡)]
            (4.19) 

 

where f(t) is the probability density function of relapse events. 

 

The key models discussed in this section—Kaplan-Meier curves, Cox proportional hazards 

models, and Weibull accelerated failure time models—offer different approaches to understanding 

survival data, with extensions to handle heterogeneity and clustered data. 

 

3.2.5.1 The Kaplan-Meier curves  
 

The Kaplan-Meier estimator, also known as the product-limit estimator, is a non-parametric 

statistical method used to estimate the survival function from time-to-event data (Kaplan & Meier, 

1958). It is commonly applied in fields such as medicine, engineering, and social sciences to 

understand the likelihood of an event (e.g., failure, relapse) occurring over time, especially when 

data include censored observations (i.e., when the event has not occurred for some subjects by the 

end of the observation period). 

 

The Kaplan-Meier survival function S(t) is defined as the probability that the event of interest has 

not occurred by a certain time t: 

 
𝑆(𝑡) = 𝑃(𝑇 ⩾ 𝑡)           (4.20) 

 

where T represents the time to event. The Kaplan-Meier estimator calculates the survival 

probability at each time point where an event occurs, updating the cumulative survival probability 

accordingly. The survival probability at each event time tj is calculated by: 

 

�̂�(𝑡) = ∏  𝑡𝑗≤𝑡 (1 −
𝑑𝑗

𝑛𝑗
)           (4.21) 

 

where: 

• 𝑑𝑗 is the number of events (e.g., relapses, failures) occurring at time 𝑡𝑗 

• 𝑛𝑗 is the number of subjects at risk just prior to time 𝑡𝑗 
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Figure 3.6: Example of Kaplan-Meier survival curve 

 

The Kaplan-Meier survival curve in the above example visualizes the probability of survival over 

time, accounting for censored data. Some key points: 

 

• Stepwise Survival Function: The curve shows the estimated survival probability 

S(t)S(t)S(t) as a step function, which decreases only at observed event times. At each event 

time, the survival probability is updated based on the proportion of individuals still at risk 

who experience the event. 

 

• Censoring: The Kaplan-Meier method accounts for censored observations (instances where 

the event has not occurred during the study period). Censored individuals contribute to the 

survival probability up to the time they are last observed but do not lower the survival 

probability 

 

• Confidence Intervals: The dashed lines represent the 95% confidence intervals around the 

survival estimate, providing a range within which the true survival probability is likely to 

fall. This helps assess the reliability of the survival estimates at different time points. 
 

3.2.5.2 Cox-PH Model with Frailty  

 

The Cox proportional hazards (Cox-PH) model is a semi-parametric regression method used to 

examine the relationship between survival time and explanatory variables (Cox, 1972). The hazard 

function ℎ(𝑡 ∣ 𝑥) is modeled as: 

 
ℎ(𝑡 ∣ 𝑥) = ℎ0(𝑡)𝑒𝑥𝑝 (𝛽⊤𝑥)          (4.22) 

 

where ℎ0(𝑡) is the baseline hazard function, 𝑥 is a vector of covariates, and 𝛽 is a vector of 

regression coefficients. The Cox model assumes the proportional hazards assumption, meaning the 

effect of covariates on the hazard is constant over time. 
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To handle heterogeneity in grouped data (e.g., trips by the same driver), the Cox-PH model can 

incorporate frailty terms: 

  
ℎ(𝑡 ∣ 𝑥, 𝑢) = ℎ0(𝑡)𝑒𝑥𝑝 (𝛽⊤𝑥 + 𝑢)         (4.23) 

 

where 𝑢 ∼ 𝑁(0, 𝜎2) is a random effect capturing unobserved heterogeneity (Wienke, 2011). 

Frailty models are particularly useful for survival data with correlated observations or clustered 

structures, such as repeated trips by the same driver. 
 

3.2.5.3 Weibull AFT Model with Clustered Heterogeneity  

 

The Weibull Accelerated Failure Time (AFT) model is a parametric approach to survival analysis 

that directly models the survival time 𝑇 as a function of covariates: 

 

𝑙𝑜𝑔 (𝑇) = 𝛽⊤𝑥 + 𝜀           (4.24) 

 

where 𝜀 is a random error term and 𝛽 represents the regression coefficients. The Weibull 

distribution is commonly used due to its flexibility in modeling hazard rates (e.g., increasing or 

decreasing over time), with the survival function given as: 

 

𝑆(𝑡) = 𝑒𝑥𝑝 (−𝜆𝑡𝛾)           (4.25) 

 

where 𝜆 and 𝛾 are scale and shape parameters, respectively. 

 

To account for clustering, the AFT model incorporates random effects (Wang, 2006): 

 

𝑙𝑜𝑔 (𝑇𝑖𝑗) = 𝛽⊤𝑥𝑖𝑗 + 𝑢𝑖 + 𝜀𝑖𝑗          (4.26) 

 

where 𝑢𝑖 represents cluster-level heterogeneity (e.g., driver-specific effects) and 𝜀𝑖𝑗 captures 

individual-level variability. This extension is particularly suitable for datasets with clustered 

survival times, such as trips nested within drivers (Hougaard, 2000). 

 

3.2.5.4 Random Survival Forest 

 

Random Survival Forest (RSF) is a machine learning approach to survival analysis that extends 

random forests to time-to-event data. RSF constructs multiple decision trees using bootstrap 

samples of the data, and the survival function is estimated as the ensemble average of the survival 

probabilities across all trees. Each tree splits the data based on covariates to maximize survival 

differences between groups, using a splitting rule such as the log-rank split statistic (Ishwaran et 

al., 2008). 

 

RSF can handle non-linear relationships, high-dimensional covariates, and complex interactions 

without requiring proportional hazards or parametric assumptions. It is particularly effective in 

datasets with heterogeneous risk factors and is robust to censoring. The cumulative hazard function 

for an individual i is estimated as: 
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𝐻𝑖(𝑡) =
1

𝐵
∑  𝐵

𝑏=1 𝐻𝑖
(𝑏)

(𝑡)          (4.27) 

 

where 𝐻𝑖
(𝑏)

(𝑡) is the cumulative hazard function from the 𝑏-th tree, and 𝐵 is the total number of 

trees. 

 

 
 

Figure 3.7: Example of tree structure in Random Survival Forest 

 

 

 
Figure 3.8: Example of survival curves in Random Survival Forest 

 

 

Some key points from the examples above: 

 

• Tree Structures: The first figure shows the decision paths of three individual trees within 

the RSF. 
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• Survival Curves: The second figure illustrates survival probabilities estimated by each tree 

and their aggregated average curve (dashed line). 

 

RSF is increasingly popular in survival analysis applications, such as identifying high-risk drivers 

based on multiple behavioral and environmental factors, offering interpretability through variable 

importance measures and partial dependence plots. 

 

3.2.5.5 Model evaluation 

 

Survival models are typically assessed based on their ability to accurately capture the underlying 

relationships between covariates and survival times, while also accounting for censored 

observations. Model evaluation typically focuses on two key aspects: discrimination and 

calibration. Discrimination refers to a model's ability to correctly differentiate between individuals 

at higher or lower risk of experiencing the event, while calibration assesses how well the predicted 

survival probabilities align with the observed outcomes over time (Harrell, 2015). 

 

For discrimination, commonly used metrics include the concordance index (C-index) and time-

dependent receiver operating characteristic (ROC) curves. The C-index measures the proportion 

of concordant pairs, where an individual with a shorter survival time has a higher predicted risk, 

and typically ranges from 0.5 (no better than random guessing) to 1.0 (perfect discrimination): 

 

𝐶 =
∑  𝑖,𝑗  1(𝑥𝑖>𝑥𝑗)⋅1(𝑇𝑖<𝑇𝑗)

∑  𝑖,𝑗  1(𝑇𝑖<𝑇𝑗)
          (4.28) 

 

Where: 

• 𝑥𝑖 and 𝑥𝑗: Predicted risk scores for individuals 𝑖 and 𝑗, 

• 𝑇𝑖 and 𝑇𝑗: Observed survival times, 

• 1(⋅): Indicator function returning 1 if the condition is true, 0 otherwise. 

 

 

Time-dependent ROC curves provide a more dynamic evaluation of the model’s discriminatory 

power at different time points, offering insights into its performance across the study period. 

Calibration, on the other hand, is evaluated by plotting predicted survival probabilities against 

observed survival probabilities, often using a calibration curve. A well-calibrated model will show 

a close match between predicted and observed values along the diagonal line of the plot. 

 

Calibration Curve: 𝑆obs (𝑡) = 𝑓(𝑆pred (𝑡))        (4.29) 

 

Where: 

• 𝑆pred (𝑡): Predicted survival probability at time 𝑡, 

• 𝑺obs (𝒕): Observed survival probability at time 𝑡. 

Beyond discrimination and calibration, model fit is another important criterion. For parametric 

models, such as the Weibull AFT model, Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) (described in GLMM section) are widely used to compare competing 

models. Lower AIC or BIC values indicate a better balance between goodness-of-fit and model 

complexity. For semi-parametric models like the Cox-PH model, log-likelihood ratio tests are used 

to assess the significance of added covariates. Additionally, residual diagnostics, such as 
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Martingale residuals or Schoenfeld residuals, are essential for verifying assumptions like 

proportional hazards in the Cox model.  

 

Martingale Residuals for testing functional form of covariates: 

 

𝑀𝑖 = 𝛿𝑖 − �̂�(𝑇𝑖)𝑒𝑥𝑝 (𝑋𝑖
𝑇𝛽)          (4.30) 

 

Where: 

• 𝛿𝑖: Event indicator (1 if event occurs, 0 if censored), 

• Λ̂(𝑇𝑖): Estimated cumulative hazard, 

• 𝑋𝑖
𝑇𝛽: Linear predictor for individual 𝑖. 

 

Schoenfeld Residuals for testing the proportional hazards assumption: 

 

𝑅𝑖𝑗 = 𝑋𝑖𝑗 −
∑  

𝑙∈𝑅(𝑇𝑗)
 𝑋𝑙𝑗𝑒𝑥𝑝 (𝑋𝑙

𝑇𝛽)

∑  
𝑙∈𝑅(𝑇𝑗)

 𝑒𝑥𝑝 (𝑋𝑙
𝑇𝛽)

          (4.31) 

 

Where: 

• 𝑅𝑖𝑗: Risk set at time 𝑇𝑗, 

• 𝑋𝑖𝑗: Covariate value for individual 𝑖 at time 𝑗. 

 

For machine learning approaches like random survival forests, model evaluation often involves 

out-of-bag (OOB) error estimation, which provides a measure of prediction accuracy by testing 

each tree on data not used in its construction (Ishwaran et al., 2008). 

 

OOB Error =
1

𝑛
∑  𝑛

𝑖=1 𝐿(𝑆pred,𝑖 , 𝑆true,𝑖)         (4.32) 

 

Where: 

• L: Loss function, often based on a survival-specific metric like integrated Brier score, 

• Spred,i: Predicted survival probability for individual i, 

• Strue,i: True survival outcome for individual i. 
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4 Naturalistic Driving Experiment  
 

4.1 Experimental Framework 
 

As already mentioned, the primary objective of this dissertation is to examine the driver behavior 

telematics feedback mechanism and its effect on driving behavior. The dissertation adopts a 

comprehensive approach to explore feedback's role in modifying driving behavior, with a focus on 

three key pillars:  

 

1. Assessing the impact of feedback on driving behavior of different road user groups (car 

drivers, professional van drivers, and motorcyclists) in various road environments.  

2. Investigating the effects of different feedback features across the experimental phases. 

3. Analyzing the long-term, post-feedback effects on driving behavior. 

 

To achieve these objectives, a naturalistic driving experiment was thoroughly designed and 

implemented, building on the results of the literature review regarding the experimental framework 

of existing naturalistic studies. The importance of the experimental framework of feedback-

oriented study has been emphasized in scientific research, as it serves the foundation for producing 

valid, reliable and interpretable results (Cash et al., 2016; Leik, 1997). In the context of naturalistic 

studies, a well-constructed experimental framework allows researchers to isolate the specific 

effects of various feedback mechanisms on driving behavior (van Schagen & Sagberg, 2012). In 

the present Dissertation, the experimental framework is discussed across the following key aspects: 

experimental design, recruitment process, sample characteristics (size, type of vehicle), and 

feedback phases (i.e., number and content of phases).  

 
Table 4.1: Framework of the naturalistic driving experiment 

Experimental design Feedback phases Duration 

one group / within-subjects 

design 

• baseline 

• scorecard 

• maps  

• peer 

  comparison 

• competitions 

• no feedback 

21 months 

 

4.1.1 Experimental design 

 

Naturalistic driving studies primarily employ two experimental designs: within-subjects and 

between-subjects designs. In a within-subjects design, the same participants are exposed to 

multiple conditions or interventions, allowing researchers to assess changes within individuals 

over time. All participants experience multiple phases of feedback and act as their own control 

group (Birrell & Fowkes, 2014; Hari et al., 2012). Conversely, a between-subjects design involves 

assigning different participants to separate groups, each exposed to distinct conditions. Studies 

where different groups of drivers received different types of feedback or no feedback at all (control 

group) through one experimental phase (Farah et al., 2014; Reagan et al., 2013; Rolim et al., 2016; 

Stevenson et al., 2021), allowing researchers to examine and analyze driving behavior across 
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different conditions of feedback influence. This design eliminates carryover effects and simplifies 

the study structure but requires larger sample sizes to account for variability between participants.  

 

The present naturalistic driving experiment constitutes a within-subject experimental design, 

which was deliberately chosen to align with the primary objectives of this dissertation. This design 

enables the examination of changes in individual driving behavior outcomes as drivers are exposed 

to different feedback mechanisms across multiple experimental phases. By using a within-subject 

design, each participant serves as their own control, allowing for a more precise assessment of the 

direct effects of telematics feedback on driving behavior. This approach is particularly well-suited 

for isolating the impact of feedback, as it minimizes the influence of individual differences, such 

as baseline driving skills, attitudes, or risk tolerance, which could confound results in a between-

subjects design (Newnam et al., 2014; Toledo & Shiftan, 2016). Furthermore, it ensures that the 

observed behavioral changes can be attributed more reliably to the feedback interventions rather 

than external factors. 

 

The within-subject experimental design also supports the comprehensive goals of the study, which 

include evaluating feedback's effects across various road user groups, phases, and long-term 

contexts. This design facilitates a nuanced exploration of how feedback modifies behavior over 

time and under different conditions, such as varying road environments and vehicle types. It is 

particularly effective in capturing the longitudinal effects of feedback, enabling the analysis of 

both immediate and post-feedback impacts. 

 

4.1.2 Recruitment process 

 

The official launch of the naturalistic driving experiment took place on July 1, 2019. The 

participant onboarding process was conducted via an automated email system sent to prospective 

participants and included the following steps: 

 

• 1st Email to Prospective Participant: An invitation to participate in the BeSmart research 

project, along with a brief description of the experiment. The Participant Information Sheet 

was attached. 

• 2nd Email: After the prospective participant expressed interest in participating in the 

BeSmart experiment, they were sent the Participant Consent Form, which they were 

required to complete in order to join the experiment. 

• 3rd Email: Once the prospective participant completed the Participant Consent Form, they 

received a unique username and a download link for the app (available in Android and iOS 

versions). The BeSmart App User Guide was also attached. 

 

The form of Consent for the participants can be found in Annex II. Additionally, OSeven's team 

created an application usage guide specifically for the research team, aimed at providing a more 

comprehensive understanding of the application’s functionality to address potential participant 

technical questions. It is further emphasized that all principles, requirements, and 

recommendations of the General Data Protection Regulation (GDPR) were followed during the 

recruitment of prospective participants. 

 

The majority of participants were recruited through the project team's contact networks, which 

facilitated effective collaboration and communication throughout the experiment. Regarding the 

recruitment of a sufficient number of professional drivers, the team collaborated with "Nea Odos," 
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which agreed to participate by providing its professional drivers as participants, believing that 

proper driver education and awareness could play a vital role in road safety. 

 

4.1.3 Sample distribution and characteristics 

 

Data regarding invited prospective participants per mode of transportation, gathered by the 

research team at NTUA responsible for sending the invitations, is presented in the following table. 

 
Table 4.2: Invited Prospective Participants by Mode of Transportation 

Mode of Transportation Number of Invited Candidates 

Passenger Vehicles 260 

Professionals (Car/Van) 80 

Motorcycles 55 

Bicycles 10 

Total 405 

 

Data on application users, provided by OSeven's backend team, is shown in the table Table 4.3. 

 

Table 4.3: BeSmart Application Users 

BeSmart App Installations 

Ios Android   

13 238   

      

BeSmart Environment   

Total Users  At least one Signin At least one trip 

225 225 208 

      

BeSmart Moto Environment   

Total Users At least one Signin At least one trip 

26 26 22 

 

Finally, the sample of active participants per mode of transportation is shown in the following table 

Table 4.4. 

 
Table 4.4: Sample Distribution by Mode of Transportation 

Mode of Transportation Number of Drivers Percentage of Total Drivers 

Passenger Vehicles 176 76.5% 

Professionals (Car/Van) 27 11.7% 

Motorcycles 22 9.6% 

Bicycles 5 2.2% 

Total 230 100% 

 

4.1.4 Experimental phases 

 

The experiment was divided into six phases, each providing different types of feedback to drivers. 

Figure 4.1 displays the different feedback features provided at each phase. As it is shown, Phase 1 

served as the baseline phase where drivers were recorded through the smartphone app and only a 

trip list was available with no other information about the driver behavior. In phases 2,3,4 and 5 
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different feedback features were added, as shown below, while drivers returned to no feedback in 

phase 6 for researchers to examine the post feedback effect.  

 

 
Figure 4.1: Description of the experiment phases  

 

The initial plan was to conduct each phase over two months, culminating in a total study duration 

of one year. However, the onset of the COVID-19 pandemic required the research team to adapt 

to the unprecedented circumstances. Due to government-imposed lockdowns and restrictions on 

movement, particularly between March 23, 2020, and May 4, 2020, the number and frequency of 

trips made by participants dropped significantly, with up to a 70% reduction in some cases. As a 

result, it became necessary to extend the experiment beyond the initially planned twelve months. 

The research team decided to prolong Phase 4, allowing participants to resume regular driving 

patterns as restrictions eased. Despite the easing of lockdown measures in May 2020, the travel 

activity remained lower than anticipated. Consequently, the start of the next phase (Phase 5 - 

Competitions and Challenges) was delayed until October 2020. The impact of COVID-19 both on 

mobility and road safety has been discussed in recent studies with very interesting insights (Du et 

al., 2024; Katrakazas et al., 2021).  
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Table 4.5: Naturalistic driving experiment timetable 

Date Experiment Phase 
Feedback 

feature No1 

Feedback 

feature No2 

Feedback 

feature No3 

Feedback 

feature No4 

Feedback 

feature No5 

Jul-19 Phase 1 – No feedback      

Aug-19 Phase 1 – No feedback      

Sep-19 Phase 1 – No feedback      

Oct-19 Phase 2 – Feature 1 Scorecard     

Nov-19 Phase 2 – Feature 1 Scorecard     

Dec-19 Phase 3 – Feature 1+2 Scorecard 
Maps and 

Highlights 
   

Jan-20 Phase 3 – Feature 1+2 Scorecard 
Maps and 

Highlights 
   

Feb-20 
Phase 4 – Feature 

1+2+3 
Scorecard 

Maps and 

Highlights 
Comparisons   

Mar-20 
Phase 4 – Feature 

1+2+3 
Scorecard 

Maps and 

Highlights 
Comparisons   

Apr-20 
Phase 4 – Feature 

1+2+3 
Scorecard 

Maps and 

Highlights 
Comparisons   

May-20 
Phase 4 – Feature 

1+2+3 
Scorecard 

Maps and 

Highlights 
Comparisons   

Jun-20 
Phase 4 – Feature 

1+2+3 
Scorecard 

Maps and 

Highlights 
Comparisons   

Jul-20 
Phase 4 – Feature 

1+2+3 
Scorecard 

Maps and 

Highlights 
Comparisons   

Aug-20 
Phase 4 – Feature 

1+2+3 
Scorecard 

Maps and 

Highlights 
Comparisons   

Sep-20 
Phase 4 – Feature 

1+2+3 
Scorecard 

Maps and 

Highlights 
Comparisons   

Oct-20 
Phase 5 – Feature 

1+2+3+4 
Scorecard 

Maps and 

Highlights 
Comparisons Competitions  

Nov-20 
Phase 5 – Feature 

1+2+3+4 
Scorecard 

Maps and 

Highlights 
Comparisons Competitions  

Dec-20 
Phase 5 – Feature 

1+2+3+5 
Scorecard 

Maps and 

Highlights 
Comparisons  Challenges 

Jan-21 
Phase 5 – Feature 

1+2+3+5 
Scorecard 

Maps and 

Highlights 
Comparisons  Challenges 

Feb-21 Phase 6 – No feedback      

Mar-21 Phase 6 – No feedback      

Apr-21 End of the experiment      

 

Furthermore, Figure 4.2 presents example screenshots from the application features in all 

experiment phases, illustrating the progression of feedback mechanisms provided to users. Phase 

1 and Phase 6 represent control phases with no feedback, showcasing only basic trip details. Phase 

2 introduces the Scorecard feature, offering users a performance score and visual feedback on 

driving behavior metrics. Phase 3 highlights the Maps feature, where users can view trip routes 

alongside key driving event markers, enabling a spatial understanding of their behaviors. Phase 4 

includes the Comparison feature, allowing users to evaluate their performance against past trips or 

peer averages. Phase 5 showcases the Competitions and Challenges feature, incorporating 

gamified elements like ranking systems, points, and personalized challenges to motivate safer 

driving practices.  
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Phase 1 – No feedback  Phase 2 – Scorecard  

      

Phase 3 – Maps Phase 4 – Comparisons 

    
Phase 5 – Competitions & Challenges Phase 6 – No feedback  

    
 

Figure 4.2. Example screenshots from the application features in all experiment phases 
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4.2 Smartphone Application  
 

4.2.1 Data collection system 

 

For the purpose of the experiment, an innovative smartphone application, developed by OSeven 

Telematics (www.oseven.io), was utilized to assess and improve driver behavior and safety. This 

application records driver behavior using the smartphone's hardware sensors and various APIs to 

collect sensor data.  

 

Smartphones are equipped with a variety of sensors (Bluetooth, GPS receiver, GSM/GPRS 

connectivity, 3D accelerometer, gyroscope, magnetometer, proximity sensor, compass, barometer, 

etc.). The BeSmart application is designed using the latest software advancements, providing users 

with the best possible experience. The app is activated periodically by the Android and iOS 

operating systems, collecting position and movement data for a few seconds to determine if the 

user is in a vehicle. This process is called "Driving Detection." If the app verifies that the user is 

in a vehicle, it begins recording primary data. Otherwise, data collection stops, and the app 

deactivates until the system reactivates it next time. 

 

The frequency of data recording varies depending on the type of sensor, with a minimum rate of 1 

Hz. It is worth noting that this method enables the collection of a large amount of driving 

characteristic data solely through the mobile phone application. The journey recording continues 

even if the vehicle is idle for five minutes to account for scenarios where the driver may resume a 

trip after a brief stop. 

 

The primary data collected include the following: 

• Date and time 

• GPS data (longitude, latitude, altitude, speed, horizontal accuracy, altitude accuracy) 

• Accelerometer data 

• Gyroscope data (Yaw, Pitch, Roll) 

• Smartphone orientation data 

• Activity data (e.g., walking, driving, stationary) 

• Screen status (without access to screen content) 

 

A variety of APIs (Application Programming Interfaces) are used to read the recorded sensor data 

and temporarily store it in the smartphone's database before transferring it to the central database. 

All additional information collected after driving ends is deleted. Figure 4.3 summarizes the stages 

of data flow. 

 

 
Figure 4.3: The OSeven data flow system 

 

 

http://www.oseven.io/
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4.2.2 Data processing and feature engineering 

 

To process the primary data for extracting driver behavior and vehicle usage information (e.g., 

speeding, mobile phone use, sudden accelerations and braking, user scores), specialized software 

from OSeven periodically retrieves the Primary Data from the upload area and begins processing 

it to calculate driving behavior and vehicle usage data. For this purpose, OSeven has servers 

located in the data centers of the aforementioned cloud service providers within the EU where this 

software is executed. 

 

Advanced machine learning (ML) and data fusion algorithms are used for processing the  recorded 

data. The following procedures are carried out: 

 

• Data filtering and cleaning: Detecting outlier values (data deemed unreliable is discarded). 

Advanced signal processing techniques remove noise from the raw data, retaining only 

information relevant to driving behavior. Data smoothing is also performed for parameters 

requiring it (e.g., when abnormal deviations are observed). 

 

• Speeding detection: Speed limits are calculated based on map data from providers such as 

Google and OSM. Speed limit violations and their duration are then computed. 

 

• Recognition of sudden events: This includes detecting sudden accelerations, braking, and 

turns, accounting for the aggressiveness and intensity of the events. 

 

• Mobile phone use detection: This includes calls, texting, and browsing. A precise detection 

algorithm has been developed, measuring phone usage based on data fusion and ML 

algorithms. These algorithms use only smartphone sensor data, without accessing other app 

activity for data privacy protection. 

 

• Identification of dangerous driving hours: Distance traveled between midnight and 5 a.m. 

is tracked, as these hours are considered risky due to potential alcohol consumption and 

driver fatigue. 

 

• Driver vs. passenger identification: During the trip, the system detects whether the user is 

the driver or a passenger and identifies the mode of transport (car, motorcycle, public 

transport, bicycle). 

 

• Scoring model: The primary data is processed and converted into metadata for use in the 

scoring model. Calculated metadata includes risk exposure and driving behavior indicators: 

total trip distance, driving duration, road type, time of day (peak hours, risky hours), trip 

purpose (specified by the driver), speed limit violations (duration and extent), number and 

severity of sudden events, driving aggressiveness (e.g., braking, acceleration), and mobile 

phone distractions (Figure 4.4). 
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Figure 4.4: OSeven Telematics Platform Overview 

 

Additionally, a separate environment was developed within the app for users who primarily use 

motorcycles, after identifying sensor limit issues in recording and evaluating motorcycle driving. 

Key differences in the upgraded version from the original BeSmart version include a different 

weighting factor for the score concerning the frequency of sudden events and the exclusion of 

mobile phone use from trip scoring categories. Data is analyzed, and the scoring system is 

calibrated based on the overall sample. 

 

4.2.3 Metadata and driver behavior indicators 

 

The metadata is then transferred to the server for statistical calculations per user. The results of 

this entire process are accessible via the BeSmart mobile app, enabling users to view all detected 

events and their locations on the map. This provides drivers with a user-friendly way to identify 

trip segments with risky driving behavior and encourages them to avoid similar behaviors in the 

future. 

 

Α variety of different metadata are eventually calculated, including the following exposure 

indicators: 

• Total distance (mileage) 

• Driving duration 

• Type(s) of the road network used (given by GPS position and integration with map 

providers e.g. Google, OSM) 

• Time of the day driving (rush hours, risky hours) 

• Weather conditions (under development, on the basis of integration 

• with weather data providers) 

• Trip purpose (set by the driver himself by using the smartphone app) 
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The driving behavior indicators that are also calculated from the data include: 

• Speeding (duration of speeding, speed limit exceedance etc.) 

• Number and severity of harsh events 

• Harsh braking (longitudinal acceleration) 

• Harsh acceleration (longitudinal acceleration) 

• Distraction from mobile phone use (mobile phone use is considered to be any type of phone 

use by the driver e.g. talking, texting etc.). 

 

 

 
 

Figure 4.5: OSeven Driving Behaviour Scoring 

 

It should be noted that harsh events are calculated via data fusion and machine learning algorithms 

and not a rule-based approach using as input the values of the accelerometer as well as values from 

additional sensors (e.g. orientation, magnetometer, GPS, gyroscope). Therefore, the determination 

of the harsh events is not based on specific thresholds. Yet, some indicative examples of speed and 

acceleration data related with specific harsh events from the available dataset are illustrated, so 

that harsh events can be better comprehended. Indicative harsh accelerations: (i) speed increase 

from 31km/h to 40km/h within one second and (ii) longitudinal acceleration 0.28g; Indicative 

harsh brakes: (i) speed decrease from 51km/h to 40km/h within one second and (ii) longitudinal 

deceleration 0.30g. It is stressed out that these are four indicative cases of harsh events and the 

respective values cannot be considered as thresholds, as the determination of the events is based 

on the coevaluation of several time series. In addition, the reliability of the OSeven algorithms has 

been extensively evaluated against literature data, OBD data, on-road experiments by certified 

experts on the assessment of driving behavior, and experiments on driving simulators (Tselentis et 

al., 2019; Petraki et al., 2020). Taking into consideration that the cited studies deal with car drivers, 

the authors clarify that the mentioned algorithms have been calibrated based on (i) on-road 

annotated experiments, and (ii) the comparison between the car and motorcycle data that quantify 

the vehicle dynamics. 

 

These indicators along with other data (e.g. from map providers) can be subsequently exploited to 

calculate individual driver statistics, on all road networks (urban, rural, highway, etc.) and under 

various driving conditions, enabling the creation of a large database of individual trip/driver 

characteristics. 
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4.3 Self-reported Questionnaire Data 
 

4.3.1 Structure and content 

 

A Driver Behavior Questionnaire was developed simultaneously (see Annex II). Each participant 

is asked to complete a questionnaire about their driving habits and driving behavior. The questions 

were carefully selected based on existing literature regarding self-reported driver behavior. The 

sections of the questionnaire are as follows: 

 

A. Driving Experience – Journeys   

B. Vehicle   

C. Driving Behavior   

D. Demographic Information   

 

The driving experience section includes questions about participants’ driving experience and 

habits, which will be used in the analyses as potential critical factors in evaluating the participants' 

driving performance. This section also includes questions about participants’ driving experience 

over different time frames, e.g., frequency of trips on a daily, weekly basis, etc., thus providing 

more detailed information on their driving experience. 

 

The second section of questions concerns the characteristics of the vehicle driven by participants, 

such as the age and engine size of the vehicle, as well as average fuel consumption during trips. 

The vehicle is one of the three factors impacting road safety, alongside the road environment and 

the human factor. 

 

The driving behavior section consists of two parts: the first addresses the participants' accident 

history over their lifetime as drivers, while the second involves the participants' self-assessment of 

their driving skills and performance. This section is very important, as the information provided 

here will be correlated with the drivers’ performance in the various phases of the driving 

experiment. 

 

The final section includes demographic questions that are also relevant for the subsequent analyses 

to be conducted throughout the project.  

 

Additionally, it is worth noting that four different questionnaires were developed, one for each 

vehicle type (passenger vehicles, professional drivers, motorcycles, bicycles), with corresponding 

adjustments in the questions to address the different modes of transportation. After the 

questionnaires were created in paper format, it was decided to use the online platform 

SurveyMonkey, with OSeven handling the online questionnaire administration. 

 

4.3.2 Statistical summary 

 

The following tables contain descriptive statistics for the questionnaire variables collected from 

the exploited BeSmart car driver sample, amounting to 87 drivers in total who completed the 

questionnaire: Table 4.6 contains the discrete variables &   
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Table 4.7 contains the continuous variables. 

The Table 4.6 present descriptive statistics of questionnaire responses. 

 
Table 4.6: Discrete descriptive statistics of the questionnaire responses 

Variable Classes: Responses (Percentage) 

days_per_week 

1: 2: 3: 4: 5: 6: 7: 

1 1 2 6 15 21 41 

(1.15%) (1.15%) (2.30%) (6.90%) (17.24%) (24.14%) (47.13%) 

km_per_week 

1: 2: 3: 4: 5:   
3 21 29 19 15   

(3.45%) (24.14%) (33.33%) (21.84%) (17.24%)   

daily_trips 

1: 2: 3: 4: 5:   
3 36 25 13 10   

(3.45%) (41.38%) (28.74%) (14.94%) (11.49%)   

km_daily_avg 

1: 2: 3: 4: 5: 6:  
17 1 27 17 8 17  

(19.54%) (1.15%) (31.03%) (19.54%) (9.20%) (19.54%)  

km_year 

1: 2: 3: 4: 5:   
5 13 30 14 25   

(5.75%) (14.94%) (34.48%) (16.09%) (28.74%)   

vehicle_ownership 

1: 2: 3: 4: 5:   
65 19 0 2 1   

(74.71%) (21.84%) (0.00%) (2.30%) (1.15%)   

cc 

1: 2: 3: 4: 5: 6: 7: 

14 2 17 31 19 1 3 

(16.09%) (2.30%) (19.54%) (35.63%) (21.84%) (1.15%) (3.45%) 

vehicle_age 

1: 2: 3: 4:    
14 16 37 20    

(16.09%) (18.39%) (42.53%) (22.99%)    

fuel_cons_avg 

1: 2: 3: 4: 5: 6:  
9 4 32 29 13 0  

(10.34%) (4.60%) (36.78%) (33.33%) (14.94%) (0.00%)  

tickets_3y 

1: 2: 3: 4: 5:   
63 11 5 3 5   

(72.41%) (12.64%) (5.75%) (3.45%) (5.75%)   

declared_speeding 

1: 2: 3: 4: 5:   
4 26 43 13 1   

(4.60%) (29.89%) (49.43%) (14.94%) (1.15%)   

declared_mbu 

1: 2: 3: 4: 5:   

1 14 13 31 28   

(1.15%) (16.09%) (14.94%) (35.63%) (32.18%)   

declared_harsh_brk 

1: 2: 3: 4: 5:   
7 43 30 7 0   

(8.05%) (49.43%) (34.48%) (8.05%) (0.00%)   

declared_harsh_acc 

1: 2: 3: 4: 5:   
11 3 44 29 0   

(12.64%) (3.45%) (50.57%) (33.33%) (0.00%)   

declared_harsh_turn 

1: 2: 3: 4: 5:   
27 3 44 13 0   

(31.03%) (3.45%) (50.57%) (14.94%) (0.00%)   

declared_aggressive 

1: 2: 3: 4: 5:   
33 30 19 3 2   

(37.93%) (34.48%) (21.84%) (3.45%) (2.30%)   

declared_careful 
1: 2: 3: 4: 5:   
0 0 14 44 29   
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Variable Classes: Responses (Percentage) 

(0.00%) (0.00%) (16.09%) (50.57%) (33.33%)   

education 

1: 2: 3: 4: 5:   
48 26 3 4 6   

(55.17%) (29.89%) (3.45%) (4.60%) (6.90%)   

smartphone_familiarity 

1: 2: 3: 4: 5:   
0 3 13 25 46   

(0.00%) (3.45%) (14.94%) (28.74%) (52.87%)   

gender 

1: 2: 3:     
48 39 0     

(55.17%) (44.83%) (0.00%)     

age 

1: 2: 3: 4: 5: 6:  
1 7 54 14 8 3  

(1.15%) (8.05%) (62.07%) (16.09%) (9.20%) (3.45%)  

marital_status 

1: 2: 3: 4:    
3 24 59 1    

(3.45%) (27.59%) (67.82%) (1.15%)    

 

From Table 4.6, it is evident that the considered driver sample is quite active, with the majority 

using their vehicles 5 to 7 days per week. The majority of driving trips appear to have a non-trivial 

length, i.e. more than 6 kilometers daily and more than 20 kilometers weekly, while there is also a 

modest representation of other daily and weekly trip lengths. This indicates a well-rounded sample 

of both shorter and longer trips for drivers, indicative of moving predominantly within a large 

urban environment. 

 

The driver sample has good representation of men and women, while most drivers belong to the 

25-34 and 35-44 years old age categories. In combination with modest to full familiarity with 

smartphones, this outlines a more technology-oriented driver sample, rather than traditional 

drivers. Another interesting insight refers to self-assessment of drivers: While the majority of 

drivers self-report that they sometimes or often engage in speeding, harsh accelerations and harsh 

turning/cornering, only a minority self-characterize as aggressive (the majority (strongly) 

disagrees with the characterization). At the same time, they are mostly inclined to self-characterize 

as careful drivers, despite self-reporting a very frequent use of their mobile phones when driving, 

though this can also include more passive functions such as GPS-issued directions.  
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Table 4.7: Continuous variable descriptive statistics of the questionnaire responses  
Variable Min Median Max St. Dev. 

licence_year 
1978 2009 2019 7.758 

driving_exp 

1 10 42 8.628 

crashes_until_now 

0 1 5 1.344 

crashes_3y 

0 0 3 0.776 

crashes_victims_unt

il_now 0 0 3 0.471 

crashes_victims_3y 

0 0 1 0.255 

crashes_pdo_until_n

ow 0 0 6 1.270 

crashes_ pdo_3y 

0 0 5 1.074 

family_members 

0 3 5 1.368 

 

In addition to the previous, it can be observed from   
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Table 4.7 that driving experience was more or less compatible with license year, indicating 

practiced drivers that were active after obtaining their licenses. In 2019, when the questionnaires 

were completed, the median value for driving experience was 10 years, denoting a driving sample 

that is moderately experienced. Most drivers were not involved in crashes of any type, as hinted 

by the fact that the median drops to zero when separating property damage only (PDO) crashes 

from crashes with victims (i.e. fatalities or injuries). 
 

4.4 Big Data Processing 
 

4.4.1 Data integration and organization 

 

After recording, collection, storage, and processing of data by OSeven's integrated system, as 

detailed in the previous chapter, the next step was to organize the large-scale data to be suitably 

utilized as the database for statistical analyses conducted by the NTUA research team. 

 

The resulting database was provided in Microsoft Excel files to enable data processing by the 

project's research team. Specifically, there were two different types of databases, each referring to 

distinct driving characteristics, to be used in various analyses aimed at investigating complex 

relationships among different groups of variables, with the ultimate goal of assessing driving 

behavior and relevant interventions. 

 

Alongside the integrated data transfer system by OSeven, the Postman platform was utilized by 

the NTUA research team to extract a small amount of data for investigation and analysis purposes. 

 

Postman is an API platform for creating and using APIs. The Postman platform simplified and 

improved collaboration between the two teams, enabling better and faster data retrieval. In 

summary, the NTUA team was able to send requests to the OSeven backend system to retrieve 

data from drivers' trips for specific time periods. Additionally, two environments were created: one 

for the BeSmart application (car drivers) and one for the BeSmart MotorBike application 

(motorcyclists). A snapshot from the Postman platform is shown in Figure 4.6: Snapshot from the 

Postman Platform. 
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Figure 4.6: Snapshot from the Postman Platform 

 

4.4.2 Database structure 

 

One database focused on drivers’ travel characteristics. Each row represented a driver’s journey, 

while each column contained a variable for each journey. Some of the variables included in this 

database were as follows: 

 

- **tripid**: trip code 

- **userid**: driver code 

- **duration**: total trip duration in seconds (s) 

- **driving_duration**: net driving time excluding stops, in seconds (s) 

- **totaldist**: total trip distance in kilometers (km) 

- **ha**: number of harsh accelerations (absolute count) 

- **hb**: number of harsh decelerations (absolute count) 

- **hc**: number of sharp turns (absolute count) 

- **ha_intensity_high**: high-intensity harsh acceleration 

- **ha_intensity_low**: low-intensity harsh acceleration 

- **ha_intensity_medium**: medium-intensity harsh acceleration 

- **avaccel**: average acceleration (km/h/s) 

- **avdecel**: average deceleration (km/h/s) 

- **smooth_corner**: average turning speed (degrees/s) 

- **mobileusage**: percentage of driving_duration where the driver used a mobile phone 

- **perc_speeding**: percentage of driving_duration spent above the speed limit 

- **av_speeding**: average percentage of speed limit excess 

- **riskyhourdistance**: driving distance between 22:00 and 05:00 (km) 

 

Additionally, for better management of large-scale data, supplementary databases were created for 

each experimental phase and vehicle type to enhance their effective use in statistical analyses. 
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Finally, the collection and entry of personal data into an MS Excel file was carried out by members 

of the research team, with the file being password-protected. Once personal data collection and 

entry were completed, only the Project Coordinator and Data Management Officer had access to 

this file. Each participant was assigned a unique code with no association to their personal data. 

The research team analyzed driving behavior data using these anonymous codes and selected 

demographic data that did not allow for identification of the individual. This ensured that driving 

behavior data could not be linked to individuals by research team members who no longer had 

access to the Personal Data File. 

 

4.5 Descriptive Statistics 
 

Before proceeding with the model development, it is essential to examine the descriptive statistics 

of the six experimental phases for the three driver groups: car drivers, professional drivers, and 

motorcyclists. These statistics provide a preliminary understanding of the effects of the different 

feedback interventions on key driving behavior indicators, including speeding percentage, mobile 

phone use, harsh accelerations, and harsh braking. (Table 4.8). 
 

Table 4.8: Descriptive statistics of the per driver values of the recorded driving behavioral indicators 

(mean value and the respective standard deviation in parenthesis)  

Speeding 

percentage (%) 
Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 

Car drivers 5.98 

(0.05) 

3.66 

(0.03) 

3.63 

(0.04) 

4.38 

(0.04) 

3.25 

(0.04) 

3.88 

(0.04) 

Professional  

drivers 

- 1.61 

(0.02) 

0.78 

(0.01) 

0.96 

(0.01) 

1.05 

(0.01) 

2.26 

(0.01) 

Motorcyclists 10.42 

(0.09) 

7.91 

(0.09) 

9.58 

(0.12) 

9.23 

(0.09) 

7.86 

(0.08) 

9.09 

(0.07) 

Mobile use 

percentage 
Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 

Car drivers 4.20 

(0.06) 

3.58 

(0.05) 

3.89 

(0.06) 

3.66 

(0.06) 

3.03 

(0.07) 

2.83 

(0.04) 

Professional  

drivers 

- 0.80 

(0.01) 

0.76 

(0.01) 

0.82 

(0.01) 

1.00 

(0.02) 

1.44 

(0.01) 

Motorcyclists - - - - - - 

Harsh 

accelerations per 

100km 

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 

Car drivers  9.31 

(9.76)                   

9.01 

(8.21) 

10.62 

(9.89) 

10.51 

(11.33) 

8.81 

(9.49)  

8.33 

(5.61) 

Professional  

drivers 

- 0.58  

(1.07) 

0.59 

(0.98) 

1.04 

(1.51) 

0.42 

(0.65) 

2.09 

(1.21) 

Motorcyclists  48.38 

(29.77)  

19.76 

(19.66) 

28.53 

(28.83)  

19.26 

(14.74)  

8.27 

(10.30)  

12.24 

(13.83) 

Harsh braking 

per 100km 
Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism 

 

113 

 

Car drivers 18.04 

(14.14) 

17.35 

(11.94) 

18.31 

(10.70) 

17.35 

(11.90) 

12.08 

(9.94)  

13.71 

(8.31) 

Professional  

drivers 

- 2.57 

(3.39)  

2.24 

(2.89) 

2.90 

(3.04) 

1.37 

(2.13) 

4.79 

(1.58)  

Motorcyclists  31.36 

(24.36)  

26.38 

(22.27) 

39.95 

(41.94) 

33.81 

(33.81) 

13.68 

(9.77)  

18.18 

(9.80)  

 

Speeding Behavior Across Phases 

Speeding is a critical indicator of risky driving behavior. Car drivers exhibit a reduction in speeding 

percentage during the initial feedback phases, decreasing from 5.98% in Phase 1 (baseline) to 

3.63% in Phase 3, where map-based feedback was introduced. However, a slight increase is 

observed in later phases, with 4.38% in Phase 4 and 3.88% in Phase 6, suggesting a potential 

relapse effect after the feedback interventions were removed. Professional drivers, who entered 

the study from Phase 2 onward, demonstrated significantly lower speeding percentages than car 

drivers, starting at 1.61% in Phase 2 and gradually increasing to 2.26% in Phase 6. Motorcyclists 

initially exhibited a much higher speeding percentage (10.42% in Phase 1), which decreased in 

subsequent phases but fluctuated between 7.86% and 9.23% in later phases. 

 

Mobile Phone Use Trends 

Mobile phone use while driving is a major distraction and safety risk. Car drivers exhibited a steady 

decrease in mobile use, from 4.20% in Phase 1 to 2.83% in Phase 6, indicating a potential positive 

impact of feedback interventions in reducing this risky behavior. Professional drivers consistently 

showed very low percentages of mobile phone use, starting from 0.80% in Phase 2 and reaching 

1.44% in Phase 6. This might be attributed to the nature of their driving behavior, as they may be 

more aware of company policies or safety regulations. Motorcyclists had no recorded mobile 

phone use, which is likely due to the limitations in measuring phone use while riding a motorcycle. 

 

Harsh Acceleration Patterns 

Harsh accelerations per 100km serve as an indicator of aggressive driving tendencies. Car drivers 

started with 9.31 harsh accelerations per 100km in Phase 1, which slightly fluctuated but ultimately 

decreased to 8.33 in Phase 6. Professional drivers showed much lower values than car drivers, 

averaging below 2 harsh accelerations per 100km in all phases, indicating that this driver group 

tends to engage in less aggressive acceleration. Motorcyclists displayed significantly higher initial 

values (48.38 in Phase 1), which decreased over time but remained relatively high compared to 

other driver groups. 

 

Harsh Braking Trends 

Harsh braking per 100km is another critical risk factor in evaluating driving safety. Car drivers 

demonstrated a relatively stable pattern, beginning at 18.04 in Phase 1 and declining to 13.71 in 

Phase 6. Professional drivers had much lower harsh braking values, starting at 2.57 in Phase 2 and 

peaking at 4.79 in Phase 6. Motorcyclists initially displayed high values (31.36 in Phase 1), with 

significant fluctuations across phases, reaching their highest at 39.95 in Phase 3 before gradually 

decreasing. 

 

These descriptive statistics highlight the changes in driving behavior across phases and provide a 

foundation for further analysis using statistical modeling.  
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5 Feedback Impact on Driver Speeding and Distracted Behavior 
 

5.1 Feedback Impact on Speeding Behavior of Motorcyclists of Phases 1 & 2 
 

5.1.1 Introduction 

 

Motorcyclists constitute a vulnerable road user group with up to 30 times higher fatality rates 

compared to passenger cars (Johnson et al., 2008). In 2017, motorcyclists accounted for 18% of 

the total number of road deaths in the EU countries; specifically, about 3,850 users (riders and 

passengers) of motorcycles and about 600 riders of mopeds were killed in EU countries in road 

traffic accidents (European Commission, 2018). During 2017, Greece had the highest rate of 

motorcycle fatalities per million population in EU-28 Countries, 20.1 deaths, while the EU average 

was 7.5 fatalities per 1 million population (European Commission, 2018). Although motorcyclists 

represent approximately the 15% of total vehicles in Greece, they were involved in 36% of total 

road accidents in 2018 (ELSTAT, 2020). 

 

Specific factors affecting the accident injury severity of motorcyclists have been determined in the 

literature: Albalate & Fernandez-Villadangos (2010) identified gender, excess speed, road width, 

and alcohol consumption as factors affecting powered two-wheeler (PTW) injury severity. 

Theofilatos & Ziakopoulos (2018) determined that traffic and speed variations increase PTW 

injury severity, while increased truck proportions in the traffic mix were found to relatively reduce 

injury severity, possibly due to behavioral adaptations on behalf of PTW riders.  

 

Behavioral issues are major moderating factors to both frequency and severity of motorcycle 

accidents. Speeding, sensation seeking, aggressiveness, perceived risk, errors, violations and 

attitudes towards road safety are considered to be crucial behavioral risk factors (Vlahogianni et 

al., 2012; Theofilatos & Yannis, 2015). This is corroborated by a related in-depth accident 

investigation as well. Using data collected from 500 accidents involving PTWs and bicycles, 

Ziakopoulos et al. (2018) found speeding to be a contributing factor to both accident frequency 

and severity. Another in-depth accident study using the framework of GIDAS (German In-Depth 

Accident Study) investigated the injury protection and accident causation parameters for 

motorcyclists, among groups of vulnerable road users, alongside pedestrians and bicyclists. It was 

found that in the majority of the cases, motorcycle riders failed to correctly evaluate the 

information received from the traffic environment or the situation of their own vehicle (Otte et al., 

2012). 

 

The accurate monitoring of motorcyclist riding behavior is therefore of high importance. Although 

motorcycle accidents have been widely investigated by researchers, the lack of detailed naturalistic 

riding data remains a persistent obstacle for the scientific community. Several existing studies have 

shown promising results on the analysis of motorcyclist riding behavior by means of naturalistic 

experiments (Espié et al., 2013). Williams et al. (2016) examined the contributing factors that 

influence motorcyclist accident risk, exploiting data from the MSF 100 Motorcyclists Naturalistic 

Study (31,000 trips from 100 riders). Their results can be utilized for further investigation of road 

safety levels during daily riding. Other recent studies have attempted to develop methodological 

techniques to allow either for rider profile detection (Will et al., 2020) or for measuring the lean 

angles of motorcycles on a large scale (Stanglmayr et al., 2020). Furthermore, the validity of 

approaches based on smartphone applications has been demonstrated in past studies. Using 



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism 

 

115 

 

applications solely, stopping and dangerous riding events have been detected with a reported 

accuracy of 90.1% for scooters (Hsieh et al., 2014) and 86.8% for bicycles (Gu et al., 2017). 

 

However, to the best of the authors’ knowledge, this is the first attempt to understand behaviors 

and risks related to rider speeding on the basis of data collected from smartphone sensors. 

Additionally, since several studies have correlated speeding with rider aggressiveness (Lin & 

Kraus, 2009; Vlahogianni et al., 2012) and with environmental/exposure metrics, as expressed, for 

instance, by night-time riding (de Rome et al., 2016), the authors’ aim is to investigate the 

respective influence factors and come to conclusions regarding their impact on speeding. More 

precisely, rider speeding is expected to increase due to: 

 

• rider aggressiveness 

• travelled distance 

• nighttime riding 

 

In light of the aforementioned, the objective of the present study is twofold: (i) to explore the riding 

behavior of motorcyclists while speeding, based on detailed riding analytics collected by 

smartphone sensors, and (ii) to investigate whether personalized feedback can improve rider 

behavior.  

 

5.1.2 Rider panel and descriptive statistics 

 

Originally, 20 motorcyclist riders volunteered to participate in the experiment and to allow for 

monitoring their riding behavior through the respective smartphone application. However, for the 

present analysis it was decided that the final sample should consist only of riders who have 

participated equally in both phases on terms of trips. An additional criterion was set; all riders 

selected for the analysis were required to have ridden for at least 40 trips. This number 

approximately equals the typical monthly number of working trips, assuming that each rider drives 

2 trips a day for 5 working days a week. This number is reasonable to filter out riders for which 

there are not enough observations, and it is also the 'industrial' criterion set by OSeven to start 

providing rider evaluation to clients. As a result, from the 20 motorcyclists, 13 riders (4 female, 9 

male) were ultimately selected. All participants possessed a valid driving license while the 11 out 

of 13 rode their own motorcycle (the other two rode the motorcycle of a family member). The 

participants were aged between 25-34 (n=9) and between 35-45 (n=4). Detailed sample 

information is presented in Table 5.1. 

 
Table 5.1: Participant panel description regarding riding and vehicle data (N=13) 

Riding parameter Distribution of participants 

Riding experience  

(number of years) 

<5 5-10 11-20 >20 

7.7% 30.8% 53.8% 7.7% 

Driven distance per year  

(km) 

<5000 5001-10000 10001-15000 >15000 

15.4% 7.7% 61.5% 15.4% 

Motorcycle engine size 

(cc) 

<251 251-500 501-1000 >1000 

46.1% 7.7% 23.1% 23.1% 
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Overall, during the two phases of the experiment a large dataset of 3,537 trips from a sample of 13 

motorcyclists were recorded. Before presenting the model development, exploratory descriptive 

analysis of the data is implemented, allowing for an overview of the percentage of speeding while 

riding, as well as the other three riding indicators that are presented via the application in the 

feedback phase. Particularly, the descriptive statistics of values of the respective variables are 

shown in Table 5.2 and they reveal some interesting first findings. It is obvious that all risk factors 

show a significant reduction when riders receive feedback about their riding behavior, which 

constitutes an incentive for modelling the impact of feedback. Additionally, this finding is observed 

in all different road types, indicating a smoother performance of the respective riding metrics when 

riders are receiving feedback. However, in the case of highways, it is remarkable that the reduction 

of the examined riding indicators is much slighter compared to the urban and rural road network. 

This seems logical, taking into consideration the riding pattern in highways, as longer distances 

are covered and high speeds are developed. 

 
Table 5.2: Descriptive statistics of the per trip values of the variables and the respective standard 

deviations (in parenthesis) recorded for Phase 1 (Baseline) and Phase 2 (Feedback) 

Variable 

Road type 

Urban Rural Highway 

Baseline Feedback Baseline Feedback Baseline Feedback 

Average speed 

[km/h] 

35.82 

(0.30) 

33.66 

(0.29) 

50.08 

(0.66) 

38.28 

(0.48) 

97.01 

(0.58) 

77.62 

(0.66) 

Speeding 

percentage [%] 

13.41 

(0.41) 

9.84 

(0.33) 

10.33 

(0.62) 

3.07 

(0.34) 

5.60 

(0.96) 

5.35 

(0.90) 

Harsh accel. 

[count] 

2.54 

(0.08) 

1.70 

(0.06) 

2.02 

(0.09) 

1.38 

(0.06) 

0.81 

(0.11) 

0.22 

(0.04) 

Harsh brakings 

[count] 

1.59 

(0.05) 

1.14 

(0.04) 

1.27 

(0.07) 

0.81 

(0.04) 

0.45 

(0.08) 

0.16 

(0.03) 

 

5.1.3 Generalized Linear Mixed-Effects Models for speeding 

 

In order to model the expected percentage of speeding per trip for the participant riders, mixed- 

effect models in a GLM framework (GLMMs) were calibrated. Specifically, GLMMs were fitted 

in R-studio (with the lme4 package) via maximum likelihood and using z-factor scaling. A number 

of models were tested with different configurations in the collected parameters in both fixed effects 

and random effects. Furthermore, it is important to note that the sample consists of driver trips, as 

opposed to drivers directly, thus allowing the training of statistically robust models. 

 

The selected variables were chosen after taking into account the following: lowest Akaike 

Information Criterion (AIC) for dealing with the trade-off between the goodness of fit of the model 

and the simplicity of the model, high statistical significance of variables, low multicollinearity, and 

finally rational interpretation of their impact on the dependent variable. After conducting log-

likelihood test ANOVA comparisons, the most informative configuration of random effects was 

included both random intercepts and random slopes in the GLMMs to capture unique rider traits. 

Table 5.3 provides a description of the parameters of the models. 

 
Table 5.3: Log-likelihood comparison of mixed effect configuration for overall speeding model 

Model 

Family 

Model 

Configuration 

D.f. 

AIC BIC logLik 
𝝌𝟐 P(>𝝌𝟐) 
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GLM Fixed effects only 

[baseline] 

7 

52468 52511 -26227 

– – 

GLMΜ Fixed effects & 

Random Intercepts 

8 

38795 38844 -19390 13674.6 

< 2e-16 

GLMΜ Fixed effects, 

Random Intercepts 

& Random Slopes 

10 

37114 37176 -18547 1684.9 

< 2e-16 

 

The final models are presented in Table 5.4, Table 5.5, and Table 5.6. Modelling results reveal 

some interesting findings: The parameters of trip duration, the distance driven during risky hours, 

morning peak hours and the number of harsh accelerations have all been determined as statistically 

significant and positively correlated with the percentage of speeding. In the same context, riding 

during the feedback phase of the experiment, as well as afternoon peak hours are statistically 

significant and negatively correlated with speeding percentage. 

 
Table 5.4: GLMM overall model for speeding behavior in all road network environments 

Random Effects     

Group Variable SD Variance  

Identifier Intercept 0.9935         0.9870     

 duration 0.3397    0.1154     

Fixed Effects     

Variable Estimate Std. Error z value Pr(>|z|) 

Intercept 1.898       0.276       6.874  <0.001 

Rider Feedback -0.144       0.013  -10.911  <0.001 

Trip duration      0.194       0.095       2.030  0.042 

Harsh accelerations      0.246       0.005      53.127  <0.001 

Risky hours      0.018       0.003       5.161  <0.001 

Morning Rush      0.066       0.015       4.356  <0.001 

Afternoon Rush -0.287       0.015  -18.826  <0.001 

AIC 37114.1      

BIC 37175.9    

logLik -18547.1  s    

 
Table 5.5: GLMM urban model for speeding behavior in urban environment  

Random Effects     

Group Variable SD Variance  

Identifier Intercept 3.081     <0.001  

 duration 0.004 <0.001  

Fixed Effects     

Variable Estimate Std. Error z value Pr(>|z|) 

Intercept 1.810 0.351 5.152 <0.001 

Rider Feedback -0.031 0.011 -2.801 0.005 

Trip duration 0.001 0.000 3.563 <0.001 

Harsh accelerations - - - - 

Risky hours 0.006 0.013 7.279 0.001 

Morning Rush 0.093 0.013 -22.969 <0.001 

Afternoon Rush -0.303 0.351 5.152 <0.001 
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AIC 54460.9    

BIC 54516.4    

logLik -27221.4      

 
Table 5.6: GLMM rural model for speeding behavior in rural environment  

Random Effects     

Group Variable SD Variance  

Identifier Intercept 3.081     <0.001  

 duration 0.004 <0.001  

Fixed Effects     

Variable Estimate Std. Error z value Pr(>|z|) 

Intercept - 0.870 -0.689 - 

Rider Feedback -0.420 0.019 -22.014 <0.001 

Trip duration 0.003 0.001 2.819 0.004 

Harsh accelerations 0.056 0.002 28.986 <0.001 

Risky hours 0.019 0.002 8.611 <0.001 

Morning Rush 0.130 0.020 6.551 <0.001 

Afternoon Rush -0.436 0.023 -19.270 <0.001 

AIC 34576.3    

BIC 34638.0    

logLik -17278.2      

 

The aforementioned results could be further interpreted, calculating the relative risk ratio of every 

variable and thus measuring the increase in probability of speeding while riding. The exposure 

metrics of trip duration, trip distance during risky hours and morning peak hours seem to increase 

speeding percentage by a factor of exp(B=0.194) = 1.214, exp(B=0.018) = 1.018 and 

exp(B=0.067) = 1.069 respectively for the overall model. The variables are found to have similar 

significant effects both in urban and in rural areas. In other words, motorcyclists seem prone to 

speeding while riding under circumstances that increase their impatience and/or stress such as long 

trip durations, riding during hours of increased traffic conflicts, lane splitting, hurrying while 

commuting, etc.  

 

Additionally, the riding behavioral parameter of harsh accelerations increases speeding percentage 

by a factor of 1.281 in the overall model, indicating the pattern of a stressful riding style. The 

variable is not found statistically significant for the urban road model, but regarding rural riding, 

the number of harsh accelerations seem to increase the speeding percentage by a factor of 1.060. 

 

Providing motorcyclists with feedback about their riding performance during experiment Phase 2 

led to a remarkable decrease of speeding percentage by 14.5%. Particularly, in the developed 

models rider feedback seems to decrease speeding percentage, having a risk ratio of exp(B=-0.145) 

= 0.865 for the overall model, and exp(B=-0.031) = 0.970 and exp(B=-0.420) = 0.657 for urban 

and rural road types respectively. As explained above, during the feedback phase, riders received 

personalized feedback regarding their weak points, namely speeding and aggressive riding (harsh 

accelerations and harsh breakings) by means of a scorecard through the smartphone application. 

Therefore, the quantification of the positive effect of rider feedback on riding performance 

indicates new ways of improving road safety. 
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Furthermore, the chart below depicts the random effects estimates for individual participants 

(besmartmotousers) in the overall GLMM model analyzing speeding behavior, with "Trip 

Duration" as a fixed effect and an intercept for each user. The random intercepts capture the 

variability in baseline speeding tendencies among users, while the slopes associated with "Trip 

Duration" indicate how the effect of trip duration varies across individuals. The spread and overlap 

of the confidence intervals around the estimates suggest heterogeneity in individual driving 

behaviors. Participants like besmartmotouser21 show a significant deviation in the intercept and 

trip duration effect compared to others, highlighting potential individual-specific factors 

influencing speeding behavior. This variability emphasizes the importance of including random 

effects in the GLMM to account for individual differences in driver response. 

 

 
Figure 5.1: Random Intercepts and Random Slopes for total trip duration 

 

5.1.4 Discussion of results 

 

This section aimed: (i) to explore the riding behavior of motorcyclists while speeding based on 

detailed riding analytics collected by smartphone sensors, and (ii) to investigate whether 

personalized feedback can improve riding behavior. For that purpose, high-resolution smartphone 

data collected from a naturalistic riding experiment with a sample of 13 motorcyclists were 

utilized. Using risk exposure and riding behavior indicators calculated from smartphone sensor 

data, a statistical analysis was carried out for correlating the percentage of riding time over the 

speed limit with other riding behavior indicators, namely by means of Generalized Linear Mixed-

Effects Models. In particular, an overall model was developed for all trips, and additional separate 

models were developed for riding on urban and rural roads. 

 

The results from the interpretation of the estimated parameters of the models can be summarized 

as follows: Trip length and riding during the morning rush and night-time risky hours are exposure 

metrics significantly associated with the odds of speeding while riding. Harsh accelerations are 
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also associated with the odds of someone exceeding the speed limits, outlining a pattern of an 

overall unsafe riding behavior. 

 

Furthermore, the outcomes of this study entail both scientific and social impacts. The present 

research contributes a preliminary example of the quantitative documentation of the impact of 

personalized rider feedback on one of the most important human risk factors; speeding. The 

ultimate objective when providing feedback to riders is to: (i) trigger their learning and self-

assessment process, thus enabling them to gradually improve their performance and (ii) monitor 

the shift of riding behavior as the application provides feedback. The present results capture and 

quantify the positive effects of rider feedback, thus providing needed impetus for larger-scale 

applications as well as relevant policy interventions. State-of-the-art interventions can include 

approaches for driver or rider training and support through innovative rider behavior monitoring 

and feedback tools for different types of riders, such as cyclists or motorcyclists.  

 

The current lack of motorcycle instrumentation certainly limits the potential of detailed 

multifaceted analysis. Nevertheless, the proposed methodology reaches noteworthy findings, even 

though the riding exposure and behavior metrics are solely based on smartphone sensors and no 

other methods, e.g. optical sensors. It is important to highlight that there is little or no previous 

experience on analyzing and predicting rider speeding behavior through microscopic riding 

behavior metrics collected from such a portable and low-cost device, and therefore the results of 

the present research cannot be directly compared to those of the existing literature. 

 

Furthermore, as already discussed, the calculation of the harsh events for motorcycles is based on 

ML and data fusion algorithms, utilizing data from several smartphone sensors, after the 

application of the appropriate filtering and data cleaning algorithms on the raw signals. These 

algorithms evaluate the processed time series from the smartphone sensors of the complete trip. 

Although the applied algorithms increase the accuracy of harsh events detection; by nature, they 

do not include specific threshold values or explicit explanations that could be presented in the 

existing section for verification purposes – nonetheless, some practical examples were illustrated. 

Harsh events were treated as a given input of rider behavior for the investigation of their speeding 

behavior; the examination of their definition or detection falls outside the scope of this research. 

 

5.2 Feedback Impact on Distraction of Car Drivers of Phases 1 & 2 
 

5.2.1 Introduction 

 

Mobile phone use while driving has a significant negative effect on driving behavior in terms of 

reaction time (Haque and Washington, 2014), vehicle lateral control (Niu et al., 2019), headway 

(Saifuzzaman et al., 2015), speed variation (Wijayaratna et al., 2019). When engaging with a 

mobile phone (hand-held or hands-free) drivers’ work load is highly increased resulting in 

impaired driving performance. A plethora of studies have examined the impact of mobile phone 

while driving on driving performance and some risk compensation behaviors have been observed, 

namely lower driving speeds (Choudhary & Velaga, 2017) and increased car following headways 

(Li et al., 2019). Nevertheless, the revealed compensatory behaviors do not necessarily result in 

lower crash risk (O’Connor et al., 2017), highlighting the high importance of investigating the 

distracted behavior due to mobile phone use while driving.  

 



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism 

 

121 

 

However, it is also significant to underline that the context and circumstances in which drivers 

decide to engage in mobile phone use (i.e. road geometry, presence of lead or following car, line 

crossings, etc.) matter considerably. Tivesten & Dozza (2015) used video recordings of 1,432 trips 

in order to investigate in which way the driving context influences driver’s decision of engagement 

in visual-manual phone tasks. Researchers found that drivers were more likely to initiate a visual-

manual task while standing still (i.e. red traffic lights), and less likely when driving at high speeds. 

Similar results occurred by the presence of a passenger. In addition, results showed that drivers 

did adjust their task timing to specific driving contexts, such as when the lead vehicle increased 

speed or after making sharp turns and lane change maneuvers.  

 

In that environment, a recent study also investigated the relation between driving demands and 

distraction using a naturalistic driving study dataset (Risteska et al., 2021). Results implicate the 

role of the driving demands and their impact on secondary task engagements. Similarly, Khan et 

al. (2021) analyzed driver distraction due to mobile phone use exploiting a multimodal dataset 

consisting of vehicle data, drivers’ smartphone activities, and environmental and contextual data. 

Going one step further, the researchers assessed existing driver distraction smartphone-based 

solutions via maxed mode survey, i.e., questionnaires and interviews from 98 participant drivers. 

Results showcase that future smartphone solutions should focus on the identification of driving 

context and thus generate context-aware adaptive interfaces enhancing driver safety. 

 

Monitoring distraction by means of smartphone devices is a quite new possibility which is gaining 

more and more attraction due to the continuous development of new technologies in the field of 

telecommunications industry. So far, many proposed systems have been introduced with the aim 

of accurately monitoring driver distraction by exploiting various mobile phone sensors, such as 

accelerometer and gyroscope, magnetometer, barometers, photometers, and thermometers, 

microphone and cameras, etc. (Paruchuri & Kumar, 2015; Nambi et al., 2018; Papadimitriou et al., 

2019).  

 

As an example, Bo et al. (2013) used personal smartphones by leveraging inertial sensors in order 

to detect the engagement of mobile phone use while driving. Particularly, the researchers aimed at 

distinguishing drivers and passengers and detecting when the driver is texting through a Hidden 

Markov Model (HMM). The results of their study revealed that their proposed system titled 

“TEXIVE” had an 87.18% accuracy and a 96.67% precision. Similarly, Streiffer et al. (2017) 

proposes a unified data collection and analysis framework, titled “DarNet” which allows the 

detection and classification of distracted driving behavior. The proposed system collects two kinds 

of data; image data from a facing camera and Inertial Measurement Unit (IMU) data from 

smartphone sensors. Implementing deep learning techniques, they achieved 87.02% accuracy in 

detecting distracted driving. The smartphone camera has also been used in prior work (Wesley et 

al., 2010; Shabeer & Wahidabanu, 2012). Nambi et al. (2018) used both smartphone cameras in 

order to monitor distracted driving; the front camera for driver monitoring and the back camera 

for driver behavior monitoring. 

 

In that context, the purpose of this study is to examine the impact of feedback on the use of mobile 

phone use in different environments. 

 

 

 



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism 

 

122 

 

5.2.2 Descriptive statistics and preliminary analysis 

 

Overall, during the first two phases of the experiment, 26,619 trips from a sample of 147 car drivers 

have been recorded. However, for the present analysis it was decided that the final sample should 

consist of drivers who have participated equally in both phases only. An additional criterion was 

set; all drivers chosen to be included in the analysis were required to have driven at least for 40 

trips. This number approximately equals the typical monthly number of working trips for a driver 

assuming that each driver drives 2 trips per day for 5 working days per week. This number is 

reasonable to filter out drivers for which there are not enough observations, and it is also the 

'industrial' criterion set by OSeven to start providing driver evaluation. As a result, from the 147 

car drivers, 65 were ultimately selected creating a large dataset of 21,167 trips. Demographic 

information regarding the drivers’ gender and age are shown in Table 6.1. 

 
Table 5.7: Overview of the selected sample 

Age groups  
 

 <25 25-55 >55 Total% 

Male 0 27 3 46% 

Female 3 31 1 54% 

Total % 5% 89% 6% 100% 

 

The key indicator, and response variable for the purpose of this research is the use of mobile phone 

while driving during the two first experiment phases. Additional basic road safety indicators (i.e. 

possibly suggesting risky or reckless behavior) are the following: exceeding the speed limit 

(percentage of time driving over the speed limits per trip driving duration), and mobile usage 

(percentage of driving time using the mobile phone per trip driving duration). On the basis of the 

literature review results, it is assumed that the occurrence of harsh events is partly correlated with 

drivers’ speeding behavior and mobile phone use, and thus some of its variance may be explained 

by changes in those variables. 
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Figure 5.2: Average percentage of mobile phone use per road type 

 

Figure 5.2 compares the mean values of mobile phone use across two experimental phases (Phase 

1 and Phase 2) and further disaggregates the data by road types: urban, rural, and highway. In both 

phases, the overall mean mobile phone use percentage and mean values for urban and rural roads 

are substantially higher compared to highway conditions. A notable trend is the reduction in mean 

values from Phase 1 to Phase 2 across all categories, suggesting an improvement in distracted 

driving behavior over time or due to intervention effects. Urban areas consistently exhibit higher 

mean values than rural and highway, indicating more frequent mobile phone use in these 

environments, likely due to more stops due to driving. Highway conditions show the lowest mean 

value in both phases, which seems logical, taking into consideration the driving pattern in 

highways; longer distances covered and high speeds developed. 

 

5.2.3 Generalized Linear Mixed Effects Models for mobile phone use 
 

In order to model the expected percentage of mobile phone use while driving per trip for the 

participant drivers, mixed-effect models in a GLM framework (GLMMs) were calibrated. 

Specifically, GLMMs were fitted in R-studio (with the lme4 package) via maximum likelihood 

and using z-factor scaling. A number of models were tested with different configurations in the 

collected parameters in both fixed effects and random effects. Furthermore, it is important to note 

that the sample consists of driver trips, as opposed to drivers directly, thus allowing the training of 

statistically robust models. 

 

The selected variables were chosen after taking into account the following: lowest Akaike 

Information Criterion (AIC) for dealing with the trade-off between the goodness of fit of the model 

and the simplicity of the model, high statistical significance of variables, low multicollinearity, and 

finally rational interpretation of their impact on the dependent variable. After conducting log-

likelihood test ANOVA comparisons, the most informative configuration of random effects was 
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included both random intercepts and random slopes in the GLMMs to capture unique rider traits. 

Table 5.8 provides a description of the parameters of the models. 

 

Table 5.8: Log-likelihood comparison of mixed effect configuration for mobile phone use while driving 

in all road network environments 

Model 

Family 

Model 

Configuration 

D.f. 

AIC BIC logLik 
𝝌𝟐 P(>𝝌𝟐) 

GLM Fixed effects only 

[baseline] 

7 

267329 267385 -133658 

– – 

GLMΜ Fixed effects & 

Random Intercepts 

8 

193060 193123 -96522 74271.3 

< 2e-16 

GLMΜ Fixed effects, 

Random Intercepts 

& Random Slopes 

10 

191573 191652 -95777 1490.9 

< 2e-16 

 

The analysis of mobile phone use while driving reveals critical insights into the effectiveness of 

feedback and other predictors across various driving environments. The comparison of models in 

Table 5.8 highlights the importance of accounting for individual variability. The baseline fixed-

effects model showed a poor fit (AIC = 267,329), while the inclusion of random intercepts 

significantly improved the model (AIC = 193,060). Introducing random slopes for trip duration 

further enhanced the model's performance (AIC = 191,573), indicating that the influence of trip 

duration varies significantly among drivers. The Table 5.9, Table 5.10, Table 5.11, Table 5.12 

present the results of the final models, namely the overall model, urban, rural and highway. 

 
Table 5.9: GLMM overall model for mobile phone use while driving in all road network environments 

Random Effects     

Group Variable SD Variance  

Identifier Intercept 1.4024 1.9667  

 duration 0.2827 0.0799  

Fixed Effects     

Variable Estimate Std. Error z value Pr(>|z|) 

Intercept 0.6528 0.1754 3.7220 0.0002 

Driver Feedback -0.4276 0.0081 -52.5660 < 2e-16 

Trip duration 0.1514 0.0374 4.0440 5.25e-05 

Harsh accelerations 0.0424 0.0034 12.4380 < 2e-16 

Risky hours -0.0543 0.0046 -11.6940 < 2e-16 

Morning Rush -0.3390 0.0124 -27.4020 < 2e-16 

Afternoon Rush 0.1586 0.0089 17.9030 < 2e-16 

AIC 191573.2    

BIC 191652.3    

logLik -95776.6    

 

In the overall model (Table 5.9), feedback emerges as a strong and significant factor in reducing 

mobile phone use while driving (Estimate =−0.4276, p<2e−16), demonstrating its efficacy in 

mitigating phone use during driving. Longer trip durations and harsh accelerations were associated 

with increased MBU, while risky hours and morning rush periods reduced mobile phone use while 

driving, possibly reflecting heightened caution during these times. The substantial variability in 
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random intercepts (SD=1.4024) suggests notable differences in baseline mobile phone use while 

driving levels among drivers, while moderate variability in trip duration (SD=0.2827) highlights 

differences in how trip length affects mobile phone use while driving behavior. 

 

 
Figure 5.3: Random intercepts and random slopes for total trip duration for the overall model 

 

Figure 5.4 presents the random effects estimates from the overall model - analyzing mobile phone 

use while driving across all road network environments. The left panel displays the variability in 

baseline mobile phone use (intercepts) among participants, indicating substantial heterogeneity, 

with some drivers showing consistently higher or lower likelihoods of using their phones while 

driving. The right panel illustrates the impact of trip duration (duration.s) on mobile phone use, 

with most drivers showing little effect (estimates clustered near zero), though a few participants 

exhibit notable increases or decreases in phone use with longer trips. The spread of estimates and 

confidence intervals highlights significant individual differences in behavior, underscoring the 

importance of modeling random effects to capture variability in mobile phone usage influenced by 

personal habits, trip characteristics, or external factors. 

 

In urban environments (Table 5.10), feedback remains a significant deterrent to mobile phone use 

while driving (Estimate=−0.3687, p<2e−16), though its effect is slightly reduced compared to the 

overall model. Urban-specific dynamics, such as frequent stop-and-go driving, may explain this 

reduced impact. Risky hours (Estimate=−0.3298, p<2e−16) showed a stronger protective effect in 

urban settings, indicating that drivers might be more vigilant in complex traffic conditions. 

Interestingly, harsh accelerations had a slight negative association with mobile phone use while 

driving, contrary to other contexts, potentially reflecting heightened attention during abrupt driving 

maneuvers. 
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Table 5.10: GLMM model for mobile phone use while driving in urban environment  

Random Effects     

Group Variable SD Variance  

Identifier Intercept 1.3711 <0.001  

 duration 0.0008 <0.001  

Fixed Effects     

Variable Estimate Std. Error z value Pr(>|z|) 

Intercept 0.4750 0.1721 2.7590 0.0058 

Rider Feedback -0.3687 0.0083 -44.2790 <2e-16 

Trip duration 0.0004 0.0001 3.9160 9e-05 

Harsh accelerations -0.0131 0.0013 -9.8620 <2e-16 

Risky hours -0.3298 0.0124 -26.6670 <2e-16 

Morning Rush 0.1533 0.0088 17.3810 <2e-16 

Afternoon Rush 0.4750 0.1721 2.7590 0.0058 

AIC 214914.1    

BIC 214985.3    

logLik -107448.0    

 

In rural environments (Table 5.11), the effect of feedback is weaker than in urban areas 

(Estimate=−0.1180, p<2e−16) indicating that rural drivers may be less responsive to interventions. 

Trip duration and harsh accelerations both showed positive associations with mobile phone use 

while driving, consistent with overall findings. However, risky hours and morning rush periods 

continued to reduce MBU, reinforcing the protective effects of these time-specific factors. The 

greater variability in random intercepts (SD=1.6843) suggests that rural drivers exhibit more 

diverse baseline behaviors compared to urban counterparts. 

 
Table 5.11: GLMM model for mobile phone use while driving in rural environment  

Random Effects     

Group Variable SD Variance  

Identifier Intercept 1.6843 <0.001  

 duration 0.0007 <0.001  

Fixed Effects     

Variable Estimate Std. Error z value Pr(>|z|) 

Intercept -0.2269 0.2102 -1.0790 0.2810 

Rider Feedback -0.1180 0.0095 -12.4290 <2e-16 

Trip duration 0.0008 0.0001 8.5510 <2e-16 

Harsh accelerations 0.0511 0.0044 11.5500 <2e-16 

Risky hours -0.0114 0.0012 -9.5000 <2e-16 

Morning Rush -0.2634 0.0136 -19.3220 <2e-16 

Afternoon Rush 0.1624 0.0104 15.6600 <2e-16 

AIC 191416.0    

BIC 191495.1    

logLik -95698.0    

 

The highway model (Table 5.12) presented an unexpected outcome: feedback was positively 

associated with MBU (Estimate=0.5490, p<2e−16). This counterintuitive result suggests that 
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feedback mechanisms may inadvertently encourage compensatory behaviors, or that drivers 

perceive lower risks on highways. Trip duration had the strongest positive effect on mobile phone 

use while driving in this model (Estimate=0.6892, p=0.0049), aligning with the prolonged 

exposure to driving conditions. Risky and rush hour periods continued to have protective effects, 

consistent with the notion of increased driver caution in these contexts. 

 
Table 5.12: GLMM model for mobile phone use while driving in highways  

Random Effects     

Group Variable SD Variance  

Identifier Intercept 3.536 12.506  

 duration 1.931 3.731  

Fixed Effects     

Variable Estimate Std. Error z value Pr(>|z|) 

Intercept -4.1676 0.4586 -9.0880 < 2e-16 

Rider Feedback 0.5490 0.0235 23.4120 < 2e-16 

Trip duration 0.6892 0.2451 2.8120 0.0049 

Harsh accelerations 0.0883 0.0055 16.0250 < 2e-16 

Risky hours -0.0653 0.0097 -6.7170 0.0000 

Morning Rush -0.4071 0.0281 -14.4940 < 2e-16 

Afternoon Rush -0.4439 0.0285 -15.5990 < 2e-16 

AIC 59690.4    

BIC 59769.5    

logLik -29835.2    

 

Overall, the findings emphasize the critical role of feedback in reducing mobile phone use while 

driving but also highlight the need for context-specific interventions. While feedback is broadly 

effective in urban and rural environments, its limitations on highways underscore the need for 

alternative strategies, such as dynamic feedback or stricter enforcement. These insights provide a 

foundation for designing tailored policies to enhance road safety and mitigate distracted driving. 

 

5.2.4 Discussion of results 

 

This present research aimed to investigate the impact of mobile phone use on driving behavior and 

road safety through the investigation of driving analytics collected by smartphone sensors. In order 

to achieve that objective, a naturalistic driving experiment was carried out in order to examine 

distracted driving as expressed by the use of mobile phone while driving. Results substantiate 

correlations of mobile phone use with specific exposure and driving behavior indicators. 

 

The examination of mobile phone use while driving across different driving environments and 

models underscores the importance of tailored interventions to address distracted driving. 

Feedback mechanisms have demonstrated consistent effectiveness in reducing MBU in overall, 

urban, and rural contexts, but their impact varies by setting, with reduced effectiveness in rural 

areas and an unexpected positive association on highways. These findings highlight the complexity 

of driver behavior and the influence of environmental factors on feedback efficacy. To maximize 

the benefits of such interventions, future policies should focus on refining feedback systems to 

account for contextual differences, leveraging dynamic adjustments, and integrating 

complementary strategies such as education, enforcement, and technology-based solutions. By 
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addressing the unique characteristics of each driving environment, these measures can contribute 

to significant reductions in MBU and improvements in overall road safety. 
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6 Feedback Impact on Harsh Events 
 

6.1 Feedback Impact on Harsh Events of Car Drivers of Phases 1 & 2 
 

6.1.1 Introduction 
 

Driving behavior is influenced by a range of factors, including individual tendencies, 

environmental conditions, and external interventions. Among these, feedback mechanisms have 

emerged as a valuable tool for modifying driver behavior and reducing risky driving practices. 

Harsh events, such as sudden accelerations, harsh braking, and abrupt maneuvers, are critical 

indicators of driving safety (Nikolaou et al., 2023). Understanding the impact of feedback on these 

events is essential for designing effective interventions aimed at promoting safer driving habits. 

By examining the relationship between feedback and harsh events, this section provides insights 

into how targeted interventions can enhance driver safety. 

 

Although both harsh accelerations and harsh brakings are associated with unsafe driving behavior, 

they constitute two different types of events and should therefore examined as such. More 

specifically, harsh acceleration events may reveal high levels of anxiety and anger while driving 

(Stephens et al., 2009; Roidl et al., 2014) leading to a risky driving behavior characterized by 

drivers’ involvement in situations of high risk. Harsh brakings may indicate driver struggle to 

anticipate the occurrence of a critical situation, which most of the times would not have occurred 

at the first place if it were not for driver’s inattention, high speed development, inadequate 

distances from adjacent vehicles and other unsafe behavior indicators. As a result, harsh breaking 

events harsh are often used to locate safety critical events in Naturalistic Driving (ND) data 

(Hanowski et al., 2005; Jansen & Wesseling, 2018). 

 

Additionally, given the strong correlation between harsh events and driving risk, it is not surprising 

why harsh accelerations and harsh brakings have been investigated by insurance industry in the 

context of usage-based motor insurance (UBI) schemes (Boquete et al., 2010; Paefgen et al., 2013), 

allowing for more behavioral parameters being used in UBI models. Harsh events, in combination 

with other driving behavioral indicators such as speeding and distracted driving are being 

increasingly used by Pay How You Drive (PHUD) Usage Based Insurance schemes as the critical 

risk factor indicators in terms of driving behavior (Tselentis et al., 2017). 
 

6.1.2 Descriptive statistics and preliminary analysis 

 

Overall, during the first two phases of the experiment, 26,619 trips from a sample of 147 car drivers 

have been recorded. However, for the present analysis it was decided that the final sample should 

consist of drivers who have participated equally in both phases only. An additional criterion was 

set; all drivers chosen to be included in the analysis were required to have driven at least for 40 

trips. This number approximately equals the typical monthly number of working trips for a driver 

assuming that each driver drives 2 trips per day for 5 working days per week. This number is 

reasonable to filter out drivers for which there are not enough observations, and it is also the 

'industrial' criterion set by OSeven to start providing driver evaluation. As a result, from the 147 

car drivers, 65 were ultimately selected creating a large dataset of 21,167 trips. Demographic 

information regarding the drivers’ gender and age are shown in Table 6.1. 
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Table 6.1: Overview of the selected sample 

Age groups  
 

 <25 25-55 >55 Total% 

Male 0 27 3 46% 

Female 3 31 1 54% 

Total % 5% 89% 6% 100% 

 

The key indicator, and response variable for the purpose of this research is the frequency of harsh 

acceleration and harsh braking events during the two first experiment phases. Additional basic road 

safety indicators (i.e. possibly suggesting risky or reckless behavior) are the following: exceeding 

the speed limit (percentage of time driving over the speed limits per trip driving duration), and 

mobile usage (percentage of driving time using the mobile phone per trip driving duration). On the 

basis of the literature review results, it is assumed that the occurrence of harsh events is partly 

correlated with drivers’ speeding behavior and mobile phone use, and thus some of its variance 

may be explained by changes in those variables. 

 

Table 6.2 provides a description of the variables selected. Regarding the harsh event frequencies, 

it is noted that both during Phase 1 and Phase 2 drivers seem to incur more harsh brakings than 

harsh accelerations during their trip.  

 
Table 6.2: Description of the variables used in the analysis 

Variable Description 

Total Trip Duration [s] Total trip duration [sec] 

Total Trip Distance [km] Total trip distance [km] 

Average Speed [km/h] Mean driving speed per trip [km/h] 

Maximum Speed [km/h] Maximum of driving speed per trip [km/h] 

Percentage of Mobile Use Duration [%] Share of mobile use per trip [%] 

Percentage of Speeding Duration [%] Share of time over the speed limit per trip [%] 

Harsh accelerations [count] Harsh acceleration events per trip [count] 

Harsh brakings [count] Harsh braking events per trip [count] 

 

The descriptive statistics of the parameters that were recorded per trip for both experiment phases 

are shown in Table 6.3 for Phase 1 and Table 6.4 for Phase 2.  

 
Table 6.3: Descriptive statistics of the per trip values of the variables recorded for Phase 1 

Variable Mean Minimum Median Maximum St. Dev. 

Total Trip Duration [s] 992.55 61.00 696.00 17642 1051.86 

Total Trip Distance [km] 10.17 0.50 4.8.00 387.20 20.14 

Average Speed [km/h] 37.27 14.00 33.00 59.00 15.35 

Maximum Speed [km/h] 68.64 19.00 64.00 206.00 26.68 

Percentage of Mobile Use 

Duration [%] 

4.00 0.00 0.00 93.80 10.00 

Percentage of Speeding 

Duration [%] 

5.00 0.00 1.00 70.00 9.00 

Harsh accelerations 

[count] 

0.76 0.00 0.00 19.00 1.52 

Harsh brakings [count] 1.51 0.00 1.00 33.00 2.34 
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Table 6.4: Descriptive statistics of the per trip values of the variables recorded for Phase 2 

Variable Mean Minimum Median Maximum St. Dev. 

Total Trip Duration [s] 950.00 61.00 687.00 11349.00 904.81 

Total Trip Distance [km] 8.25 0.50 4.30 325.50 14.09 

Average Speed [km/h] 34.55 14.00 30.00 56.35 14.07 

Maximum Speed [km/h] 64.90 18.00 59.00 228.00 26.42 

Percentage of Mobile Use 

Duration [%] 

3.00 0.00 0.00 93.20 10.00 

Percentage of Speeding 

Duration [%] 

3.00 0.00 0.00 65.00 7.00 

Harsh accelerations [count] 0.67 0.00 0.00 21.00 1.36 

Harsh brakings [count] 1.36 0.00 1.00 27.00 2.20 

 

For further investigation, the differences between the two Phases were also explored with t-tests 

based on the drivers’ trips during Phase 1 and Phase 2, respectively. A t-test analysis, based on the 

65 selected drivers’ trips, rejected the null hypothesis that both distributions of harsh events have 

an equal mean, demonstrating that the decrease in harsh events to be significant; both harsh 

accelerations (t-stat = 4.90, p < 0.001) and harsh brakings (t-stat = 4.82, p < 0.001). Additionally, 

results reveal that both the average speed (t-stat = 13.417, p < 0.001) and the maximum mean 

speed (t-stat = 10.25, p < 0.001) seem to be statistically significantly reduced during Phase 2 of 

the experiment. This also applies to the percentage of time driving over the speed limits per trip 

driving duration, taking into consideration the significant reduction of the particular variable, 

namely from 5% to 3% (t-stat = 17.63, p < 0.001). Finally, although the percentage of time using 

the mobile phone per trip driving duration is also found to be reduced in Phase 2 of the experiment, 

from 4% to 3%, the reduction is not statistically significant (t-stat = 1.15, p = 0.248). 

 

6.1.3 Generalized Linear Mixed-Effects Models for harsh events 

 

In order to model the expected frequency of events per trip for the participant drivers, models in a 

GLM framework were calibrated, as previously explained. Since the BeSmart application allows 

for a high resolution, big-data oriented collection scheme, it was attempted to include random 

effects in order to capture the unique driving behavior traits for each driver. This entails having a 

critical minimum sample of trips for each driver to achieve a meaningful outcome. Therefore, a 

screening was made among participant drivers, as described above, and drivers that had over 40 

trips each were selected for the GLMM analysis.  

 

GLMMs were fitted in R-studio (with the lme4 package) via maximum likelihood and using z-

factor scaling, following Bates et al. (2014). A number of models were tested with different 

configurations in the collected parameters in both fixed effects and random effects. The Poisson 

function with the log-odds link function was implemented. After conducting log-likelihood test 

(ANOVA) comparisons, the most informative configuration of random effects was the inclusion 

of both random intercepts and random slopes in the GLMMs to capture unique driver traits (lowest 

LogLikelihood and highest 𝜒2). It should be noted that conceptually, for harsh event frequencies, 

random slope models without random intercepts make little sense and are thus avoided. 

 

Results of mixed effect configuration are shown on Table 6.5 for harsh accelerations and on Table 

6.5for harsh brakings: 
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Table 6.5: Log-likelihood comparison of mixed effect configuration for harsh acceleration models for 

both phases 

Experiment 

Phase 

Model 

Family 

Model 

Configuration 

D.f. LogLikelihood 𝝌𝟐 P(>𝝌𝟐) Sig. 

Phase 1 GLM Fixed effects only 

[baseline] 

6 -11078.6                           – – – 

 GLMΜ Fixed effects & 

Random Intercepts 

7 -9929.5   2298.34   <2e-16 *** 

 GLMΜ Fixed effects, 

Random Intercepts 

& Random Slopes 

9 -9860.8   137.35   <2e-16 *** 

Phase 2 GLM Fixed effects only 

[baseline] 

6 -10639.5                            – – – 

 GLMΜ Fixed effects & 

Random Intercepts 

7 -9787.4   1704.32   <2e-16 *** 

 GLMΜ Fixed effects, 

Random Intercepts 

& Random Slopes 

9 -9741.7   91.34   <2e-16 *** 

Significance codes: ‘***’: 0.000 | ‘**’: 0.001 | ‘*’: 0.01 | ‘.’: 0.05 | ‘ ’: ≥ 0.1 

 

Table 6.6: Log-likelihood comparison of mixed effect configuration for harsh braking models 

Experiment 

Phase 

Model 

Family 

Model 

Configuration 

D.f. LogLikelihood 𝝌𝟐 P(>𝝌𝟐) Sig. 

Phase 1 GLM Fixed effects only 

[baseline] 

5 -15634                           – – – 

 GLMΜ Fixed effects & 

Random Intercepts 

6 -14352   2565.04   < 2e-16 *** 

 GLMΜ Fixed effects, 

Random Intercepts & 

Random Slopes 

8 -14158   388.04   < 2e-16 *** 

Phase 2 GLM Fixed effects only 

[baseline] 

5 -15588                           – – – 

 GLMΜ Fixed effects & 

Random Intercepts 

6 -14045   3086.73   <2e-16 *** 

 GLMΜ Fixed effects, 

Random Intercepts & 

Random Slopes 

8 -13965   159.73   <2e-16 *** 

Significance codes: ‘***’: 0.000 | ‘**’: 0.001 | ‘*’: 0.01 | ‘.’: 0.05 | ‘ ’: ≥ 0.1 

 

The final models were selected as the ones with the lowest AIC values. Fixed effect results appear 

on Table 6.7 for harsh acceleration frequencies and on Table 6.8 for harsh braking frequencies. A 

dash sign ('–') on the tables indicates that the specific variable was not used in the particular model. 

Furthermore, taking into account the value range of the examined data, the models do not yield 

any negative predictions, thus leading to no concerns for the negative value of the intercept which 

describes residual unexplained variance. 
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Table 6.7: GLMMs for harsh acceleration frequencies of 65 drivers (fixed effects) 

Trip 

characteristic 

GLMM for Phase 1 GLMM for Phase 2 

Estimate s.e. p-value Sig. 

Relative 

Risk 

Ratio 

Estimate s.e. p-value Sig. 

Relative 

Risk 

Ratio 

Intercept -0.927 0.091 0.000 *** 0.395 -1.127 0.085 0.000 *** 0.324 

Maximum 

Speed 
0.321 0.022 0.000 *** 1.378 0.412 0.021 0.000 *** 1.509 

Percentage of 

Speeding 

Duration 

0.074 0.013 0.000 *** 1.076 0.035 0.012 0.003 ** 1.035 

Percentage of 

Mobile Use 

Duration 

0.042 0.011 0.000 *** 1.042 - - - - - 

Log(Total Trip 

Duration) 
0.848 0.051 0.000 *** 2.334 0.729 0.050 0.000 *** 2.073 

Log(Total Trip 

Distance) 
-0.231 0.050 0.000 *** 0.793 -0.087 0.046 0.047 * 0.916 

Significance codes: ‘***’: 0.000 | ‘**’: 0.001 | ‘*’: 0.01 | ‘.’: 0.05 | ‘ ’: ≥ 0.1 

 

 
Table 6.8: GLMMs for harsh braking frequencies of 65 drivers (fixed effects) 

Trip 

characteristic 

GLMM for Phase 1 GLMM for Phase 2 

Estimate s.e. p-value Sig. 

Relative 

Risk 

Ratio 

Estimate s.e. p-value Sig. 

Relative 

Risk 

Ratio 

Intercept -0.182 0.067 0.006 ** 0.833 -0.313 0.075 0.000 *** 0.731 

Maximum 

Speed 
0.327 0.016 0.000 *** 1.387 0.331 0.015 0.000 *** 1.395 

Percentage of 

Speeding 

Duration 

0.097 0.010 0.000 *** 1.102 0.081 0.009 0.000 *** 1.084 

Log(Total Trip 

Duration) 
0.885 0.045 0.000 *** 2.423 0.723 0.038 0.000 *** 2.061 

Log(Total Trip 

Distance) 
-0.298 0.036 0.000 * 0.742 -0.082 0.033 0.015 * 0.921 

Significance codes: ‘***’: 0.000 | ‘**’: 0.001 | ‘*’: 0.01 | ‘.’: 0.05 | ‘ ’: ≥ 0.1 

 

Modelling results regarding the harsh acceleration frequencies reveal some interesting findings; 

the parameters of maximum speed, percentage of speeding duration and total trip duration have all 

been determined as statistically significant and positively correlated with harsh acceleration 

frequencies for both experiment phases. In the same context, total trip distance is statistically 

significant and negatively correlated with harsh acceleration frequencies for both experiment 

phases as well. Mobile use duration was found statistically significant only for Phase 1 with a 

small positive correlation.  

 

More specifically, the aforementioned results could be further interpreted by calculating the 

relative risk ratio of every variable and thus measuring the increase in log-odds of the harsh 

acceleration frequencies. Maximum driver speed increases the frequencies of harsh accelerations; 

the effect appears to be higher in Phase 2 than Phase 1, as the respective estimates are 0.412 and 
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0.321, corresponding to risk ratios (in other words, incidence rate ratios for frequency frequencies) 

of 1.509 and 1.378. Exceeding the speed limit seems to increase the odds of harsh acceleration 

frequencies. A possible explanation is that certain drivers develop high driving speeds, reaching 

higher than the speed limit, they accelerate in a more abrupt way, allowing the application to detect 

a harsh acceleration event. In other words, overly aggressive drivers do not only exceed speed 

limits, they do so by accelerating harshly. When comparing the two phases, it is found that the 

effect of exceeding the speed limit is higher in Phase 1 than in Phase 2, with respective estimates 

of 0.074 and 0.035, corresponding to risk ratios of 1.076 and 1.035, respectively.  

 

Regarding the effect of mobile use while driving, it appears that 1% of mobile use duration per 

trip increases harsh acceleration event frequencies by 4% which makes it the least impactful 

variable among the examined ones, based on the respective estimate of 0.042. The fact that mobile 

phone use was not found significant for Phase 2 may be interpreted by the aforementioned 

reduction of the specific parameter during the two phases. Overall, it is noteworthy that all 

examined behavioral parameters (namely speed, percentage of speeding and mobile phone 

duration) are positively correlated with harsh acceleration frequencies, confirming the strong 

correlation between harsh events and unsafe driving behavior. 

 

As for the exposure parameters (trip distance and duration), there is a remarkable finding similar 

for both experiment phases. Trip duration seems to increase the odds of harsh acceleration 

frequencies; 1 sec of driving time increases acceleration frequencies by 2.3 and 2.1 times in Phase 

1 and 2, respectively; risk ratios originating from parameter estimates of 0.848 and 0.729, 

respectively. However, the exposure parameter of total trip distance was found to be negatively 

associated with the odds of higher harsh acceleration counts, possibly because drivers may be 

prepared more effectively, physically and psychologically, when they are aware of the fact that 

they will cover a long distance. More precisely, a single unit of total trip distance travelled appears 

to reduce harsh acceleration counts by a lower degree in Phase 2 compared to Phase 1, as the 

respective estimates are -0.087 and -0.231, corresponding to risk ratios of 0.916 and 0.793. 

 

With respect to harsh braking events, apart from the mobile use variable, all the other variables, 

both driving behavioral and exposure ones, seem to have effects that are similar to the ones they 

have on the harsh acceleration events. The occurred finding is more obvious when it comes to both 

exposure parameters; trip distance and duration, where the effects appear to be identical. 

Specifically, trip duration appears to increase the odds of harsh braking frequencies; 1 sec of 

driving time increases braking frequencies by 2.4 and 2.1 times in Phase 1 and 2, respectively; risk 

ratios originating from parameter estimates of 0.885 and 0.723, respectively. On the other hand, 

similarly to the harsh acceleration models, the exposure parameter of total trip distance was found 

to be negatively associated with the odds of higher harsh braking counts; the effect seems higher 

in Phase 1 compare to Phase 2, as the respective estimates are -0.298 and -0.082, corresponding to 

risk ratios of 0.742 and 0.921. 

 

The examined behavioral parameters, namely the parameters of maximum speed and percentage 

of speeding duration, have all been positively correlated with harsh braking frequencies for both 

experiment phases. Maximum driving speed increases the frequencies of harsh brakings; the effect 

appears to be similar for both Phases, as the respective estimates are 0.327 for Phase 1 and 0.331 

for Phase 2, corresponding to risk ratios of 1.387 and 1.395, respectively. In the same context, 

exceeding the speed limit appears to increase the odds of harsh braking frequencies; the effect 

appears to be higher in Phase 1 than Phase 2, as the respective estimates are 0.097 and 0.081, 
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corresponding to risk ratios of 1.102 and 1.084. As already mentioned in the harsh accelerations 

models, aggressive driving, expressed by higher driving speeds and higher percentage of speeding 

while driving, increases harsh braking frequencies, confirming once again the close relationship 

between harsh events and unsafe driving behavior. The absence of mobile phone use in the 

statistical model could be interpreted by the fact that drivers reduce speed while distracted, and 

therefore are less prone to harsh brakings. In other words, drivers decelerate in order to compensate 

for the distraction from mobile use, so they have the ability to brake normally and avoid harsh 

braking. 

 

The visual representations of values of random intercepts and random slopes for the log of total 

trip duration per driver for both Phase 1 and Phase 2 are shown in the constructed caterpillar plots 

below for harsh acceleration frequencies (Figure 6.1) and for harsh braking frequencies (Figure 

6.2), respectively. Personal differences per driver from the fixed effect intercept and slope are thus 

included in the linear predictor. 

 

To visualise these results, driver-level deviations are shown relative to the mean (0.00; vertical 

gray line) with 95% confidence intervals around each intercept (blue circle). With respect to harsh 

acceleration frequencies, shown on Figure 6.1, the visual comparison of the intercept estimates 

illustrates that overall prediction averages in Phase 1 are similar to the ones of Phase 2. This is an 

indication that the unexplained variance for harsh acceleration occurrence is somewhat constant 

for each driver between the two Phases. Estimates for random slope effects of the log of total trip 

duration show a more erratic effect during Phase 1 comparted to Phase 2. In Phase 1, the impact 

of total duration on harsh acceleration counts appears to be mathematically higher for certain 

drivers. In practice, this indicates that there are certain individuals for whom total trip duration 

plays very different roles for harsh acceleration occurrence when they are not provided with 

feedback, a trend that greatly diminishes when feedback is provided. 

 



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism 

 

136 

 

 
Figure 6.1: Random Intercepts and Random Slopes for log(total trip duration) 

[Both in the GLMM for harsh acceleration frequencies during Phase 1 (left) and Phase 2 (right)] 

 

However, different observations are drawn from the caterpillar plots when examining harsh 

braking frequencies, shown on Figure 6.2. The visual comparison of intercept estimates illustrates 

that prediction averages in Phase 2 overlap by a larger degree than in Phase 1. Furthermore, the 

gradient when connecting the blue data points of intercepts is steeper for Phase 2 if one takes the 

reduced range of the x-axis into account. Estimates for random slope effects of the log of total trip 

duration show little difference across the two Phases. It seems that the provision of feedback in 

Phase 2 led to overall reductions of harsh braking events per trip duration unit if the driver sample 

is examined on an aggregate level. Nonetheless, these reductions seem to have a certain amount 

of divergence across individual drivers. 

 

As previously stated, the personal differences are captured in the random effects of the GLMMs. 

These differences may be parameters unobserved in the present models such as driver age, 

experience, aggressiveness, alertness and performance levels and other similar human factors. 

Since the dependent variables are harsh event frequencies, which also depend on the road 

environment, additional parameters which may affect harsh event occurrence can be thought to be 

integrated therein as well. Examples include temporal and spatial headways and more unforeseen 

events such as traffic conflicts or the presence of obstacles. 
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Figure 6.2: Random Intercepts and Random Slopes for log(total trip duration)  

[Both in the GLMM for harsh braking frequencies during Phase 1 (left) and Phase 2 (right)] 

 

6.1.4 Discussion of results 

 

This section aimed to investigate the impact of detailed trip characteristics on the frequency of 

harsh acceleration and harsh braking events recorded by smartphone sensors. In order to achieve 

that objective, an ongoing naturalistic driving experiment was carried out within the framework of 

the BeSmart project in order to examine driving behavior as expressed by the frequencies of harsh 

accelerations and harsh brakings. In the present research, the first two phases were considered; 

Phase 1, where participants were asked to drive in the way they usually did, without receiving any 

feedback on their driving behavior and Phase 2, where participants were provided with 

personalized feedback, a trip list and a scorecard regarding their driving behavior, allowing them 

to identify their critical deficits or unsafe behaviors. 

 

Generalized Linear Mixed-Effects Models were fitted to the trips of 65 car drivers who made 

frequent trips during both experiment phases in order to model the frequencies of harsh 

acceleration and harsh braking events. Results reveal correlations of harsh event frequencies with 

specific driving behavior and exposure metrics, at a more detailed level than existing studies (e.g. 

exceeding speed limit, trip duration). More specifically, results indicate that maximum speed, the 

percentage of speeding duration and total trip duration are positively correlated with both harsh 

acceleration and harsh braking frequencies. On the other hand, the exposure metric of total trip 

distance was found to be negatively correlated with both harsh event types.   



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism 

 

138 

 

Results for Phase 1 and Phase 2 indicate that both types of harsh events are influenced by the same 

explanatory variables, with the exception of mobile use while driving, which is found statistically 

significant only for harsh acceleration models for Phase 1 of the experiment. Additionally, for the 

majority of the variables, coefficient values seem to change between the two experiment phases in 

a similar direction for both harsh acceleration and harsh braking events. Specifically, the effect of 

speeding was found to be higher for the frequency of harsh events in Phase 1 than Phase 2. On the 

contrary, the effect of maximum drive speed is higher in Phase 2 than Phase 1 for both acceleration 

and braking events. A similar pattern is noticed for the exposure parameters, as it seems that trip 

duration effect is higher in Phase 1 than Phase 2, while trip distance effect was found higher in 

Phase 2 than in Phase 1, for both types of events. 

 

Although initial findings from descriptive statistics suggest that drivers improved their driving 

behavior with regards to all the recorded driving behavior metrics, namely maximum driver speed, 

percentage of speeding duration and using the mobile phone duration, the application of suitable 

statistical methodologies for before-after evaluation leads to more reliable and accurate results. As 

the experiment progresses, different types of personalized feedback will be communicated to all 

drivers allowing them to identify their critical deficits or unsafe behaviors, while incentives within 

a social gamification scheme, with personalized target setting, benchmarking and comparison with 

peers will also be developed and provided through the smartphone application.  

 

Alternative approaches to frequency modelling, such as the modelling of harsh event rates (harsh 

events per km), were considered. However, due to the nature of the data, they were ultimately 

discarded. Linear modelling led to negative predictions and very poor independent variable and 

overall model fits. Additionally, trips with zero harsh events in the dataset did not allow for log-

normal transformations, and their subsequent removal would bias results. This section does not 

explicitly focus on the evaluation of the effectiveness of driver feedback on improving driving 

behavior and increasing road safety levels from the smartphone application; this will be the 

dedicated focus of future research. It should be mentioned that this analysis is macroscopic overall, 

and should be treated as a high-level behavioral investigation. Within the present approach, there 

is no option to statistically examine if mobile phone use was exactly simultaneous with harsh 

events, but only to verify that they both occurred within the same trip. In other words, the temporal 

coincidence of data was not considered. Addressing these limitations will require the development 

of additional dedicated methodologies in the future, and the examination of in-depth datasets 

analyzing each trip per trip-second. 

 

6.2 Feedback Impact on Harsh Events of Professional Drivers on Highways 

of Phases 4 & 5 
 

6.2.1 Introduction 

 

Road accidents are the leading cause of death from work-related accidents in industrialized 

countries. For truck, coach, and company car drivers, fatigue and speeding are the most common 

causes of accidents. (Professional Drivers | Mobility and Transport). Yuan et al. (2021) analyzed 

the risk factors associated with truck-involved fatal crashes on various group of truck drivers. The 

findings revealed that extreme adverse weather, risky driving behavior (fatigue, driving under the 

influence of alcohol), the use of one or more trailing units, and trucks with heavy weights, were 

all linked to an increased risk of serious accidents. Uddin & Huynh (2017) examined injury 
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severity in crashes with trucks, concluding that lighting conditions, age and gender of occupant, 

truck types, speed, and weather condition were found to be factors that have impact on injury 

severity. Brouwer et al. (2015) conducted a simulator experiment with 26 professional truck drivers 

to investigate the effectiveness of personalized feedback. Han & Zhao (2020) investigated driving 

behavior of professional urban bus drivers in China. 

 

An experiment can be carried out mainly in two ways: in a naturalistic experiment, where actual 

conditions are used or in a simulator experiment, in a more secure and contained environment. 

Driver monitoring through naturalistic driving is one of the most recent developments in road 

safety. Approaches of that area include the use of high-end technological solutions, exploitation of 

On-Board Diagnostics (OBD) and smartphone data collection. The last approach has many proven 

advantages, including uninterrupted and rapid data collection and broad application capabilities, 

as well as lower costs per examined driver. Dahlinger et al. (2018) performed naturalistic 

experiments and collected data via smartphone. Elvik (2014) conducted naturalistic trials in several 

countries to evaluate the impact of rewards on drivers. 

 

There is a variety of studies that used driving simulators for experiments (Dijksterhuis et al., 2015; 

Molloy et al., 2018; Zhao & Wu, 2012). Donmez et al. (2007) conducted a simulator study to 

investigate real time feedback on drivers. Mullen et al. (2015) used a driving simulator as a cost 

efficient and effective solution. Brouwer et al. (2015) and Yuan et al. (2021) both used a driving 

simulator experiment in order to evaluate truck drivers’ behavior. 

 

Gamification is the application of game-based design techniques and game-inspired mechanics 

(e.g. scoring and achievement measurement methods) to non-game contexts. It is a powerful tool 

that can be used to enable drivers to adopt improved driving behavior (behavior persuasion) 

(Rossetti et al., 2013). According to Toledo and Lotan (2006) safety-related scores calculated based 

on in-vehicle monitoring and given to drivers through personal web pages had a major positive 

impact on driver results. Elvik (2014) carried out a comprehensive analysis of experiments to 

reward safe and eco-driving and found that they were all successful in encouraging rewarded 

behaviors. Hamari et al. (2014) found that the effects of gamification (e.g. scores, competition, 

social pressure, incentives and rewards, tips and recommendations) are positive, although 

controlled by several factors such as the context in which it is applied as well as the profile of 

targeted users. Mantouka et al. (2019) found that economic rewards tend to have a major effect on 

users' willingness to use a mobile application for airports.  

 

The objective of the present study is: (i) to explore the speeding and aggressive behavior of 

professional drivers based on detailed driving analytics collected by smartphone sensors, and (ii) 

to investigate whether incentives in a social gamification scheme can improve driving behavior. 

For that purpose, high-resolution smartphone data collected from a naturalistic driving experiment 

with a sample of 25 professional drivers is utilized. Generalized Linear Mixed-Effects Models 

(GLMMs) with the Poisson function are estimated using high-level trip data of professional 

drivers, to estimate the percentage of driving time over the speed limit and the frequency (counts) 

of harsh-acceleration and harsh-braking events. 

 

6.2.2 Professional drivers sample and descriptive statistics 

 

Originally, 27 professional drivers volunteered to participate in the experiment and allow for 

monitoring their driving behavior through the respective smartphone application. However, for the 
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present analysis it was decided that the final sample should consist only of drivers who have 

participated equally in both phases on terms of trips. An additional criterion was set; all drivers 

selected for the analysis were required to have driven for at least 20 trips. As a result, from the 27 

professional drivers, 19 drivers (all male) were ultimately selected. The participants were aged 

between 25-34 (n=9), between 35-45 (n=9) and between 45-54 (n=1). Detailed sample information 

is presented in Table 6.9. 

 
Table 6.9: Participant panel description regarding driving and vehicle data (N=19)  

Driving 

experience 

(n. of years) 

Percentage 

% 

Driven distance 

per year (km) 

Percentage 

% 

Engine size 

(cc) 

Percentage 

% 

<5 5.6 < 10.000 0.0 <1500cc 0.0 

5 - 10 16.7 10.000 - 20.000 22.2 1500 - 1700cc 0.0 

11 - 20 38.9 20.000 - 30.000 16.7 1701 - 1900cc 0.0 

21 - 30 38.9 30.000 - 40.000 0.0 1901 - 2200cc 55.6 

>30 0.0 > 40.000 61.1 > 2200cc 44.4 

Total 100.0 Total 100.0 Total 100.0 

 

Overall, during the two phases of the experiment a large dataset of 5,345 trips from a sample of 19 

professional drivers were recorded. Before presenting the model development, it should be 

highlighted that the majority of professional drivers’ trip distance was travelled on highways; 

namely 84% of the total travelled distance, while 12% and 3% were travelled in the rural and the 

urban environment, respectively (Figure 6.3). Taking that into consideration, in combination with 

the specific driving patterns noticed on highways, the authors decided to analyze explicitly the 

total of trips travelled on highways.  

 

 
Figure 6.3: Total of travelled distance in km per road type 

 

6.2.3 Generalized linear mixed models for harsh events 

 

In order to model the expected speeding percentage as well as the frequency of events per trip for 

the participant drivers, models in a GLM framework were calibrated, as previously explained. 

Since the BeSmart application allows for a high resolution, big-data oriented collection scheme, it 

was attempted to include random effects in order to capture the unique driving behavior traits for 

each driver. This entails having a critical minimum sample of trips for each driver to achieve a 

meaningful outcome. Therefore, a screening was made among participant drivers, as described 

above, and drivers that had over 20 trips each were selected for the GLMM analysis.  
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GLMMs were fitted in R-studio (with the lme4 package) via maximum likelihood and using z-

factor scaling. A number of models were tested with different configurations in the collected 

parameters in both fixed effects and random effects. The selected variables were chosen after 

taking into account the following: lowest Akaike Information Criterion (AIC) for dealing with the 

trade-off between the goodness of fit of the model and the simplicity of the model, high statistical 

significance of variables, low multicollinearity, and finally rational interpretation of their impact 

on the dependent variable.  Table 6.10 provides a description of the selected variables.  

 
Table 6.10: Description of the variables used in the analyses 

Variable Description 

Competition (binary dummy variable) Competition phase (yes/no)  

Trip Duration (continuous numerical variable) Total trip duration (sec) 

Harsh Accelerations (discrete numerical variable)  Number of harsh accelerations per trip 

Weekend (binary dummy variable) Trip realized during the weekend (yes/no)  

Speeding Percentage (numerical variable) Share of time over the speed limit per trip (%) 

Harsh accelerations (discrete numerical variable) Harsh acceleration events per trip (count) 

Harsh brakings (discrete numerical variable) Harsh braking events per trip (count) 

 

To model the frequency of harsh accelerations events, log-likelihood test ANOVA comparisons 

were conducted. As is shown in Table 6.11, the most informative configuration of random effects 

was the inclusion of random intercepts in the GLMMs to capture unique driver traits (lowest 

LogLikelihood and highest χ^2). Table 6.11 provides a description of the results of mixed effect 

configuration. 

 

 
Table 6.11: Log-likelihood comparison of mixed effect configuration for harsh acceleration model 

Model 

Family 

Model Configuration D.f. Log 

Likelihood 

χ2 P(>𝝌𝟐) Sig. 

GLM Fixed effects only [baseline] 4 -1198.8 – – – 

GLMΜ Fixed effects & Random 

Intercepts 

5 
-1156.8 83.91 

<2e-16 *** 

GLMΜ Fixed effects, Random Intercepts 

& Random Slopes 

7 -1151.2 11.13 0.004 ** 

 

Results for the harsh acceleration model indicate that the exposure metrics of trip duration as well 

as driving during the weekend are statistically significant and correlated with the frequency of 

harsh events. More precisely, trip duration seems to increase the odds of harsh acceleration 

frequencies; 1 sec of driving time increases acceleration frequencies by 1.558 times. On the other 

hand, driving during the weekend compared to the weekdays seems to reduce the probability of a 

harsh acceleration occurrence while driving by a factor of 0.661. This finding can be explained by 

the different driving style over the week, indicating a less stressful one on the weekends. With 

respect to the impact of the competition on driving behavior, similar to the speeding model, it is 

found that drivers seem prone to reducing the frequency of harsh accelerations events when 

participating in social gamification scheme with prizes and awards; namely by a factor of 0.348. 

  
Table 6.12: GLMMs for harsh accelerations of 19 professional drivers (fixed effects) 

Trip characteristic Estimate s.e. p-value Sig. 
Relative Risk 

Ratio 
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Intercept -3.531 0.341 0.000 *** - 

Competition -1.054 0.219 0.000 *** 0.348 

Trip Duration 0.444 0.026 0.000 *** 1.558 

Weekend  -0.414 0.175 0.000 * 0.661 

Significance codes: ‘***’: 0.000 | ‘**’: 0.001 | ‘*’: 0.01 | ‘.’: 0.05 | ‘ ’: ≥ 0.1 

 

 
Figure 6.4: Random Intercepts for the harsh acceleration model 

 

Figure 6.4 shows that the inclusion of random intercepts, as identified through log-likelihood test 

ANOVA comparisons, allows the model to account for individual variability in baseline tendencies 

for harsh accelerations. Each blue point represents a driver (identifier), and the horizontal lines 

denote the confidence intervals for their random intercept estimates. The variation in intercepts 

highlights significant differences in drivers’ inherent likelihood of harsh acceleration events, 

independent of fixed effects. Drivers like "besmartuser32" and "besmartuser20" exhibit higher 

baseline tendencies (positive intercepts), while others, such as "besmartuser42" and 

"besmartuser26," show lower tendencies (negative intercepts). This variability underscores the 

importance of incorporating random effects to better model individual-level differences, capturing 

unique driver traits that influence harsh acceleration behavior. 

 

Similar to harsh acceleration model, the inclusion of random intercepts was the most informative 

configuration of random effects in order to capture the unique driver traits. The log-likelihood test 

ANOVA comparisons are presented in Table 6.13. (lowest LogLikelihood and highest χ^2).  
 

Table 6.13: Log-likelihood comparison of mixed effect configuration for harsh braking model 

Model 

Family 

Model Configuration D.f. Log 

Likelihood 
𝜒2 P(>𝜒2) Sig. 

GLM Fixed effects only [baseline] 4 -3324.6 – – – 

GLMΜ Fixed effects & Random Intercepts 5 -3093.4 462.38 <2e-16 *** 

GLMΜ Fixed effects, Random Intercepts 

& Random Slopes 

7 -3092.3 2.14 0.343  

 

With respect to harsh braking events model (Table 6.14), all the independent variables, both driving 
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behavioral and exposure ones, seem to have effects that are similar to the ones they have on the 

harsh acceleration events. The occurring finding is more obvious when examining the relative risk 

ratio of every variable. Specifically, trip duration appears to increase the odds of harsh braking 

frequencies; 1 sec of driving time increases braking frequencies by 1.564 times. On the other hand, 

similarly to the harsh acceleration models, the exposure parameter of the variable “weekend”, was 

found to be negatively associated with the odds of higher harsh braking counts, corresponding to 

risk ratio of 0.748. Finally, once more, the competition seems to motivate drivers to improve their 

performance by adopting a less aggressive style, with lower frequencies of harsh brakings. 

Notably, driving during the competition phase, the probability of a harsh braking occurrence is 

reduced by a factor of 0.404. 

 
Table 6.14: GLMMs for harsh brakings of 19 professional drivers (fixed effects) 

Trip characteristic Estimate s.e. p-value Sig. 
Relative Risk 

Ratio 

Intercept -2.384 -8.161 0.000 *** - 

Competition -0.907 -7.738 0.000 *** 0.404 

Trip Duration 0.447 45.106 0.000 *** 1.564 

Weekend  -0.290 -3.432 0.001 *** 0.748 

Significance codes: ‘***’: 0.000 | ‘**’: 0.001 | ‘*’: 0.01 | ‘.’: 0.05 | ‘ ’: ≥ 0.1  
 

 
Figure 6.5: Random Intercepts for the harsh braking model 

 

As with the harsh acceleration model, the inclusion of random intercepts was identified as the most 

informative random effects configuration, based on log-likelihood test ANOVA comparisons 

(lowest LogLikelihood and highest χ²). Each blue point corresponds to an individual driver, and 

the horizontal lines represent the confidence intervals for their random intercept estimates. The 

variability in intercepts highlights substantial differences in drivers' baseline likelihood of harsh 

braking events, independent of other fixed effects in the model. For instance, drivers like 

"besmartuser32" and "besmartuser20" exhibit higher tendencies toward harsh braking (positive 

intercepts), whereas drivers such as "besmartuser42" and "besmartuser26" display lower 

tendencies (negative intercepts). This heterogeneity underscores the importance of accounting for 

unique driver traits in modeling harsh braking behavior. 
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6.2.4 Discussion of results 

 

This section aimed: (i) to explore the speeding and aggressive behavior of professional drivers on 

based on detailed driving analytics collected by smartphone sensors, and (ii) to investigate whether 

incentives in a social gamification scheme can improve driving behavior. For that purpose, high-

resolution smartphone data collected from a naturalistic driving experiment with a sample of 19 

professional drivers were utilized. Using risk exposure and driving behavior indicators calculated 

from smartphone sensor data, statistical analyses were carried out for correlating the percentage of 

driving time over the speed limit, as well as the frequencies of harsh events, with other driving 

behavior indicators, namely by means of Generalized Linear Mixed-Effects Models.  

 

The results from the interpretation of the estimated parameters of the models can be summarized 

as follows: Trip duration has a positive correlation with harsh eevents, while driving during the 

weekends seems to reduce the frequency of harsh events; both accelerations and brakings. In 

addition, harsh accelerations are associated with the odds of someone exceeding the speed limits, 

outlining a pattern of an overall unsafe driving behavior. 

 

Furthermore, the present research contributes a preliminary example of quantitative documentation 

of the impact of encouraging rewarded behaviors on the examined human risk factors; aggressive 

behavior as expressed by the frequency of harsh accelerations and harsh brakings. Professional 

drivers constitute a high-risk road user group mainly due to the increased driving time and distance 

travelled. In that context, rewarding safe driving behavior and providing drivers with motivations 

and incentives within a social gamification scheme seems to have successful results. State-of-the-

art interventions can include approaches for driver training and support through innovative driver 

behavior monitoring and feedback tools in a variety of ways, personalized feedback with 

scorecards as well as incentives within a social gamification scheme, with personalized target 

setting, benchmarking and comparison with peers. 
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7 Feedback Effects of Different Features on Driver Behavior  
 

7.1 Introduction 
 

Despite considerable progress in road safety over the past decade, road traffic crashes remain a 

pervasive public health issue globally, resulting in around 1.19 million road traffic deaths in 2021 

(Global Status Report on Road Safety 2023. Geneva: World Health Organization; 2023.), 

corresponding to a rate of 15 road traffic deaths per 100 000 population. The identification of 

critical risk factors leading to road traffic crashes has been researched by numerous studies over 

the years. Among these factors, human elements are consistently recognized as the most 

significant, accounting for the vast majority of road crashes. In fact, human error is cited as the 

cause of 95% of all road crashes (Singh, 2015). This underscores the importance of understanding 

and addressing driver behavior as a key component of road safety initiatives. By analyzing driver 

behavior, targeted interventions can be developed, aiming to mitigate risky actions such as 

distracted driving, speeding, and impaired driving.   

 

The significance of driver monitoring is becoming more widely acknowledged in the 

transportation sector (Koesdwiady et al., 2017). Nevertheless, researchers encounter difficulties in 

collecting accurate real-time driving data with affordable collection and processing techniques. In 

this context, the widespread use of smartphones and social networks presents new opportunities 

for monitoring and analyzing driver behavior (Chan et al., 2020). The capabilities of smartphone 

applications, combined with their low cost and ease of use, facilitate data collection. These 

advancements facilitate the provision of direct feedback and trip analysis to drivers, potentially 

reducing road crashes and casualties. Going one step further, the conduction of driving experiments 

under naturalistic conditions using smartphones allows for the recording of drivers in their normal 

driving environments without external influences, and thus for the effective assessment of driver 

behavior (Ziakopoulos et al., 2020). Despite the growing interest from both manufacturing 

companies and transportation researchers in driver behavior, there is a notable gap in research 

quantifying the influence of driver feedback on road safety, particularly in terms of comparing data 

before and after feedback provision. 

 

In this regard, the present study aims to leverage large-scale trip data from smartphone sensors to 

assess the impact of driver feedback on key performance indicators, such as speeding, harsh 

braking, and harsh acceleration events. For this purpose, a naturalistic driving experiment has been 

conducted thousands of trips have been used first to examine the trend of the risk driving indicators 

and then, Structural Equations Models (SEM) are applied to identify feedback effects to risky 

driving indicators. The outputs of the two methods are combined to provide some critical insights 

on whether driver feedback influences driving behavior and in what extent. 

 

7.2 Descriptive Statistics and Preliminary Analysis  
 

Overall, during the 21-months experiment 73,869 trips were recorded from a sample of 175 car 

drivers (54% female, all ages) who had participated in all experiment phases. This subchapter 

presents the trend in the most crucial indicators of driving behavior during the experiment, noting 

the change in the phase of the experiment, in order to draw some initial conclusions about the 

effect of feedback on driver behavior. Table 7.1 shows the summary statistics of the selected 
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variables, while Figure 7.1 illustrate the trend of the same variables across the different experiment 

phases.  

 

The trends identified are the following: (i) There was an overall improvement in driving behavior 

from Phase 1 to Phase 2; (ii) The Covid-19 pandemic and subsequent lockdown measures 

significantly reduced the travel; (iii) There is a fluctuating improvement in driver behavior in 

subsequent phases; (iv) There is an improvement in driver behavior during the Competition phase; 

(v) There is a relapse to worse driving behavior once the Competition and Challenge phase is 

completed. 

 
Table 7.1: Descriptive statistics of the per trip values of the variables recorded during the experiment 

Experiment 

Phases 

Percentage 

of mobile use 

Percentage 

of speeding 

time 

Harsh 

brakings per 

100km 

Harsh 

accelerations 

per 100km 

Speed above 

the speed 

limits 

mean  std mean  std mean  std mean  std mean  std 

Phase 1 4.69% 0.13  6.17% 0.10  18.90  31.23  9.20  21.34  4.81  6.37  

Phase 2 3.95% 0.12  3.71% 0.07  19.35  32.72  9.64  22.37  4.22  6.30  

Phase 3 4.55% 0.13  3.70% 0.08  19.75  31.87  11.34  25.11  3.71  5.76  

Phase 4 4.44% 0.13  3.88% 0.08  17.70  31.62  10.53  23.98  3.33  5.28  

Phase 5/ 

Competition 3.03% 0.10  2.69% 0.06  13.21  24.92  8.23  20.44  2.38  4.13  

Phase 5/ 

Challenges 3.04% 0.11  3.37% 0.07  16.21  29.26  8.62  21.86  2.51  4.34  

Phase 6 2.35% 0.09  3.72% 0.07  16.89  29.79  8.01  19.72  3.01  4.51  
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Figure 7.1: Trends of the driving behavior parameters over the different experimental phases 

 

Before moving to the advanced statistical analysis, Wilcoxon signed-rank test was used to compare 

the examined variable of the different phases and assess whether their population mean ranks 

differ. Since none of the variables met the assumptions for normality and homogeneity of 

variances, the Wilcoxon signed-rank test (a non-parametric test) was used for all variables (Table 

3). Previous within-subjects design studies in the field of naturalistic driving research have also 

utilized the test to compare means among different feedback phases (Camden et al., 2019; Newnam 

et al., 2014). 

 

The Wilcoxon signed-rank test results, showed in Table 7.2, reveal significant changes in driving 

behaviors across different phases. Notable improvements were observed between Phase 1 and 

Phase 2, with substantial reductions in mobile use (26.20%), speeding time (41.40%), and harsh 

braking (12.90%), indicating the effectiveness of feedback interventions. Between Phase 2 and 

Phase 3, although mobile use and speeding time continued to decrease, harsh braking slightly 

increased, suggesting mixed outcomes. The comparison between Phase 3 and Phase 4 showed an 

increase in mobile use (9.60%) but a decrease in harsh accelerations (11.20%), highlighting 

persistent distractions despite some improvements. Lastly, the shift from Competition and 

Challenges to the last phase resulted in significant increases in all risky behaviors, emphasizing 

that drivers may relapse to unsafe behaviors once not receiving anymore feedback.  
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Table 7.2: Wilcoxon signed-rank test results comparing means of risky driving behavior parameters 

across each phase 

Phases compared  Driving behavior parameters  
mean 

diff. 
 S statistic p-value 

Phase 1 - Phase 2 Percentage of mobile use -26.20% 1.50591E+11 <0.01 

Phase 1 - Phase 2 Percentage of speeding time -41.40% 4.63629E+11 <0.01 

Phase 1 - Phase 2 Harsh brakings per 100km -12.90% 4.05868E+11 <0.01 

Phase 1 - Phase 2 Harsh accelerations per 100km -2.50% 2.07426E+11 <0.01 

Phase 1 - Phase 2 Speed above the speed limits (km/h) -18.00% 4.14412E+11 <0.01 

Phase 2 - Phase 3 Percentage of mobile use -26.80% 2.74877E+11 <0.01 

Phase 2 - Phase 3 Percentage of speeding time -16.70% 5.50967E+11 <0.01 

Phase 2 - Phase 3 Harsh brakings per 100km 1.50% 7.48152E+11 <0.01 

Phase 2 - Phase 3 Harsh accelerations per 100km 0.00% 4.86203E+11 <0.01 

Phase 2 - Phase 3 Speed above the speed limits (km/h) -27.60% 5.1229E+11 <0.01 

Phase 3 - Phase 4 Percentage of mobile use 9.60% 1.08069E+12 <0.01 

Phase 3 - Phase 4 Percentage of speeding time -5.80% 2.46395E+12 <0.01 

Phase 3 - Phase 4 Harsh brakings per 100km -10.00% 2.68961E+12 <0.01 

Phase 3 - Phase 4 Harsh accelerations per 100km 11.20% 1.98769E+12 <0.01 

Phase 3 - Phase 4 Speed above the speed limits (km/h) 1.30% 2.27401E+12 <0.01 

Phase 4 - Competition Percentage of mobile use -3.90% 27327559116 0.657 

Phase 4 - Competition Percentage of speeding time -13.10% 72000240177 <0.01 

Phase 4 - Competition Harsh brakings per 100km -3.20% 82995973298 <0.01 

Phase 4 - Competition Harsh accelerations per 100km -10.30% 47511875657 <0.01 

Phase 4 - Competition Speed above the speed limits (km/h) -20.90% 72401356187 <0.01 

Competition - Challenges Percentage of mobile use 10.00% 1502836826 <0.01 

Competition - Challenges Percentage of speeding time 50.70% 4321598228 <0.01 

Competition - Challenges Harsh brakings per 100km 41.50% 5775250817 <0.01 

Competition - Challenges Harsh accelerations per 100km 30.00% 2623882294 <0.01 

Competition - Challenges Speed above the speed limits (km/h) 24.30% 4081454761 <0.01 

Challenges - Phase 6 Percentage of mobile use 2.90% 4712410638 <0.01 

Challenges - Phase 6 Percentage of speeding time 4.00% 18068246934 <0.01 

Challenges - Phase 6 Harsh brakings per 100km -4.90% 21576313967 <0.01 

Challenges - Phase 6 Harsh accelerations per 100km 1.80% 9765516199 <0.01 

Challenges - Phase 6 Speed above the speed limits (km/h) 13.00% 18002330803 <0.01 

 

The results of the Wilcoxon signed-rank test provide a comprehensive understanding of how driver 

behavior evolves across different feedback phases and contexts. The significant reductions in 

mobile phone use, speeding time, and harsh braking between Phase 1 and Phase 2 strongly indicate 

the initial effectiveness of feedback interventions in curbing risky behaviors. These findings align 

with previous research that highlights feedback as a powerful tool for behavior modification in 
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naturalistic driving settings. The observed improvements suggest that drivers responded positively 

to feedback, adopting safer driving practices during the early stages of intervention. 

 

However, the subsequent phases reveal more nuanced outcomes, highlighting the challenges of 

sustaining long-term behavioral changes. Between Phase 2 and Phase 3, while mobile use and 

speeding continued to decrease, a slight increase in harsh braking suggests potential adaptation 

effects or situational factors that influenced driver responses. The increase in mobile use observed 

between Phase 3 and Phase 4, despite reductions in harsh accelerations, underscores the persistent 

challenge of distractions and the complexity of driver behavior over time. Importantly, the 

significant increases in risky behaviors during the shift from the Competition phase to the 

Challenges phase emphasize the potential for relapse when feedback or incentives are removed. 

This relapse underscores the necessity of continuous engagement strategies or reinforcement 

mechanisms to maintain safe driving behaviors over extended periods. 

 

7.3 Structural Equations Models 
 

This section presents the results of the SEM analysis, focusing solely on the final models, presented 

in Table 7.3. In addition to the previously mentioned hard goodness-of-fit measures, the coefficient 

estimates produced were evaluated to ensure they provided logical and interpretable results. Efforts 

were made to avoid model misspecification by considering the appropriateness of the theoretical 

framework and the outcomes produced. During the modeling process, it was evident that certain 

model structures were significantly better suited to the experimental data based on specific criteria; 

only these best-fitting models are presented here. Variations within each latent variable structure 

were explored using the backwards elimination technique.  

 

All statistical analyses were conducted in R-studio (R Core Team, 2013) and SEM analysis in 

particular utilized the lavaan R package. Ultimately, the proposed SEM structure retained two 

latent unobserved variables: 

 

• Feedback, expressing the influence of the different features of the smartphone app 

during the different phases of the experiment, namely Baseline, Scorecard feature, Maps 

feature, Compare feature, Competition and Challenges feature.  

 

• Exposure, expressing the influence of the exposure metrics, namely Distance (for 

driving speed 30km/h – 50km/h), Morning peak and Afternoon peak. 

 

It is important to note that mobile phone use while driving was initially included as a variable in 

the examined models. However, it did not prove to be statistically significant and was subsequently 

omitted from the final model. The analysis instead focused on other recorded driving behavior 

indicators, specifically the percentage of speeding time, harsh brakings per 100 km, and harsh 

accelerations per 100 km. 
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Table 7.3: SEM model of Percentage of speeding time, Harsh Brakings per 100km & Harsh 

Accelerations per 100km 

SEM Components Parameters Estimate S.E. z-value P(>|z|) 

Latent  Feedback Baseline 1.000 – – – 

Variables  Scorecard feature 2.076 0.014 148.640 0.000 

  Maps feature 1.646 0.010 157.864 0.000 

  Compare feature 1.215 0.029 41.754 0.000 

  Competition & Challenges 

feature 

2.053 0.038 54.447     0.000 

 Exposure Distance (for driving speed 

30km/h – 50km/h) 

1.000 – – – 

  Morning peak 2.473 0.350 7.072 0.000 

  Afternoon peak -1.360 0.129 -10.579 0.000 

Regressions Percentage of speeding 

time 

Intercept 0.409 0.003 138.941 0.000 

  Exposure 0.326 0.043 7.627 0.000 

  Feedback -0.214 0.014 -15.655 0.000 

 Harsh Accelerations per 

100km 

Intercept 0.099 0.001 95.037 0.000 

  Exposure 0.028 0.010 2.769 0.006 

  Feedback 0.026 0.004 6.493 0.000 

 
 

Competition & Challenges 

feature 

-0.001 0.000 -2.748 0.000 

  Afternoon peak 0.006 0.002 3.095 0.002 

 Harsh Brakings per 100km Intercept 0.184 0.001 158.258 0.000 

  Exposure 0.077 0.014 5.542 0.000 

  Feedback -0.027 0.005 -4.976 0.000 

Covariances 
Percentage of speeding 

time 

Harsh Brakings per 100km 0.007 0.001 7.686 0.000 

 
Harsh Accelerations per 

100km 

Percentage of speeding 

time 

0.006 0.001 9.526 0.000 

 
Harsh Brakings per 100km Harsh Accelerations per 

100km 

0.021 0.000 75.739 0.000 

 Feedback Exposure -0.001 0.000 -5.558 0.000 

Goodness-of-fit 

measures 
CFI 0.940    

  TLI 0.944    

  RMSEA 0.049   0.845 

  SRMR 0.025    

 

The model's goodness-of-fit measures further support the robustness of these findings, with a CFI 

of 0.940, TLI of 0.944, RMSEA of 0.049, and SRMR of 0.025. All four examined goodness-of-fit 

measures and the signs of the estimated coefficients indicate an excellent model fit. Additionally, 

the model's AIC was the lowest among the tested combinations, and no negative variances were 

observed, which would have suggested model misspecification (variance outputs are omitted for 

brevity). To enhance model fit, several variables were scaled linearly by factors of 10, which 

reduced variance discrepancies without affecting the interpretation of the coefficients. Moreover, 

an iterative process was employed to integrate covariances of the measured variables into the 

model. This involved comparing observed and fitted covariance correlations and addressing the 
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largest discrepancies by including relevant covariance pairs, provided there were no significant 

theoretical objections. This approach significantly improved the overall model fit. 

 

 
Figure 7.2: Residual correlation heatmap for SEM model 

 

Furthermore, Figure 7.2 provides a heatmap visualization of the residual correlations among the 

observed variables in the SEM model. The colors indicate the degree and direction of residual 

discrepancies: blue represents overestimation by the model, while red indicates underestimation. 

The strongest correlations (blue) are observed between the latent variables app_competition10 and 

distance_3050, as well as between speeding_percentage10 and hb_per100km100. This suggests 

that while the model fits well overall, these relationships highlight potential areas for further 

refinement or covariate inclusion. The relatively low range of residual values (maximum absolute 

value = 0.09) supports the robustness of the model. However, minor adjustments to better account 

for specific interactions—such as those involving distance_3050—could enhance the model's 

explanatory power. 

 

The path diagram of the present model is presented on Figure 7.3; green arrows denote positive 

correlations, while red arrows denote negative correlations. Several useful insights can be obtained 

from the produced SEM model results that are discussed in detail in the following subsections. 
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Figure 7.3. Path diagram of SEM model for percentage of speeding time, harsh accelerations per 

100km and harsh brakings per 100km 

 

Feedback 

The SEM analysis reveals that feedback mechanisms, including the scorecard, maps, compare, and 

competition & challenges features, significantly impact driver behavior. The scorecard feature has 

the highest positive estimate at 2.076 (p < 0.001), indicating its crucial role in modifying driving 

habits. This finding is particularly interesting as it demonstrates the powerful impact of feedback, 

leading to an immediate shift in driving behavior once participants are made aware of their risky 

actions. Similarly, the maps feature shows a strong influence with an estimate of 1.646 (p < 0.001), 

suggesting that providing drivers with map-based feedback can effectively encourage safer driving 

practices.  

 

The compare feature, with an estimate of 1.215 (p < 0.001), helps drivers assess their performance 

relative to others, positively influencing behavior. Additionally, the competition & challenges 

feature, with an estimate of 2.053 (p < 0.001), motivates drivers through competitive elements, 

reinforcing safe driving behaviors. Overall, these feedback mechanisms are effective in reducing 

the percentage of speeding time (feedback estimate: -0.214, p < 0.001) and harsh braking incidents 

(feedback estimate: -0.027, p < 0.001), although there is a slight increase in harsh accelerations 

(feedback estimate: 0.026, p < 0.001), which may require further refinement of the feedback 

system. 
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Exposure 

Exposure factors, particularly the times of day, play a significant role in driving behaviors. 

Morning peak exposure is associated with increased driving aggressiveness, as indicated by the 

significant positive estimate of 2.473 (p < 0.001). This suggests that drivers are more likely to 

engage in risky behaviors, such as speeding and harsh braking, during morning peak hours. This 

is likely due to their rush to reach work or university, resulting in a sense of urgency.  

 

In contrast, afternoon peak exposure has a negative estimate of -1.360 (p < 0.001), indicating that 

driving behaviors may be less aggressive during this time. The distance driven at speeds between 

30km/h and 50km/h serves as a reference parameter with an estimate of 1.000. Understanding 

these exposure patterns can help in designing targeted interventions to mitigate risky driving 

behaviors during specific times of the day. 

 

Regressions 

The regression analysis provides insights into how exposure and feedback influence specific 

driving behaviors. The percentage of speeding time is positively associated with exposure, with an 

estimate of 0.326 (p < 0.001), indicating that increased driving time leads to more speeding. 

However, feedback mechanisms significantly reduce speeding, with an estimate of -0.214 (p < 

0.001), highlighting their effectiveness. Harsh accelerations per 100km show a slight positive 

association with exposure (estimate: 0.028, p = 0.006) and feedback (estimate: 0.026, p < 0.001), 

suggesting that while feedback reduces some risky behaviors, it may inadvertently increase others.  

 

The competition & challenges feature slightly reduces harsh accelerations (estimate: -0.001, p < 

0.001), demonstrating its potential in moderating aggressive driving. Afternoon peak exposure 

increases harsh accelerations (estimate: 0.006, p = 0.002), further emphasizing the need for 

targeted interventions. Harsh brakings per 100km are positively influenced by exposure (estimate: 

0.077, p < 0.001) but significantly reduced by feedback (estimate: -0.027, p < 0.001), reinforcing 

the importance of feedback in promoting safer driving. 

 

Covariances 

The covariance analysis reveals strong interrelationships between various driving behaviors. There 

is a positive correlation between the percentage of speeding time and harsh brakings per 100km 

(estimate: 0.007, p < 0.001), indicating that drivers who speed are also more likely to brake harshly. 

Similarly, there is a positive correlation between speeding and harsh accelerations (estimate: 0.006, 

p < 0.001), suggesting that these behaviors often co-occur in aggressive driving patterns. The 

strong positive correlation between harsh brakings and harsh accelerations (estimate: 0.021, p < 

0.001) further supports this finding.  

 

Additionally, a negative correlation between feedback and exposure (estimate: -0.001, p < 0.001) 

indicates that increased feedback is associated with decreased exposure to risky driving conditions. 

These covariance relationships highlight the interconnected nature of different driving behaviors 

and the importance of comprehensive intervention strategies to address multiple aspects of driver 

behavior simultaneously. 

 

7.4 Discussion of Results 
 

Rapid technological advances, especially in telematics and Big Data analytics, as well as the 

increasing penetration and use of information technology by drivers (e.g. smartphones), provide 
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new capabilities for monitoring and analyzing driving behavior. In this section, the effect of driver 

feedback via a smartphone application on driving behavior risk indicators within a multiphase 

naturalistic driving experiment was examined. First, a preliminary analysis highlighted the 

beneficial effects of upgraded feedback on key risk indicators across experiment phases. 

Subsequently, SEM analysis on a 73,869-trip dataset provided significant insights into how 

feedback mechanisms and exposure factors influence driving behaviors.  

 

Feedback features, namely scorecard, maps, compare, and competition & challenges seem to be 

effective in reducing risky driving behaviors like speeding and harsh braking, although they may 

slightly increase harsh accelerations, at least some of the feedback features. Morning peak 

exposure is associated with more aggressive driving, while afternoon peak exposure tends to be 

less risky. Additionally, the strong positive correlations between speeding, harsh braking, and harsh 

accelerations highlight the interconnected nature of aggressive driving behaviors, confirming 

previous studies (Su et al., 2023) and showcasing the importance of driver behavior analysis. 

 

The present findings come with some practical implications, as well. First, further in depth 

examination of driver feedback is necessary to quantify the complex relationships involved in 

various driving tasks, taking also into account the two other road safety pillars; environment and 

vehicle. On that note, modifications to vehicle and mobile phone interfaces could be beneficial, 

particularly with the expected rise in connectivity and automation in the future. Additionally, 

incorporating eco-driving feedback is crucial to understanding and enhancing the effectiveness of 

feedback mechanisms. 

 

As the transportation landscape evolves, particularly with the rise of micromobility within 

multimodal transport systems and the emergence of new travel patterns in the wake of COVID-

19, understanding these shifts in decision-making processes is crucial. In that context, the ultimate 

goal of providing feedback to drivers is to activate the process of learning and self-assessment, 

enabling them to gradually improve their performance and monitor their progress. This process 

involves establishing detailed cause-and-effect relationships between aggressive driving and 

associated risks, offering valuable insights for improving road safety. Such information is 

beneficial for insurance companies, fleet management applications, and identifying hazardous 

geographical locations on the road network. Additionally, feedback can serve as a tool for 

objectively proving driving behavior, allowing users to gain benefits from their insurance 

companies or to regain their driver's license after revocation.  

 

While the study provides valuable insights into the impact of driver feedback mechanisms on 

driving behavior, it is not without limitations. One significant limitation is the exclusion of mobile 

phone use as a variable in the final model due to its lack of statistical significance. This omission 

may have overlooked potential nuances in driver distraction and its interaction with other risky 

behaviors. Additionally, the naturalistic driving experiment was conducted within specific 

geographic and temporal contexts, which may limit the generalizability of the findings to different 

regions or periods. Moreover, the reliance on self-selected participants who voluntarily used the 

feedback application could introduce selection bias, as these individuals may inherently be more 

safety-conscious or tech-savvy compared to the general driving population. This aspect of the 

experiment design is particularly intriguing and warrants further investigation; i.e. a follow-up 

questionnaire directed at participants could provide additional insights, allowing for a deeper 

understanding of their motivations and behaviors. 
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Undoubtedly, much more work needs to be done in this promising area and many challenges need 

to be addressed. Many different techniques have been used and there is a need for comparison 

integration to optimize the reliability and level of detail of research results. The advent of new 

technologies (e.g. in sensors) is progressively simplifying the application of naturalistic driving 

experiments, and new analysis techniques, such as artificial intelligence and machine learning, 

allow for a more efficient and in-depth analysis of results. Finally, considering other vulnerable 

road users (cyclists, pedestrians) in naturalistic driving research allows for the identification and 

understanding of problems specific to these groups of road users and the identification of possible 

solutions in ways that were not previously applicable. 

 

Future research should also focus on complex spatio-temporal analysis of data to develop advanced 

statistical models for identifying dangerous locations and road segments, through comparison with 

road accident locations, and reduced fuel consumption. The richness of the collected data can be 

exploited to develop easy-to-use reliable road maps by examining changes in driving risk exposure 

under changing traffic conditions and in different regions. The transfer and scalability potential of 

the methodology and research derivatives will be a legacy for the development of maps at any 

region and scale. 
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8 Post-Feedback Effect on Long-Term Driver Behavior  
 

8.1 Introduction 
 

Feedback-based interventions have been widely explored as a means to improve driver behavior 

and enhance road safety. However, the long-term effects of these systems remain inconsistent, with 

post-feedback behaviors varying significantly across studies. In some cases, feedback has 

demonstrated enduring positive impacts on driver behavior, even after the feedback period ended. 

For instance, Ghamari et al. (2022) observed that bus drivers sustained their improved behavior 

beyond the intervention phase, highlighting the potential for lasting change. Similarly, 

Merrikhpour et al. (2014) found that although behavioral improvements slightly diminished post-

intervention, they remained better than baseline levels, reflecting a degree of persistence. Molloy 

et al. (2023) also reported sustained improvements in speed compliance, albeit limited to low-

speed zones (e.g., 50 km/h). 

 

On the other hand, several studies have shown that once feedback is discontinued, drivers often 

revert to pre-feedback behaviors. For example, Bolderdijk et al. (2011) observed an increase in 

speeding among drivers once financial incentives tied to the feedback were removed, suggesting 

that such effects may not persist without ongoing reinforcement. Similarly, Toledo and Lotan 

(2006) found that initial reductions in driving risk indices dissipated within five months, with 

metrics returning to or even surpassing baseline levels. Mazureck and Van Hattem (2006) also 

noted that most drivers reverted to their prior habits following the feedback phase. 

 

Interestingly, some studies have highlighted the importance of continuous reinforcement 

mechanisms, such as follow-up coaching or ongoing monitoring, in sustaining behavioral changes. 

McGehee et al. (2007) reported a durable reduction in safety-critical events among high-frequency 

drivers when feedback was coupled with consistent reinforcement, such as training or performance 

improvement plans. This underscores the role of structured follow-ups in prolonging the benefits 

of feedback interventions. 

 

Certain studies also suggest that feedback interventions can deliver long-term benefits under 

specific conditions. For example, Soleymanian et al. (2019), Takeda et al. (2011), and Toledo et 

al. (2008) reported sustained improvements in driver behavior. However, these findings were often 

limited by low certainty due to issues such as data attrition or study dropout. Attrition bias is a 

critical challenge in long-term experiments, as drivers may lose engagement over time, leading to 

reduced statistical power and potential skewing of results. This loss of participation raises the 

question of whether sustained behavior change could have been achieved with ongoing 

interventions and consistent participant engagement. 

 

These mixed findings highlight the complexity of achieving sustained behavioral change through 

feedback interventions and underline the need for further research to understand the factors that 

influence long-term outcomes. This section seeks to address this gap by examining the post-

feedback effects on driver behavior over extended periods, focusing on the mechanisms that 

contribute to or hinder sustained improvements through survival analysis. 
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8.2 Participants and Preliminary Analysis 
 

In this study, a cohort of 31 car drivers who participated across all experimental phases—baseline, 

feedback, and post-feedback—was analyzed. Over the course of the 21-month experiment, these 

drivers completed a total of 24,904 trips, with each driver contributing a minimum of 20 trips in 

the post-feedback phase. Overall, the broader experiment involved a larger sample of 175 drivers 

and documented 73,869 trips, and feedback features different effect on driver behavior was 

investigated in the previous section of this thesis. This subset of 31 drivers was selected to closely 

examine the long-term effects of feedback interventions on driving behavior. Summary statistics 

for the selected sample are shown in Table 8.1, while critical driving indicators are shown in Table 

8.2 and Table 8.3. 

 
Table 8.1: Overview of the selected sample 

Age groups  
 

 18-34 35-54 >55 Total% 

Male 6 5 3 45% 

Female 8 5 4 55% 

Total % 45% 32% 23% 100% 

 

 
Table 8.2: Summary statistics for critical driving indicators during the different phases 

Indicators Baseline Feedback Post-Feedback 

Mean of the percentage of mobile phone use while 

driving (sd) 3.34% (0.11)  2.17% (0.09)  2.33% (0.09)  

Mean of the percentage of speeding while driving 

(sd) 5.42% (0.09)  2.81% (0.06)  3.74% (0.07)  

Mean of harsh accelerations per 100 km (sd) 6.68 (17.27)   6.88 (18.72)  7.96 (19.67)  

Mean of harsh braking per 100km (sd) 16.86 (27.15)  14.479 (26.50) 16.734 (29.55) 

 

To rigorously examine the impact of feedback on driving behavior across the Baseline, Feedback, 

and Post-Feedback phases, a Wilcoxon signed-rank test was conducted for each key behavioral 

indicator. Given that the data did not meet assumptions for normality and homogeneity of 

variances, the non-parametric Wilcoxon signed-rank test was chosen to compare median ranks 

across the three phases. This approach is consistent with methodologies used in prior naturalistic 

driving studies that explore changes in driver behavior under feedback interventions (Camden et 

al., 2019; Newnam et al., 2014). 

 
Table 8.3: Results of the non-parametric Wilcoxon signed-rank test for the examined indicators  

Variable Comparison Statistic p value 
Mean  

difference 

mbu_percentage Baseline vs. Feedback 2.05E+11 <0.01 -0.35% 

mbu_percentage Baseline vs. Post-Feedback 2.42E+09 <0.01 -0.28% 

mbu_percentage Feedback vs. Post-Feedback 9.26E+10 <0.01 0.16% 

speeding_percentage Baseline vs. Feedback 1.41E+12 <0.01 -2.74% 

speeding_percentage Baseline vs. Post-Feedback 1.79E+10 <0.01 -2.48% 

speeding_percentage Feedback vs. Post-Feedback 4.17E+11 <0.01 0.41% 

hb_per100km Baseline vs. Feedback 1.20E+12 <0.01 -0.93 
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hb_per100km Baseline vs. Post-Feedback 1.50E+10 <0.01 0.45 

hb_per100km Feedback vs. Post-Feedback 5.15E+11 <0.01 1.98 

ha_per100km Baseline vs. Feedback 4.21E+11 <0.01 0.47 

ha_per100km Baseline vs. Post-Feedback 5.34E+09 <0.01 0.96 

ha_per100km Feedback vs. Post-Feedback 2.32E+11 <0.01 0.69 

 

As shown in Table 8.2, the comparison between the Baseline and Feedback phases showed a 

significant improvement in driving behavior. Indicators of risky driving, such as mobile phone use, 

speeding percentage, and frequency of harsh braking, decreased notably during the Feedback 

phase. This trend aligns with previous studies indicating that post trip feedback can enhance safe 

driving behaviors by making drivers more aware of their risky actions (Camden et al., 2019; 

Newnam et al., 2014). Feedback mechanisms have been shown to promote self-regulation and 

encourage drivers to adjust their behavior to safer standards, supporting the hypothesis that 

feedback can be an effective tool for improving road safety in the short term. 

 

Despite the overall improvement in safe driving during the Feedback phase, some fluctuations in 

risky behavior were observed. Certain indicators, i.e. harsh accelerations per 100 km showed 

intermittent increases, suggesting that driver adaptation to feedback may vary across individuals 

and situations. This finding highlights the complexity of driver behavior under feedback conditions 

and aligns with studies that report varied responses to feedback interventions over time (Johnson 

et al., 2020). The fluctuation may reflect an adjustment period as drivers acclimate to receiving 

real-time feedback, underscoring the potential need for prolonged or reinforced feedback to 

achieve steady behavioral improvements. 

 

A notable relapse in risky driving behavior occurred once feedback was withdrawn in the Post-

Feedback phase. Indicators such as mobile phone use, speeding, and harsh braking increased 

compared to the Feedback phase, suggesting that the absence of feedback may lead drivers to 

revert to previous, riskier behaviors. This relapse effect is consistent with findings from Newnam 

et al. (2014) and Johnson et al. (2020), who observed similar tendencies in naturalistic driving 

studies. The observed relapse highlights a critical challenge in sustaining safe driving habits over 

the long term, as drivers may rely on continuous feedback to maintain safer behavior. 

 

The results of the Wilcoxon signed-rank test suggest that further research is necessary to better 

understand the impact of post-feedback effects on long-term driving behavior. To address this need, 

the present study will employ survival analysis to explore the mechanisms underlying these post-

feedback effects, providing insights into the sustainability of behavioral changes and the potential 

for relapses in the absence of feedback. 

 

8.3 Survival Analysis of Driving Behavior Relapse After Feedback 

Withdrawal 
 

The integration of survival analysis into driving studies has allowed researchers to understand the 

temporal patterns in risky driving and the factors that increase or decrease the likelihood of adverse 

events. For instance, Afghari et al. (2020) applied survival analysis to examine the impacts of 

distractions on developing time of a critical driving event, further showing its utilitarian value in 

understanding real-time driving risk. Similarly, the Kaplan-Meier curve and the parametric 

models, including the Weibull and Cox proportional hazards models, have been one of the widely 
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applied methods to quantify the impact that environmental and behavioral factors exert on the 

timing of risky events (Wang et al., 2021). This is a methodological approach that has considerably 

enriched the literature on driver safety and risk mitigation strategies with valuable practical 

implications for designing interventions and driver monitoring systems. 

 

Survival analysis was employed because of its ability to analyze time-to-event data, making it 

particularly suitable for understanding driver behavior over time. In the context of post-feedback 

effect, survival analysis allows for the examination of how long, drivers maintain improved 

behaviors before relapsing into their original patterns. This method is essential for capturing not 

only whether behavioral changes occur but also the duration for which these changes persist, 

providing a dynamic view of the intervention’s long-term impact. By focusing on time-to-relapse 

as the primary outcome, survival analysis enables the evaluation of feedback effectiveness in 

fostering sustained behavioral improvements. While most driving behavior studies have analyzed 

time-to-event data within a microscopic framework—such as deceleration adjustment times in car-

following scenarios (Adavikottu et al., 2023) or the probability of detecting a pedestrian during 

mobile phone use (Choudhary & Velaga, 2017)—this study focuses on a macroscopic analysis of 

time-to-event data, examining driving behavior relapse after feedback withdrawal during the final 

phase of the experiment. 

 

Another key advantage of survival analysis is its ability to handle censored data, which is common 

in longitudinal studies. In this research, not all drivers may have experienced a relapse or 

completed the entire study period, leading to incomplete observations. Survival analysis addresses 

this issue by incorporating censored data into the model, ensuring that the findings remain robust 

and reflective of the entire study population. Moreover, the inclusion of covariates such as age, 

driving experience, and vehicle characteristics in survival models allows for the identification of 

factors influencing the likelihood and timing of behavioral relapse, providing deeper insights into 

the mechanisms underlying the post-feedback effects. 

 

Furthermore, survival analysis facilitates the comparison of different intervention strategies by 

estimating and visualizing survival curves, such as Kaplan-Meier plots, and by fitting advanced 

models like Accelerated Failure Time (AFT) and Cox proportional hazards models, or even 

machine learning techniques like Random Survival Forest. These tools help quantify the influence 

of specific variables on the duration of behavior change while accounting for time-dependent 

effects and individual heterogeneity through random effects or frailty models. The detailed 

description of the survival models used in this thesis are presented in Section 3. In summary, basic 

terminologies for the survival analysis in the present section are defined as following: 

 

• Event: In this analysis, an "event" is defined as a "relapse" in driving behavior, specifically 

when the driver’s examined behavior (i.e. harsh accelerations, harsh brakings, speeding 

and mobile phone use) exceed a predefined threshold. This threshold is calculated as the 

mean behavior indicator rate observed during the feedback phase, a period of active 

intervention. Exceeding this threshold in the post-feedback phase signals a decline in 

driving behavior, which is considered an "event" for survival analysis purposes. 

 

• Duration Variable (Time to Event): The duration variable in this analysis is represented by 

the number of trips taken until a relapse event occurs. In survival analysis terms, the 

duration is a continuous random variable T with a cumulative distribution function F(t) and 
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probability density function f(t). The survival analysis tracks the probability of a driver 

maintaining improved driving behavior over successive trips in the post-feedback phase. 

 

• Survival Rate (S(t)): The survival rate S(t) gives the probability that a driver will maintain 

driving behavior below the harsh acceleration threshold for a given number of trips, 

denoted by t. This can be interpreted as the probability of no relapse occurring within that 

period.  

 

• Hazard Rate (h(t)): The hazard rate h(t) represents the conditional probability of a relapse 

occurring at a particular trip t, given that no relapse has occurred up until that trip. It 

provides an instantaneous risk of relapse at each point in time (number of trips). In this 

study, as the number of trips increases in the post-feedback phase, the probability of relapse 

also tends to increase, indicating a rising hazard rate over time.  

 

All survival analyses were performed in R Studio. The survfit function was used to generate 

Kaplan-Meier curves for survival probability visualization. The coxme function fitted a Cox 

Proportional Hazards model with frailty effects, while cox.zph validated the proportional hazards 

assumption. A Weibull Accelerated Failure Time (AFT) model was implemented using survreg, 

incorporating clustered heterogeneity with the cluster argument. The Random Survival Forest 

model was built using the ranger package to explore non-linear relationships and identify key 

predictors. Model performance and comparisons were assessed using metrics like AIC, BIC, and 

concordance indices computed through predict and concordance functions. These tools facilitated 

a comprehensive exploration of survival patterns. 

 

8.3.1 Survival analysis of relapse in harsh accelerations  

 

8.3.1.1 The Kaplan-Meier curves  

 

The Kaplan-Meier curve is a stepwise function that visually represents the survival probability 

over time. Its primary advantage lies in its ability to handle censored data, which is particularly 

useful in studies where subjects may not experience the event by the end of the observation period. 

The Kaplan-Meier survival curve shows the proportion of drivers who continue to maintain 

improved driving behavior without relapse across successive trips. The survival probability is 

recalculated at each relapse event, giving a stepwise depiction of the declining survival rate as 

drivers accumulate trips post-feedback. The Kaplan-Meier survival curve for harsh accelerations 

is shown in Figure 8.1. 

 

The Kaplan-Meier survival curve for harsh accelerations per 100 km in the post-feedback phase 

provides insights into the long-term impact of feedback on driving behavior. These results 

demonstrate that while feedback led to temporary behavior improvement, the effect diminishes 

over time without continued feedback. The Kaplan-Meier analysis highlights the necessity for 

sustained or recurring interventions to reinforce safer driving behaviors in the long term.  
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Figure 8.1: Kaplan-Meier survival curve for harsh accelerations per 100 km  

 

Initial Period: The survival probability remains relatively high initially, indicating that most drivers 

maintain improved behavior within the first several trips. 

Declining Survival Probability: As the number of trips increases, the survival probability declines, 

with notable drops at specific points. For instance: 

▪ 50 trips: approximately 84.8% of drivers still maintain improved behavior (no relapse). 

▪ 100 trips: the survival probability decreases to about 68.7%, showing a progressive 

decline in adherence to safer driving behavior. 

▪ 150 trips: the probability further drops to around 49.2%, suggesting that nearly half of the 

drivers have relapsed to pre-feedback levels of harsh acceleration. 

 

8.3.1.2 Cox-PH Model with Frailty 

 

In this study, the Cox Proportional Hazards (Cox-PH) model with frailty was applied to capture 

the nuanced relationship between driver behavior and relapse after feedback phase, using both 

naturalistic driving data and questionnaire data, as well. This semi-parametric approach is 

particularly advantageous because it models the hazard rate of relapse without imposing strict 

assumptions about the underlying distribution of survival times. By focusing on the hazard rate, 

the Cox-PH model allows for a dynamic analysis of how various factors, such as age, driving 

experience, and driving conditions, influence the likelihood of relapse over time. This flexibility 

is critical in studying complex behavioral patterns where survival times may not conform to 

traditional distributions. 

 

The inclusion of frailty in the Cox-PH model further enhances its utility by accounting for 

unobserved heterogeneity across drivers. Frailty acts as a random effect, capturing individual-

specific differences that might not be fully explained by observed covariates. This is especially 

important in driving behavior studies, where factors like personality, driving style, or situational 

influences can introduce variability in relapse rates. Additionally, the model’s ability to provide 
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interpretable hazard ratios enables a clear understanding of the relative impact of different 

variables on relapse risk, offering actionable insights for tailoring feedback interventions to 

specific driver groups. By leveraging these strengths, the Cox-PH model with frailty provides a 

robust framework for analyzing time-to-relapse data in the context of driver safety feedback. 

The results of the Cox Proportional Hazards model with frailty highlight key factors influencing 

the likelihood of harsh accelerations. Table 8.4 shows the results and the metrics of the model.  
 

Table 8.4: Cox -PH model with frailty results for harsh accelerations per 100km 

Random Effects      

Group Variable SD Variance   

Identifier Intercept 1.189 1.415   

Metrics chisq df p AIC BIC 

Integrated loglik  489 9.00 0.00 471 431.4 

Penalized Loglik 584 26.66 0.00 530.7 413.2 

Fixed Effects      

Variable Coef Exp(Coef) SE(Coef) z p 

Participant’s age      

Age [18-34] Ref.     

Age [35-54] -1.851 0.156 0.652 -2.84 0.004 

Age [55+] -0.930 0.394 1.020 -0.91 0.362 

Participant’s gender      

Female Ref.     

Male -0.653 0.520 0.520 -1.25 0.209 

Self-reported aggressiveness      

Low Ref.     

High 1.176 3.243 0.651 1.81 0.070 

Participant’s vehicle cc      

<1400cc Ref.     

>1400cc 0.500 1.649 0.677 0.74 0.459 

Peak hour      

Off peak Ref.     

Morning peak -0.244 0.783 0.110 -2.21 0.026 

Afternoon peak -0.368 0.691 0.108 -3.39 <0.001 

Trip duration 0.011 1.011 0.002 4.75 <0.001 

Concordance Index (C-index):  0.675     

AIC 7588.86     

BIC 7740.94     

 

Results show that random effects indicate significant unobserved heterogeneity across drivers, as 

indicated by an intercept standard deviation of 1.189 and variance of 1.415. Among fixed effects, 

significant predictors include age group [35-54] (p = 0.0046), which is associated with a reduction 

in the hazard of relapse (Exp(Coef) = 0.156), and peak hour99 (p = 0.0007), which shows a 

protective effect against relapse (Exp(Coef) = 0.692). Duration is strongly associated with an 

increased hazard (p < 0.0001), suggesting that longer trips slightly increase the risk of relapse 

(Exp(Coef) = 1.012). Non-significant predictors include gender and vehicle engine capacity, while 

aggressive driving tendencies approach significance (p = 0.070).  
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As explained above, one of the main assumptions of the Cox Proportional Hazards model is the 

proportionality of the covariates. For each of the variables included in the model, a function that 

correlates the corresponding set of scaled Schoenfeld residuals with time was implemented to test 

independence between residuals and time. The same test applies to the model as a whole. The 

results indicate that the proportionality assumption is violated, as p<0.05. 

 

 
Figure 8.2 Schoenfeld residuals versus time for each of the variables of the Cox model 

 

8.3.1.3 Weibull AFT Model with Clustered Heterogeneity 

 

The Weibull Accelerated Failure Time (AFT) model with clustered heterogeneity provides a 

powerful alternative for analyzing the time to relapse in driving behavior indicators following the 

feedback phase. Unlike the Cox-PH model, which focuses on hazard rates, the Weibull AFT model 

directly models survival time, offering a distinct perspective on how various covariates accelerate 

or decelerate relapse. This approach is particularly valuable in understanding the temporal 

dynamics of driver behavior, as it allows for the direct estimation of time-related effects of 

predictors, such as trip duration or vehicle characteristics. For instance, the model’s coefficients 

can provide actionable insights into how specific factors extend or shorten the time until a relapse 

occurs, making it a useful tool for tailoring interventions. 

 

Another key strength of the Weibull AFT model is its ability to incorporate random effects to 

account for unobserved heterogeneity among drivers. By clustering drivers and considering 

individual-specific differences, the model effectively captures variability introduced by latent 

factors, such as driving habits or psychological tendencies, that are not explicitly measured. This 

feature ensures that the analysis reflects the diversity of driver behavior, thereby increasing the 
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reliability of the results. Moreover, the interpretability of the model’s coefficients facilitates a 

straightforward understanding of how covariates like age, driving conditions, or feedback timing 

influence survival time, making the Weibull AFT model a robust choice for analyzing complex, 

clustered time-to-event data in driver behavior studies. 

 

The results presented in Table 8.5 and the accompanying plots provide critical insights into the 

relapse of harsh acceleration behaviors among drivers after feedback withdraw in the experiment.  

 
Table 8.5: Weibull AFT model with clustered heterogeneity results for harsh accelerations per 100km 

Variable Value Std. Err  (Naive SE)  z p 

(Intercept) 5.011 0.362 0.091  13.82 <0.001 

Participant’s age      

Age [18-34] Ref.     

Age [35-54] 0.245 0.21892 0.078 1.12 0.042 

Age [55+] 0.387 0.2108 0.169 1.84 0.085 

Participant’s gender      

Female Ref.     

Male 0.382 0.27019 0.073 1.41 0.157 

Self-reported aggressiveness      

Low Ref.     

High -0.643 0.25925 0.115 -2.48 0.013 

Participant’s vehicle cc      

<1400cc Ref.     

>1400cc -0.008 0.28301 0.110 -0.03 0.046 

Peak hour      

Off peak Ref.     

Morning peak 0.189 0.10928 0.084 1.73 0.083 

Afternoon peak 0.411 0.13258 0.080 3.11 0.001 

Trip duration -0.015 0.00332 0.001 -4.58 <0.001 

Log(scale) -0.253 0.083 0.032 -3.05 0.002 

Scale 0.776     

Loglik(model) -3842.7     

Loglik(intercept only) -3944.9     

Chisq 204.41    <0.001 

Number of Newton-Raphson 

Iterations 8     

Concordance Index  0.677     

AIC 7705.44     

BIC 7762.49     

 

The Weibull AFT model identifies significant predictors of time to relapse, accounting for 

unobserved heterogeneity through clustering. Aggressive drivers in the high self-reported category 

had a shorter time to relapse (p = 0.013), underscoring the importance of targeted interventions for 

this group. Afternoon peak hours were associated with a significantly longer time to relapse (p = 

0.001), while longer trip durations reduced the time to relapse (p < 0.001), highlighting the 

influence of contextual factors such as driving conditions and trip characteristics on behavior. The 
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model's concordance index (0.677) reflects moderate predictive accuracy, indicating that it 

provides reasonably reliable predictions. 

 

The plots provide a visual representation of the frailty effects and survival probabilities across 

strata. The frailty plot shows variability in random intercepts across drivers, confirming the 

importance of considering unobserved individual differences in the analysis. Meanwhile, the 

survival probability plot reveals that afternoon peak hours (green) are associated with higher 

survival probabilities compared to morning and off-peak hours, further substantiating the impact 

of contextual driving conditions. Together, the table and plots underscore the role of both 

individual and situational factors in shaping relapse behaviors, highlighting actionable areas for 

improving feedback strategies and ensuring sustained behavioral change. More specifically, The 

left plot illustrates survival probabilities stratified by peak hour categories (off-peak, morning 

peak, afternoon peak) over successive trips, highlighting differences in relapse risk. The right plot 

depicts the random intercepts (frailty effects) by driver identifier, showcasing individual-level 

variability in relapse behavior. 

 

 
Figure 8.3: Survival probability for harsh accelerations relapse  
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Figure 8.4:Random effects for harsh accelerations relapse  

 

The diagnostic plots for the Weibull AFT model with clustered heterogeneity indicate an overall 

good model fit for predicting relapse in harsh accelerations per 100km. The histogram and Q-Q 

plot of deviance residuals show that the residuals are approximately symmetric and centered 

around zero, with minor deviations at the tails, suggesting the model captures most of the data well 

but may have difficulty with extreme values. The Cox-Snell residuals display a random scatter, 

supporting the assumption of independence and appropriate model specification. The observed vs. 

predicted times plot reveals a reasonable alignment with the diagonal line, indicating that the 

model predictions are broadly accurate, though variability increases for longer observed times.  
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Figure 8.5: Model diagnostics for the Weibull AFT model on harsh accelerations 

 

 

8.3.1.4 Random Survival Forest  

 

The results of the Random Survival Forest (RSF) model for harsh accelerations emphasize the 

dominance of trip duration as the most significant predictor of relapse, as illustrated in the variable 

importance plot. The importance score for trip duration significantly exceeds that of other 

predictors, emphasizing its critical role in influencing survival outcomes. This finding aligns with 

results from other survival models, which consistently show that longer trips are associated with a 

quicker relapse into previous driving behaviors, effectively reducing the likelihood of maintaining 

improved driving behavior over time. Gender and vehicle engine capacity (vehicle_cc_group) also 

show moderate importance, suggesting that demographic factors and vehicle characteristics play 

roles in relapse prediction. Age group, aggressive driving behavior, and peak hour display 

relatively lower importance, indicating their less direct impact on survival times in the context of 

harsh accelerations. 
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Figure 8.6: Feature importance of Random Forest for harsh accelerations relapse 

 

The predictive performance of the RSF model was evaluated using Root Mean Squared Error 

(RMSE) and Mean Absolute Error (MAE), with values of 91.36 and 69.63, respectively. These 

errors highlight the model's ability to estimate survival times with moderate accuracy. Additionally, 

the out-of-bag prediction error (1-C index) of 0.33 indicates reasonable discrimination 

performance, though slightly lower compared to the Weibull AFT parametric survival model. 

Overall, the RSF model complements traditional survival analysis methods by capturing complex, 

non-linear interactions among predictors, which is evident in the nuanced relationships identified 

between predictors and relapse behavior. 
 

Table 8.6: RSF model results for harsh accelerations 

Type Survival 

Number of trees 30 

Sample size 2220 

Number of independent variables 6 

Mtry 2 

Target node size 5 

Variable importance mode permutation  

Splitrule logrank  

Number of unique death times 196 

OOB prediction error (1-C) 0.32969 

 

8.3.1.5 Model comparison for harsh accelerations 

 

Table 8.6 provides a comparative analysis of survival models applied to driving behavior relapse, 

focusing on harsh accelerations per 100km. Among these, the Weibull Accelerated Failure Time 

(AFT) model demonstrated its strengths, offering a balance of interpretability and predictive 
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accuracy with a C-index of 0.677. Its ability to model survival time directly and account for 

clustered heterogeneity through a parametric framework makes it particularly effective when 

interpretability and explicit handling of frailty effects are critical. Key predictors such as trip 

duration and aggressive driver group were identified, and the model exhibited lower prediction 

error compared to the Cox model, although it was slightly outperformed by the Random Survival 

Forest (RSF) in terms of RMSE and MAE. 

 
Table 8.7 Survival models comparison for harsh accelerations per 100km 

Aspect Weibull AFT Model Cox Model with Frailty 
Random Survival Forest 

(RSF) 

Purpose 
Models survival time 

directly 
Models hazard rate 

Captures non-linear 

effects 

C-index 0.677 0.675 0.670 (OOB) 

AIC 7705.44 7588.86 N/A 

BIC 7762.49 7740.94 N/A 

Key Predictors 
Age, aggressive driver 

group, duration 

Aggressive driver group, 

duration 

Duration, gender, 

vehicle_cc_group 

Frailty Effects 
Accounted (Clustered 

Heterogeneity) 
Accounted (Shared Frailty) 

Implicitly handled (Non-

parametric) 

Prediction Error 

(RMSE/MAE) 

RMSE: 92.81, MAE: 

71.30 

RMSE: 173.08, MAE: 

152.21 

RMSE: 91.36, MAE: 

69.63 

Strengths 
Interpretable, adjusts for 

clustering 

Handles heterogeneity 

flexibly 

Captures complex 

interactions 

Weaknesses 
Assumes Weibull 

distribution 

Assumes proportional 

hazards 
Less interpretable 

 

The Cox model with frailty achieved a comparable C-index of 0.675 and handled heterogeneity 

flexibly through shared frailty terms. However, its reliance on the proportional hazards 

assumption, which was violated in this dataset, along with higher prediction errors (RMSE: 173.08, 

MAE: 152.21), limits its applicability in contexts where hazard ratios vary over time or predictive 

accuracy is essential. 

 

The RSF model, while less interpretable, excelled in capturing complex non-linear relationships 

and interactions among predictors, making it particularly useful when predictive accuracy and 

modeling flexibility are paramount. It achieved the best predictive performance, with an RMSE of 

91.36 and an MAE of 69.63. However, its lack of transparency and inability to provide clear hazard 

ratios or survival time estimates present challenges for understanding the underlying dynamics of 

relapse. 

 

Overall, the choice of the model depends on the priorities of the analysis. If interpretability and 

the explicit handling of frailty are critical, the Weibull AFT model stands out as the preferred 

option. However, when predictive accuracy and the ability to model complex relationships are 

paramount, the Random Survival Forest emerges as a strong candidate, despite its interpretability 

challenges. 
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8.3.2 Survival analysis of relapse in harsh braking  
 

8.3.2.1 The Kaplan-Meier curves  

 

The Kaplan-Meier survival curve for harsh braking events per 100 km shows the rate at which 

drivers revert to higher levels of harsh braking after the feedback phase. 

 

 
Figure 8.7: Kaplan-Meier survival curve for harsh braking per 100 km  

 

Initial Period: The survival probability remains relatively high in the early trips of the post-

feedback phase, indicating that most drivers maintain reduced levels of harsh braking initially. 

Declining Survival Probability: Over time, there is a steady decline in the survival probability, 

indicating an increase in harsh braking behaviors. Specific points of note include: 

▪ 50 trips: Approximately 81.5% of drivers maintain their improved behavior, with a 

notable 18.5% relapsing. 

▪ 100 trips: The survival probability drops to around 61.4%, suggesting that close to 40% 

of drivers have reverted to higher levels of harsh braking. 

▪ 150 trips: The survival probability falls further to 40.3%, indicating that the majority of 

drivers have relapsed by this stage. 

 

These results suggest that while feedback leads to temporary improvements in harsh braking 

behavior, the effect diminishes considerably over time. Continued feedback may be necessary to 

sustain these improvements long-term. 

 

8.3.2.2 Cox-PH Model with Frailty 

 

The results of the Cox Proportional Hazards model with frailty highlight key factors influencing 

the likelihood of relapse in harsh brakings.  

 

Table 8.8 shows the results and the metrics of the model.  
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Table 8.8: Cox-PH model with frailty results for harsh braking per 100km 

Random Effects      

Group Variable SD Variance   

Identifier Intercept 0.941 0.885   

Metrics chisq Df p AIC BIC 

Integrated loglik  446.9 9.00 0.00 428.9 387.4 

Penalized Loglik 537 26.15 0.00 484.8 363 

Fixed Effects      

Variable Coef Exp(Coef) SE(Coef) z p 

Participant’s age      

Age [18-34] Ref.     

Age [35-54] -1.659 0.190 0.506 -3.28 0.002 

Age [55+] -1.517 0.219 0.812 -1.87 0.061 

Participant’s gender      

Female Ref.     

Male -0.260 0.770 0.409 -0.64 0.524 

Self-reported aggressiveness      

Low Ref.     

High 0.962 2.617 0.518 1.85 0.063 

Participant’s vehicle cc      

<1400cc Ref.     

>1400cc 1.064 2.898 0.516 2.06 0.039 

Peak hour      

Off peak Ref.     

Morning peak -0.311 0.732 0.103 -3.00 0.002 

Afternoon peak -0.185 0.831 0.096 -1.92 0.054 

Trip duration 0.005 1.005 0.002 2.24 0.024 

Concordance Index (C-index):  0.653     

AIC 9796.77     

BIC 9945.937     

 

Results reveal that random effects show significant variability between participants, as indicated 

by the intercept standard deviation (SD = 0.941) and variance (0.885), highlighting the importance 

of accounting for unobserved heterogeneity. Among the fixed effects, age group [35-54] 

(Exp(Coef) = 0.190, p = 0.002) significantly reduces the hazard of relapse, while participants with 

vehicles >1400cc (Exp(Coef) = 2.898, p = 0.039) show an increased risk of relapsing. Morning 

peak hours (Exp(Coef) = 0.732, p = 0.002) also reduce relapse risk compared to off-peak hours. 

Trip duration slightly increases the hazard of relapse (Exp(Coef) = 1.005, p = 0.024). However, 

other factors such as gender and self-reported aggressiveness approach significance but do not 

achieve statistical significance. The model's concordance index (C-index = 0.275) suggests limited 

predictive accuracy, while the AIC (9796.77) and BIC (9945.94) indicate adequate model fit. These 

results emphasize the influence of vehicle characteristics, trip context, and demographic factors in 

relapse behavior but suggest room for improvement in predictive power. 

 

Simirarly to the harsh accelerations model, the results of the Schoenfeld residuals test indicate that 

the proportionality assumption is violated.  
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Figure 8.8 Schoenfeld residuals versus time for each of the variables of the Cox model 

 

8.3.2.3 Weibull AFT Model with Clustered Heterogeneity 

 

The Weibull AFT model results for harsh braking per 100km, as presented in Table 8.4, provide 

key insights into the factors influencing relapse time. Significant predictors include age, where 

both the [35-54] and [55+] groups exhibit longer survival times compared to the [18-34] reference 

group, with p-values of 0.010 and 0.005, respectively. Vehicle engine capacity (>1400cc) also 

plays a role, as drivers with larger vehicles have shorter survival times (p = 0.012). Additionally, 

trip duration negatively impacts relapse likelihood (p = 0.027), indicating that longer trips reduce 

the chances of relapse. While morning peak hours approach significance (p = 0.051), other 

variables, such as gender and aggressiveness, were not significant. The model achieves a 

concordance index (C-index) of 0.653, suggesting moderate predictive accuracy. 
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Table 8.9: Weibull AFT model with clustered heterogeneity results for harsh braking per 100km 

Variable Value Std. Err  (Naive SE)  z p 

(Intercept) 4.792 0.214 0.077 22.350 <0.001 

Participant’s age      

Age [18-34] Ref.     

Age [35-54] 0.360 0.139 0.065 2.590 0.010 

Age [55+] 0.624 0.220 0.159 2.830 0.005 

Participant’s gender      

Female Ref.     

Male 0.352 0.185 0.064 1.900 0.057 

Self-reported aggressiveness      

Low Ref.     

High -0.271 0.217 0.099 -1.250 0.213 

Participant’s vehicle cc      

<1400cc Ref.     

>1400cc -0.508 0.202 0.085 -2.520 0.012 

Peak hour      

Off peak Ref.     

Morning peak 0.191 0.098 0.074 1.960 0.051 

Afternoon peak 0.151 0.085 0.066 1.780 0.075 

Trip duration -0.008 0.003 0.002 -2.220 0.027 

Log(scale) -0.325 0.056 0.029 -5.750 <0.001 

Scale 0.723     

Loglik(model) -4740.7     

Loglik(intercept only) -4849.1     

Chisq 216.72    <0.001 

Number of Newton-Raphson 

Iterations 8     

Concordance Index  0.724     

AIC 9501.39     

BIC 9558.44     

 

The survival plot stratified by aggressiveness group highlights clear differences in survival 

probabilities. Drivers in the "High Aggressiveness" group show a steeper decline in survival 

probability compared to the "Low Aggressiveness" group, confirming the significant impact of 

behavioral traits on relapse likelihood. This visualization complements the model results, 

emphasizing the role of personality factors in determining survival times. Furthermore, the random 

intercepts plot reveals individual variability in frailty effects, showcasing the importance of 

accounting for unobserved heterogeneity across drivers. Drivers with positive frailty effects 

exhibit shorter survival times, while those with negative frailty effects survive longer. 
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Figure 8.9: Survival probability for harsh braking relapse  

 

  
Figure 8.10: Random effects for harsh braking relapse  

 

Lastly, the residual diagnostics provide additional support for the model's adequacy. The histogram 

and Q-Q plots of deviance residuals show that residuals are roughly symmetric and align well with 

theoretical expectations, although slight deviations exist at the tails. The Cox-Snell residuals plot 

confirms the independence of residuals, as no clear patterns emerge, while the observed vs. 

predicted times scatterplot indicates reasonable alignment around the diagonal, despite variability 
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at higher observed times. Together, the table and plots confirm the robustness of the Weibull AFT 

model while highlighting areas for refinement, particularly in predicting extreme cases or tailoring 

interventions based on individual frailty. 

 

 
Figure 8.11: Model diagnostics for the Weibull AFT model on harsh braking 

 

Lastly, the residual diagnostics provide additional support for the model's adequacy. The histogram 

and Q-Q plots of deviance residuals show that residuals are roughly symmetric and align well with 

theoretical expectations, although slight deviations exist at the tails. The Cox-Snell residuals plot 

confirms the independence of residuals, as no clear patterns emerge, while the observed vs. 

predicted times scatterplot indicates reasonable alignment around the diagonal, despite variability 

at higher observed times. Together, the table and plots confirm the robustness of the Weibull AFT 

model while highlighting areas for refinement, particularly in predicting extreme cases or tailoring 

interventions based on individual frailty. 

 

8.3.2.4 Random Survival Forest  

 

The results of the Random Survival Forest (RSF) model for harsh braking reveal key insights into 

the predictors influencing the relapse event. The variable importance plot indicates that 

vehicle_cc_group is the most critical predictor, followed by age_group and gender, while factors 

like duration and aggressive_driver_group have a moderate influence. Interestingly, peak_hour, 

while included, appears to have the least importance, suggesting it has a minor role in predicting 

harsh braking relapse. These findings align with the broader understanding that vehicle 

characteristics and driver demographics are more central to relapse behavior than contextual 

factors like time of travel. 
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Figure 8.12: Feature importance of Random Forest for harsh braking 

 

The RSF model, trained with 30 trees, demonstrated an out-of-bag (OOB) prediction error of 

0.357, highlighting its moderate predictive performance. The model's flexibility in capturing non-

linear relationships and interactions adds value, but its interpretability is limited compared to 

parametric models. The error metrics, with an RMSE of 91.92, and an MAE of 70.67, indicate 

moderate alignment between predicted and observed survival times. These results suggest the RSF 

model's utility for identifying critical predictors, which can inform targeted interventions, while 

underscoring the importance of integrating other models for more nuanced interpretations of 

hazard dynamics. 

 
Table 8.10: RSF model results for harsh braking 

Type Survival  

Number of trees 30 

Sample size 2220 

Number of independent variables 6 

Mtry 2 

Target node size 5 

Variable importance mode permutation  

Splitrule logrank  

Number of unique death times 220 

OOB prediction error (1-C) 0.357947 

 

 

 

 



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism 

 

177 

 

8.3.2.5 Model comparison for harsh braking 

 

Table 8.11 Survival models comparison for harsh braking per 100km 

Aspect Weibull AFT Model Cox Model with Frailty 
Random Survival Forest 

(RSF) 

Purpose 
Models survival time 

directly 
Models hazard rate Captures non-linear effects 

C-index 0.724 0.653 0.636 (OOB) 

AIC 9501.4 9796.8 N/A 

BIC 9558.4 9945.9 N/A 

Key Predictors 
Age group, vehicle CC 

group, trip duration 

Vehicle CC group, peak 

hour, trip duration 

Vehicle CC group, age 

group, gender, trip duration 

Frailty Effects 
Accounted (Clustered 

Heterogeneity) 

Accounted (Shared 

Frailty) 

Implicitly handled (Non-

parametric) 

Prediction Error 

(RMSE/MAE) 

RMSE: 91.73, MAE: 

70.25 

RMSE: 121.11, MAE: 

102.42 
RMSE: 91.92, MAE: 70.67 

Strengths 
Interpretable, adjusts for 

clustering 

Handles heterogeneity 

flexibly 

Captures complex 

interactions 

 Accounts for driver-

specific effects 

Provides interpretable 

hazard ratios 

Robust to outliers, 

identifies non-linear effects 

Weaknesses 
Assumes Weibull 

distribution 

Assumes proportional 

hazards 
Less interpretable 

 Sensitive to outliers 
Lower predictive 

accuracy 
Requires larger datasets 

 

The comparison of survival models for harsh braking per 100km highlights the strengths and 

limitations of the Weibull AFT model, the Cox model with frailty, and the Random Survival Forest 

(RSF). The Weibull AFT model emerged as the best performer, with a C-index of 0.724 and 

competitive prediction error metrics, making it both interpretable and effective at accounting for 

frailty effects. It is particularly well-suited for datasets requiring explicit adjustment for clustered 

heterogeneity, and it identified key predictors such as age group, vehicle CC group, and trip 

duration. This combination of strong discriminative ability, predictive accuracy, and 

interpretability positions the AFT model as the preferred choice for understanding the factors 

influencing harsh braking behavior. 

 

The Cox model with frailty, while flexible and interpretable due to its shared frailty terms, 

demonstrated a lower C-index of 0.653 and higher prediction errors (RMSE: 121.11, MAE: 

102.42), limiting its utility in this analysis. Its reliance on the proportional hazards assumption, 

which may not hold in this context, further reduces its applicability. On the other hand, the RSF 

model excelled in capturing complex non-linear interactions and demonstrated comparable 

prediction error metrics to the Weibull AFT model. However, its lower C-index (0.636) and lack 

of interpretability make it less suitable for understanding the dynamics of harsh braking but 

valuable for predictive tasks where modeling flexibility and accuracy are paramount. Together, 

these models reflect the trade-offs between interpretability, predictive performance, and 

methodological assumptions in survival analysis. 
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8.3.3 Survival analysis of relapse in speeding percentage 
 

8.3.3.1 The Kaplan-Meier curves  

 

The Kaplan-Meier curve for speeding percentage reflects how quickly drivers relapse to pre-

feedback levels of speeding. 

 

 
Figure 8.13 Kaplan-Meier survival curve for speeding percentage  

 

Initial Period: At the beginning of the post-feedback phase, the survival probability is high, with 

most drivers adhering to improved speeding behavior in the initial trips. 

Progressive Decline: The survival probability decreases steadily as the number of trips increases. 

Key milestones include: 

▪ 50 trips: Approximately 82.3% of drivers maintain lower speeding levels. 

▪ 100 trips: The survival probability reduces to 65.2%, suggesting a gradual relapse. 

▪ 150 trips: Around 46.8% of drivers maintain improved behavior, showing a significant 

relapse among the remaining drivers. 

 

These findings highlight that while drivers initially adhere to safer speeds, many revert to previous 

behaviors in the absence of ongoing feedback, emphasizing the potential benefit of sustained 

interventions to address speeding. 

 

8.3.3.2 Cox-PH Model with Frailty 

 

The results of the Cox Proportional Hazards model with frailty highlight key factors influencing 

the likelihood of speeding behavior Table 8.11 shows the results and the metrics of the model.  

 

Table 8.12: Cox -PH model with frailty results for speeding percentage 

Random Effects      

Group Variable SD Variance   

Identifier Intercept 1.486 2.208   
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Metrics chisq Df p AIC BIC 

Integrated loglik  697.8 9.00 0.00 679.8 638.9 

Penalized Loglik 810 27.91 0.00 754.1 627.1 

Fixed Effects      

Variable Coef Exp(Coef) SE(Coef) z p 

Participant’s age      

Age [18-34] Ref.     

Age [35-54] -1.066 0.344 0.750 -1.42 0.154 

Age [55+] -0.128 0.879 1.224 -0.11 0.016 

Participant’s gender      

Female Ref.     

Male -0.583 0.557 0.632 -0.92 0.355 

Self-reported aggressiveness      

Low Ref.     

High 0.632 1.881 0.819 0.77 0.040 

Participant’s vehicle cc      

<1400cc Ref.     

>1400cc 0.457 1.580 0.826 0.55 0.579 

Peak hour      

Off peak Ref.     

Morning peak 0.191 1.210 0.110 1.73 0.082 

Afternoon peak -0.009 0.990 0.110 -0.09 0.927 

Trip duration 0.022 1.023 0.002 11.32 <0.001 

Concordance Index (C-index):  0.696     

AIC 8549.05     

BIC 8708.30      

 

The Cox Proportional Hazards model with frailty for speeding percentage provides valuable 

insights into the factors influencing relapse while highlighting the limitations of the model’s 

predictive power. The random effects indicate substantial unobserved heterogeneity, with an 

intercept standard deviation (SD = 1.486) and variance (2.208), suggesting significant variability 

across individuals. Among the fixed effects, trip duration emerges as a strong and highly significant 

predictor of relapse (Exp(Coef) = 1.023, p < 0.001), indicating that longer trips are associated with 

a higher hazard of speeding relapse. Morning peak hours (Exp(Coef) = 1.210, p = 0.082) approach 

statistical significance, suggesting a potential increase in relapse risk during this time. Other 

variables, such as age, gender, aggressiveness, and vehicle engine size, show limited or no 

significant associations, though high self-reported aggressiveness (Exp(Coef) = 1.881, p = 0.040) 

is associated with increased relapse risk, and age group [55+] (Exp(Coef) = 0.879, p = 0.016) 

demonstrates a protective trend. 

 

Similarly to the previous models, the results of the Schoenfeld residuals test indicate that the 

proportionality assumption is violated, with the global p-value being 0.00. 
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Figure 8.14: Schoenfeld residuals versus time for each of the variables of the Cox model 

 

8.3.3.3 Weibull AFT Model with Clustered Heterogeneity 

 

The Weibull Accelerated Failure Time (AFT) model with clustered heterogeneity provides a 

detailed examination of factors influencing speeding relapse. The model effectively accounts for 

survival time and clustered variability, with a concordance index (C-index = 0.700) indicating 

moderate predictive accuracy. Among the predictors, trip duration emerges as a significant factor, 

with a negative coefficient (Coef = -0.022, p < 0.001), suggesting that longer trips are associated 

with a shorter time to relapse. This aligns with the expected behavior of trip duration being a key 

driver of speeding relapse. Additionally, morning peak hours show a significant negative 

association (Coef = -0.096, p = 0.004), indicating a slightly reduced survival time for relapse 

compared to off-peak hours. Age group [55+] demonstrates a protective effect (Coef = 0.084, p = 

0.022), although other age and gender categories, as well as vehicle engine size, do not show 

significant contributions. 
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Table 8.13: Weibull AFT model with clustered heterogeneity results for speeding percentage 

Variable Value Std. Err  (Naive SE)  z p 

(Intercept) 5.294 0.453 0.095 11.69 <0.001 

Participant’s age      

Age [18-34] Ref.     

Age [35-54] 0.165 0.215 0.073 0.77 0.441 

Age [55+] 0.084 0.237 0.140 0.36 0.022 

Participant’s gender      

Female Ref.     

Male 0.318 0.305 0.071 1.04 0.298 

Self-reported aggressiveness      

Low Ref.     

High 0.191 0.477 0.121 -0.40 0.089 

Participant’s vehicle cc      

<1400cc Ref.     

>1400cc -0.115 0.386 0.108 -0.30 0.766 

Peak hour      

Off peak Ref.     

Morning peak -0.096 0.186 0.086 -0.52 0.004 

Afternoon peak 0.146 0.130 0.083 1.13 0.259 

Trip duration -0.022 0.003 0.001 -7.38 <0.001 

Log(scale) -0.229 0.083 0.030 -2.76 0.006 

Scale 0.796     

Loglik(model) -4306.10     

Loglik(intercept only) -4446.00     

Chisq 279.820    <0.001 

Number of Newton-Raphson 

Iterations 8     

Concordance Index  0.700     

AIC 8632.255     

BIC 8689.308     

 

The survival probability plot stratified by peak hour categories reveals substantial differences in 

survival probabilities over successive trips. Drivers operating during afternoon peak hours show 

higher survival probabilities, suggesting that driving conditions during this period may contribute 

to safer behavior or delayed relapse. By contrast, morning peak hours indicate a slightly higher 

relapse risk, aligning with contextual factors such as traffic density or stress. Additionally, the 

frailty effects plot shows variability among individual drivers, with a range of frailty scores 

highlighting unobserved heterogeneity. This variability emphasizes the importance of accounting 

for driver-specific differences in the analysis. 
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Figure 8.15: Survival probability for speeding relapse 

 

 
Figure 8.16: Random effects for speeding relapse 

 

The diagnostic plots provide additional evidence of model adequacy. The histogram and Q-Q plots 

of deviance residuals show a roughly symmetric distribution with slight deviations, while the Cox-

Snell residuals confirm the appropriateness of the model specification with no evident patterns. 

The observed versus predicted times scatterplot shows reasonable alignment with the diagonal, 

though some variability at higher observed times suggests areas for improvement. Together, these 
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results underscore the robustness of the Weibull AFT model while emphasizing the role of trip-

specific and individual-level factors in understanding relapse in speeding behavior. 

 

 
Figure 8.17: Model Diagnostics for the Weibull AFT Model on speeding 

 

8.3.3.4 Random Survival Forest 

 

The variable importance results from the Random Survival Forest (RSF) model for predicting 

harsh braking events underscore the significance of trip duration as the most critical predictor, 

showing the strongest association with relapse events. This indicates that the length of a trip 

directly influences the likelihood of a harsh braking occurrence. The age group and gender of 

drivers emerged as the next most influential factors, suggesting that demographic characteristics 

play a key role in driving behavior patterns. Peak hour and vehicle engine size group also showed 

moderate importance, indicating that external factors like traffic density and vehicle characteristics 

contribute to harsh braking events. Lastly, the aggressive driver group had a lower relative 

importance but still highlights that self-reported behavioral tendencies are relevant to predicting 

such events. 
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Figure 8.18: Feature importance of Random Forest for speeding 

 

The error metrics provide further insight into the model's performance. The RMSE of 91.87 and 

MAE: of 70.17 indicate moderate prediction accuracy, reflecting some degree of variance between 

predicted and observed survival times. These results suggest that while the RSF captures key 

patterns in the data, the non-linear and interaction effects it models may introduce noise, especially 

in survival scenarios with a high number of unique death times (196 in this case). 

 
Table 8.14 RSF model results for speeding behavior 

Type Survival  

Number of trees 30 

Sample size 2220 

Number of independent variables 6 

Mtry 2 

Target node size 5 

Variable importance mode permutation  

Splitrule logrank  

Number of unique death times 196 

OOB prediction error (1-C) 0.32969 

 

8.3.3.5 Models comparison for speeding percentage 

 

The comparison of survival models for relapse in speeding behavior highlights the trade-offs 

between interpretability, predictive performance, and modeling flexibility. The Weibull AFT model 

offers a well-rounded approach, balancing interpretability and predictive accuracy with a 

concordance index (C-index) of 0.70 and reasonable prediction error metrics (RMSE: 92.47, MAE: 

70.91). Its explicit handling of clustered heterogeneity through frailty terms makes it particularly 

effective for datasets with nested structures, such as repeated measures for drivers. Trip duration 
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emerged as the key predictor, underscoring its critical role in understanding speeding relapse. 

However, its reliance on the Weibull distribution and sensitivity to outliers may limit its 

applicability in more complex datasets. 

 
Table 8.15: Models comparison summary of relapse in speeding behavior 

Aspect Weibull AFT Model Cox Model with Frailty Random Survival Forest 

(RSF) 

Purpose 
Models survival time 

directly 
Models hazard rate 

Captures non-linear 

effects 

C-index 0.70 0.696 0.704 (OOB) 

AIC 8632.26 8549.06 N/A 

BIC 8689.31 8708.31 N/A 

Key Predictors Trip duration 
Gender, trip duration, 

vehicle CC group 

Trip duration, age group, 

aggressive driving 

Frailty Effects 
Accounted (Clustered 

Heterogeneity) 

Accounted (Shared 

Frailty) 

Implicitly handled (Non-

parametric) 

Prediction Error 

(RMSE/MAE) 

RMSE: 92.47, MAE: 

70.91 

RMSE: 146.59, MAE: 

130.41 

RMSE: 91.87, MAE: 

70.17 

Strengths 

Interpretable, adjusts for 

clustering; Accounts for 

driver-specific effects 

Handles heterogeneity 

flexibly; Provides 

interpretable hazard ratios 

Captures complex 

interactions; Robust to 

outliers, identifies non-

linear effects 

Weaknesses 

Assumes Weibull 

distribution; Sensitive to 

outliers 

Assumes proportional 

hazards; Lower predictive 

accuracy 

Less interpretable; 

Requires larger datasets 

 

The Cox model with frailty demonstrated comparable discriminative ability (C-index = 0.696) but 

higher prediction errors (RMSE: 146.59, MAE: 130.41), suggesting reduced predictive accuracy. 

While it flexibly handles heterogeneity through shared frailty terms and provides interpretable 

hazard ratios, its reliance on the proportional hazards assumption can be restrictive. In contrast, 

the Random Survival Forest (RSF) excelled in predictive performance, achieving the lowest 

prediction errors (RMSE: 91.87, MAE: 70.17) and the highest C-index (0.704). Its ability to 

capture non-linear relationships and complex interactions makes it a strong choice for predictive 

tasks, though its lack of interpretability and reliance on larger datasets present challenges. 

Together, these models illustrate the balance between understanding speeding relapse dynamics 

and achieving high predictive accuracy, with the Weibull AFT model standing out for 

interpretability and RSF for flexibility and predictive performance. 

 

8.3.4 Survival analysis of relapse in mobile phone use while driving 
 

8.3.4.1 The Kaplan-Meier curves  

 

The survival curve suggests that mobile phone use relapses at a slower rate compared to harsh 

braking and speeding. However, without continued feedback, drivers gradually return to higher 

levels of phone use while driving. 
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Figure 8.19 Kaplan-Meier survival curve for mobile phone use percentage  

 

Early Maintenance: In the early stages, the survival probability remains high, indicating that 

drivers initially maintain reduced phone use during driving. 

Gradual Decline: Over successive trips, the survival probability gradually decreases, 

showing a rise in mobile phone use among drivers. Key milestones include: 

▪ 50 trips: About 91.7% of drivers still show restraint in phone use, indicating a slower 

relapse pattern compared to other indicators. 

▪ 100 trips: The survival probability decreases to approximately 84.8%, showing a steady 

increase in mobile phone use. 

 

8.3.4.2 Cox-PH Model with Frailty 

 

The results of the Cox Proportional Hazards model with frailty highlight key factors influencing 

the likelihood of distracted behavior due to mobile phone use while driving. Table 8.16 shows the 

results and the metrics of the model.  

 

Table 8.16: Cox -PH model with frailty results for mobile phone use 

Random Effects      

Group Variable SD Variance   

Identifier Intercept 1.419 2.014   

Metrics chisq Df p AIC BIC 

Integrated loglik  376.2 9.00 0.00 358.2 325.2 

Penalized Loglik 454.8 24.98 0.00 404.9 313.3 

Fixed Effects      

Variable Coef Exp(Coef) SE(Coef) z p 

Participant’s age      

Age [18-34] Ref.     

Age [35-54] -2.463 0.085 0.853 -2.89 0.003 

Age [55+] -1.324 0.266 1.313 -1.01 0.313 

Participant’s gender      

Female Ref.     
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Male -0.258 0.772 0.643 -0.40 0.687 

Self-reported aggressiveness      

Low Ref.     

High 1.525 4.597 0.825 1.85 0.064 

Participant’s vehicle cc      

<1400cc Ref.     

>1400cc -0.910 0.402 0.953 -0.96 0.339 

Peak hour      

Off peak Ref.     

Morning peak 0.167 1.182 0.218 0.77 0.443 

Afternoon peak 0.213 1.237 0.217 0.98 0.327 

Trip duration 0.026 1.026 0.003 8.57 <0.001 

Concordance Index (C-index):  0.737     

AIC 3371.42     

BIC 3513.93     

 

The Cox Proportional Hazards model with frailty for mobile phone use highlights key factors 

influencing relapse, with a strong predictive accuracy as indicated by a concordance index (C-

index) of 0.737. Trip duration emerges as the most significant predictor (Coef = 0.026, Exp(Coef) 

= 1.026, p < 0.001), indicating that longer trips are associated with an increased hazard of mobile 

phone use relapse. Among demographic factors, age group [35-54] shows a highly significant 

protective effect (Coef = -2.463, Exp(Coef) = 0.085, p = 0.003) compared to the reference group 

[18-34], while other age and gender categories do not reach statistical significance. Self-reported 

aggressiveness trends toward significance at the 0.1 level (Coef = 1.525, Exp(Coef) = 4.597, p = 

0.064), suggesting a potential association with increased relapse risk. The random effects indicate 

substantial variability across individuals, with an intercept standard deviation (SD = 1.419) and 

variance (2.014), underscoring unobserved heterogeneity. The model’s fit is supported by an AIC 

of 3371.42 and BIC of 3513.93, reflecting a reasonable balance between complexity and predictive 

power. These results emphasize the critical role of trip duration and individual differences in 

influencing mobile phone use relapse. 

 

Similar to the previous models, the results of the Schoenfeld residuals test indicate that the 

proportionality assumption is violated with the global p-value being 0.04. 
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Figure 8.20: Schoenfeld residuals versus time for each of the variables of the Cox model 

 

8.3.4.3 Weibull AFT Model with Clustered Heterogeneity 

 

The Weibull AFT model with clustered heterogeneity for speeding percentage highlights 

significant predictors while achieving a moderate predictive accuracy, as indicated by a 

concordance index (C-index) of 0.700. Trip duration emerges as the most significant factor (Coef 

= -0.022, p < 0.001), showing that longer trips are strongly associated with shorter survival times 

before relapse. Age group [35-54] also shows a statistically significant effect at the 0.05 level (Coef 

= 0.165, p = 0.041), indicating a slight increase in survival time compared to the reference group 

[18-34], while age group [55+] does not reach significance. Other variables, such as gender, self-

reported aggressiveness, and vehicle engine size, trend toward significance at the 0.1 level but do 

not achieve stronger associations.  

 

The model's fit is supported by significant improvements in log-likelihood values (-4306.10 for 

the model vs. -4446.00 for the intercept-only model) and a chi-square statistic of 279.820 (p < 

0.001), with AIC (8632.255) and BIC (8689.308) reflecting reasonable model fit. These findings 

underscore the importance of trip duration while suggesting limited contributions from other 

demographic and behavioral factors. 
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Table 8.17: Weibull AFT model with clustered heterogeneity results for mobile phone use 

Variable Value Std. Err  (Naive SE)  z p 

(Intercept) 5.294 0.453 0.095 11.69 <0.001 

Participant’s age      

Age [18-34] Ref.     

Age [35-54] 0.165 0.215 0.073 0.77 0.041 

Age [55+] 0.084 0.237 0.140 0.36 0.722 

Participant’s gender      

Female Ref.     

Male 0.318 0.305 0.071 1.04 0.298 

Self-reported aggressiveness      

Low Ref.     

High 0.191 0.477 0.121 -0.40 0.089 

Participant’s vehicle cc      

<1400cc Ref.     

>1400cc -0.115 0.386 0.108 -0.30 0.066 

Peak hour      

Off peak Ref.     

Morning peak -0.096 0.186 0.086 -0.52 0.604 

Afternoon peak 0.146 0.130 0.083 1.13 0.059 

Trip duration -0.022 0.003 0.001 -7.38 <0.001 

Log(scale) -0.229 0.083 0.030 -2.76 0.006 

Scale 0.796     

Loglik(model) -4306.10     

Loglik(intercept only) -4446.00     

Chisq 279.820    <0.001 

Number of Newton-Raphson 

Iterations 8     

Concordance Index  0.700     

AIC 8632.255     

BIC 8689.308     

 

The survival probability plot stratified by peak hour categories reveals substantial differences in 

survival probabilities over successive trips. Drivers operating during afternoon peak hours show 

higher survival probabilities, suggesting that driving conditions during this period may contribute 

to safer behavior or delayed relapse. By contrast, morning peak hours indicate a slightly higher 

relapse risk, aligning with contextual factors such as traffic density or stress. Additionally, the 

frailty effects plot shows variability among individual drivers, with a range of frailty scores 

highlighting unobserved heterogeneity. This variability emphasizes the importance of accounting 

for driver-specific differences in the analysis. 
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Figure 8.21: Survival probability for mobile phone use relapse 

 

 
Figure 8.22: Random effects for mobile phone use relapse 

 

The diagnostic plots provide additional evidence of model adequacy. The histogram and Q-Q plots 

of deviance residuals show a roughly symmetric distribution with slight deviations, while the Cox-

Snell residuals confirm the appropriateness of the model specification with no evident patterns. 

The observed versus predicted times scatterplot shows reasonable alignment with the diagonal, 

though some variability at higher observed times suggests areas for improvement. Together, these 
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results underscore the robustness of the Weibull AFT model while emphasizing the role of trip-

specific and individual-level factors in understanding relapse in speeding behavior. 

 

 
Figure 8.23: Model Diagnostics for the Weibull AFT Model on mobile phone use  

 

8.3.4.4 Random Survival Forest 

 

The results from the Random Survival Forest model highlight the critical predictors influencing 

speeding relapse among drivers. Among the six independent variables, age group emerged as the 

most significant predictor, suggesting that younger or older age groups may have distinct 

behavioral patterns contributing to relapse. Trip duration was the second most influential variable, 

likely reflecting how prolonged driving may lead to lapses in attention or adherence to speed limits. 

Vehicle engine size (vehicle_cc_group) also played a key role, indicating that drivers of larger 

engine vehicles might engage in riskier behaviors or have higher relapse tendencies. 
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Figure 8.24: Feature importance of Random Forest for mobile phone use 

 

The model's configuration, with 30 trees and a logrank split rule, efficiently handled the survival 

data, capturing non-linear relationships and interactions. However, while the out-of-bag (OOB) 

error rate of 0.243 indicates a reasonably good model fit, the predictive performance, as reflected 

in the Root Mean Squared Error (RMSE) of 89.77 and Mean Absolute Error (MAE) of 68.05, 

suggests room for improvement in accurately predicting relapse times. Despite this, the model's 

flexibility in ranking variables provides valuable insights into key behavioral and vehicle-related 

factors that could inform targeted interventions to reduce speeding relapse among drivers. 

 
Table 8.18 RSF model results for mobile phone use 

Type Survival  

Number of trees 30 

Sample size 2220 

Number of independent variables 6 

Mtry 2 

Target node size 5 

Variable importance mode permutation  

Splitrule logrank  

Number of unique death times 154 

OOB prediction error (1-C) 0.242985 

Root Mean Squared Error (RMSE):  89.77445 

Mean Absolute Error (MAE):  68.04955 
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8.3.4.5 Model comparison for mobile phone use 

 

Table 8.19 shows the comparison of models for relapse in mobile phone use. The Weibull AFT 

model demonstrates the highest discriminative ability with a C-index of 0.773, making it the 

strongest performer in terms of predictive accuracy. It effectively handles frailty effects while 

providing interpretable results, identifying key predictors such as age group, aggressive driver 

group, vehicle CC, and trip duration. These features make it particularly valuable for 

understanding the dynamics of relapse. However, its AIC (3976.995) and BIC (4034.048) values 

indicate a poorer fit compared to the Cox model, and its reliance on the Weibull distribution may 

limit its flexibility in datasets with more complex structures. Despite these drawbacks, its overall 

interpretability and predictive capability position it as a strong contender for survival analysis. 

 
Table 8.19: Models comparison summary of relapse in mobile phone use 

Aspect Weibull AFT Model Cox Model with Frailty 
Random Survival Forest 

(RSF) 

Purpose 
Models survival time 

directly 
Models hazard rate Captures non-linear effects 

C-index 0.773 0.737 0.755 

AIC 3976.995 3371.426 N/A 

BIC 4034.048 3513.939 N/A 

Key 

Predictors 

Age group, aggressive 

driver group, vehicle 

CC, duration 

Age group, aggressive driver 

group, duration 

Age group, duration, vehicle 

CC group, aggressive driving 

Frailty Effects 
Accounted (Clustered 

Heterogeneity) 
Accounted (Shared Frailty) 

Implicitly handled (Non-

parametric) 

Prediction 

Error 

(RMSE/MAE) 

RMSE: 92.47, MAE: 

70.91 
RMSE: 105.87, MAE: 85.41 RMSE: 85.87, MAE: 65.41 

Strengths 

Interpretable, adjusts for 

clustering; Highlights 

significant predictors 

Adjusts for heterogeneity 

across clusters; Provides 

interpretable hazard ratios 

Captures complex 

relationships; Robust to 

outliers 

Weaknesses 

Assumes Weibull 

distribution; Sensitive to 

deviations and outliers 

Lower discrimination 

ability; Assumes 

proportional hazards 

Less interpretable; Weaker 

numerical precision 

compared to parametric 

models 

 

The Cox model with frailty offers the best model fit with the lowest AIC (3371.426) and a 

reasonable BIC (3513.939), demonstrating its strength in handling heterogeneity across clusters. 

However, its lower C-index (0.737) and higher prediction error metrics (RMSE: 105.87, MAE: 

85.41) suggest weaker predictive accuracy compared to the Weibull AFT and RSF models. In 

contrast, the Random Survival Forest (RSF) excels in predictive performance, with a competitive 

C-index (0.755) and the lowest prediction error metrics (RMSE: 85.87, MAE: 65.41), showcasing 

its ability to model non-linear relationships and complex interactions. However, the RSF model's 

lack of interpretability and reliance on larger datasets make it less suitable for explanatory 

analyses. Overall, the Weibull AFT model is preferable for balancing interpretability and 

predictive accuracy, while RSF stands out when prioritizing predictive performance and modeling 

flexibility. 
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8.4 Discussion of Results 
 

The results of this section provide a comprehensive evaluation of driver telematics feedback on 

long-term driving behavior using survival analysis techniques, with a particular focus on relapse 

in mobile phone use, speeding, harsh braking, and harsh accelerations. Across all indicators, driver 

feedback demonstrated significant short-term improvements in driving behavior during the 

feedback phase. However, the post-feedback phase revealed varied tendencies toward relapse, 

underscoring the importance of intervention strategies in shaping driver behavior over time. 

 

The Weibull Accelerated Failure Time (AFT) model consistently emerged as a robust performer 

across the examined indicators, balancing predictive accuracy and interpretability. The C-index 

values ranged between 0.677 and 0.773, with the model achieving the highest predictive ability 

for mobile phone use relapse (C-index = 0.773), indicating strong discriminative capacity in 

identifying drivers most at risk of relapse. Key predictors such as age group [35-54] (β = 0.165, p 

= 0.041), trip duration (β = -0.022, p < 0.001), and self-reported aggressiveness (approaching 

significance at p = 0.089) were highlighted, providing actionable insights into relapse behavior. 

The model also captured heterogeneity across drivers by incorporating random effects, with frailty 

effects showing significant variability in survival times. For speeding relapse, the Weibull AFT 

model achieved a C-index = 0.700 with significant predictors including trip duration (β = -0.022, 

p < 0.001) and morning peak hours (β = -0.096, p = 0.004). Trip duration, in particular, emerged 

as the dominant predictor, consistently reducing survival time across all relapse indicators, 

underscoring the role of prolonged driving in behavioral regression. Similarly, in the analysis of 

harsh braking relapse, the model achieved a moderate predictive accuracy (C-index = 0.724) with 

significant contributions from variables such as age group [35-54] (β = 0.360, p = 0.010) and 

vehicle engine capacity (>1400cc) (β = -0.508, p = 0.012). These findings highlight that younger 

age groups and drivers of larger-engine vehicles are more prone to relapse. 

 

The model’s ability to account for clustered heterogeneity through frailty terms further enhanced 

its robustness, capturing unobserved individual-specific differences that influence relapse times. 

For instance, random intercept variability was reflected in frailty standard deviations, ranging from 

1.189 in harsh accelerations to 1.419 in mobile phone use relapse. Additionally, log-likelihood 

values and diagnostic metrics such as AIC and BIC demonstrated good model fit, with values like 

AIC = 7705.44 for harsh accelerations and AIC = 8632.26 for speeding relapse. Despite these 

strengths, the Weibull AFT model does have limitations. Its reliance on the Weibull distribution 

assumes a specific survival time shape, which may not fully capture the complexities of behavioral 

relapse in datasets with non-parametric relationships. Furthermore, the model’s sensitivity to 

outliers can affect predictive performance in cases with extreme observations, particularly in harsh 

braking and speeding events. Nonetheless, the Weibull AFT model’s combination of 

interpretability and predictive power makes it a valuable tool for understanding relapse dynamics 

between driving behavior indicators and cofounding parameters. 

 

The Cox Proportional Hazards model with frailty also proved valuable, particularly in its ability 

to flexibly handle heterogeneity through shared frailty terms. Its strength lay in providing 

interpretable hazard ratios that elucidated the relative impact of predictors on relapse risks. For 

example, the model highlighted the protective effects of age (e.g., age group [35–54] reduced 

relapse hazards for mobile phone use and harsh braking) and the influence of driving conditions 

such as trip duration and peak hour. However, its C-index values (e.g., 0.737 for mobile phone use 

and 0.653 for harsh braking) and higher prediction errors indicate lower predictive accuracy 
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compared to the Weibull AFT model and Random Survival Forest (RSF). Furthermore, and most 

importantly, the proportional hazards assumption, which was violated in several instances, further 

limited its applicability for these datasets. 

 

The Random Survival Forest (RSF) model excelled in capturing complex, non-linear interactions 

among predictors, achieving the lowest prediction error metrics across most relapse indicators. 

With its ability to model non-parametric relationships, the RSF effectively uncovered nuanced 

dynamics in driver behavior relapse. Specifically, the Root Mean Squared Error (RMSE) values 

ranged between 91.36 and 85.87, while the Mean Absolute Error (MAE) fell between 70.67 and 

65.41, reflecting its strong predictive performance. For mobile phone use relapse, the out-of-bag 

(OOB) prediction error was the lowest among all models at 24.3%, reinforcing RSF's superior 

accuracy. Trip duration consistently emerged as the most critical predictor of relapse across all 

behaviors, while other variables like aggressive driving tendencies and vehicle engine size showed 

moderate importance. Additionally, the RSF effectively identified the interplay between 

demographic factors, such as age group and gender, and contextual elements, like peak hours, 

highlighting the model's flexibility in handling diverse predictors. 

 

Despite its predictive strengths, the RSF model has limitations, primarily its lack of 

interpretability. Unlike parametric models, RSF operates as a "black box," making it difficult to 

derive hazard ratios or direct survival time estimates, which are often critical for explanatory 

analysis. Furthermore, the RSF model's reliance on larger datasets to capture complex interactions 

makes it less efficient in studies with smaller sample sizes. Nonetheless, the RSF is a powerful 

tool for analyzing behavioral relapse, offering exceptional predictive performance and the ability 

to model intricate, non-linear relationships. Future research could enhance its interpretability by 

incorporating post-hoc techniques, such as SHAP values or partial dependence plots, enabling a 

deeper understanding of the drivers behind relapse while maintaining the model's predictive 

accuracy. 

 

Overall, comparing the models, the Weibull AFT model stands out for balancing interpretability 

and predictive accuracy, making it particularly suited for contexts requiring actionable insights 

into survival dynamics. The Cox model offers a useful compromise with its interpretability and 

ability to handle frailty, albeit at the cost of predictive performance. The RSF model is most 

appropriate for predictive tasks where capturing non-linear relationships and complex interactions 

is critical, though its lack of transparency limits its utility in understanding the underlying 

behavioral mechanisms. These findings emphasize the importance of aligning model configuration 

with research objectives. For studies focused on understanding behavioral dynamics and guiding 

intervention design, the Weibull AFT model provides robust insights. Conversely, when predictive 

accuracy is paramount, RSF offers a superior alternative. 

 

The results also underscore the critical need for sustained feedback mechanisms to reinforce safe 

driving behaviors over the long term, as relapse patterns were consistently observed across all 

examined indicators once feedback interventions were withdrawn. For harsh accelerations, the 

Kaplan-Meier survival analysis revealed that approximately 84.8% of drivers maintained 

improved behavior within the first 50 trips of the post-feedback phase. However, this figure 

declined to 68.7% at 100 trips and further dropped to 49.2% by 150 trips, indicating that nearly 

half of the drivers reverted to unsafe acceleration habits within this period. Similarly, for harsh 

braking, survival probabilities decreased progressively from 81.5% at 50 trips to 61.4% at 100 

trips, and finally to 40.3% at 150 trips, demonstrating a steady return to pre-feedback behaviors. 
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For speeding, the relapse trends were equally pronounced, with survival probabilities showing a 

gradual decline. At the 50-trip mark, 82.3% of drivers adhered to improved behavior, but by 100 

trips, this proportion fell to 65.2%, and by 150 trips, only 46.8% of drivers maintained reduced 

speeding levels. This highlights that more than half of the participants relapsed into speeding 

behaviors in the absence of ongoing feedback. Mobile phone use, while showing a slower relapse 

pattern, followed a similar trajectory: 91.7% of drivers refrained from phone use at 50 trips, but 

adherence reduced to 84.8% by 100 trips. Although these percentages suggest slightly greater 

resilience in behavior regarding distracted driving, the decline over time remains evident. 

 

Despite its valuable insights, this study has several limitations that should be acknowledged. The 

sample size of 31 drivers, while relatively small, is mitigated by the extensive number of trips 

analyzed over a prolonged period, providing a robust dataset for understanding long-term driving 

behavior. However, the exclusion of traffic conditions, which are critical contextual factors 

influencing driver behavior, represents a significant limitation. Incorporating traffic dynamics into 

future research could provide a more comprehensive understanding of relapse behaviors. 

Additionally, as this is a macroscopic study focusing on aggregated driving patterns, future 

research could delve into microscopic elements, such as moment-to-moment decision-making and 

situational responses. Employing random parameters with heterogeneity-in-means in AFT models 

in future studies would also allow for a more nuanced analysis (Ali et al., 2022; Sharma et al., 

2020) by accommodating greater complexity and variability among drivers and driving behavior 

indicators, further enhancing the understanding of long-term feedback effects. 
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9 Conclusions 
 

9.1 Dissertation Overview 
 

Road safety is a critical public health and societal issue, as road traffic crashes claim millions of 

lives and cause severe injuries globally every year. Beyond the tragic loss of life, these incidents 

impose immense emotional and economic burdens on families and communities. Research 

attributes approximately 95% of road crashes to human error, underscoring the critical role of 

driver behavior in accident prevention. Understanding and addressing risky driving behaviors—

such as distracted driving, speeding, and harsh events—are pivotal to enhancing road safety. 

 

Based on the above, the primary aim of this dissertation is to investigate the driver telematics 

feedback mechanism under the framework of driving behavior and road safety. Despite growing 

interest from automotive manufacturers and transportation researchers in driver behavior, limited 

research exists on quantifying the comprehensive impact of driver feedback across its entire 

lifecycle—encompassing the pre-feedback, feedback, and post-feedback phases. To address this 

gap, this dissertation adopts a holistic approach to evaluate the effectiveness of feedback on 

modifying driving behavior and ultimately enhancing road safety. 
 
To achieve these objectives, a series of methodological steps were carefully implemented. The 

methodological framework provides a structured approach to achieving the objectives of this 

dissertation. 

 

As a first step, a systematic literature review was conducted to evaluate the effectiveness of driver 

feedback within naturalistic driving studies. Feedback mechanisms have evolved from in-vehicle 

devices and paper-based reports to sophisticated, user-friendly smartphone applications. These 

advancements enable the collection of high-resolution driving data and the delivery of 

personalized, data-driven feedback. Mechanisms such as real-time alerts, post-trip summaries, and 

performance reports have demonstrated potential for improving driver behavior.  

 

However, significant gaps remain regarding the long-term sustainability of these effects and the 

differential impacts of feedback features. While studies highlight the effectiveness of feedback in 

reducing speeding, harsh braking, and mobile phone use, the influence of feedback type, 

frequency, and incentives on behavior remains underexplored. Additionally, many studies observe 

a relapse into risky behaviors once feedback is removed, necessitating further investigation.  

 

Based on the results of the systematic literature review, the following research questions are 

formulated:  
 

1. How does feedback influence driver speeding and distracted behavior in terms of the 

percentage of trip time during which the speed limit was exceeded and mobile phone was 

used while driving? 

 

2. How does feedback influence harsh driving events, in terms of the number of harsh 

accelerations and harsh brakings? 
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3. Do different feedback features (e.g., scorecards, maps, peer comparisons, motivations, 

gamification, rewards) have different effects on driver behavior? Which feature 

demonstrates the most significant impact?  

 

4. How does the post-feedback effect influence long-term driver behavior, and to what extent 

are the changes sustained after the feedback is removed? 

 

5. How can advanced statistical techniques be applied to understand the mechanisms of driver 

feedback and develop more individualized, data-driven approaches for driving behavior 

change? 

 

To answer the research questions, a robust methodological background was developed, combining 

theoretical approaches and experimental design principles. This included the application of 

advanced modeling techniques, such as Generalized Linear Mixed Effects Models (GLMMs), 

Structural Equation Models (SEMs), and Survival Analysis Models, alongside the design of a 

naturalistic driving experiment. 

 

A 21-month naturalistic driving experiment involving 230 drivers was conducted. The participants 

were divided into three groups (car drivers, professional van drivers, and motorcyclists), and their 

driving behavior was monitored across six distinct feedback phases. These phases were defined as 

follows:  

• Phase 1: Basic trip data and characterization were accessible to drivers. 

• Phase 2: Introduction of scorecards with trip-level scoring. 

• Phase 3: Addition of maps and highlights for further trip insights. 

• Phase 4: Peer comparisons enabled for driver performance benchmarking. 

• Phase 5: Competitions and challenges introduced with rewards for safe driving. 

• Phase 6: Reversion to Phase 1, removing all additional feedback. 

 

High-resolution data were collected from 106,776 trips, covering a total of 1,317,573 kilometers 

and 30,532 hours of driving. Behavioral metrics were captured using non-intrusive smartphone 

sensors, ensuring a seamless and accurate recording of driving behaviors. This sensor data was 

complemented by self-reported information from participants, providing a holistic understanding 

of driver perceptions, habits, and behavioral changes. The experimental design adhered to strict 

ethical standards, having been approved by the Research Ethics and Conduct Committee of NTUA, 

and ensured full compliance with GDPR guidelines. Continuous communication with participants 

was maintained throughout the study to address any technical issues, sustain engagement, and 

monitor the smooth execution of the experiment. 

 

Extensive data processing and cleaning were carried out to ensure the quality and reliability of the 

dataset. Invalid or incomplete trip data were systematically identified and excluded, while key 

behavioral metrics such as speeding, mobile phone use while driving, harsh accelerations, and 

braking events were standardized for analysis. Data preprocessing steps included the conversion 

of raw sensor outputs into meaningful variables and the integration of self-reported data for cross-

validation. This rigorous approach to data management enabled the creation of a robust dataset, 

facilitating detailed statistical analyses and ensuring the accuracy of the findings presented in this 

dissertation. 
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Advanced statistical techniques were employed to analyze feedback effects on critical driving 

indicators, such as speeding, mobile phone use, harsh accelerations, and harsh brakings. The 

analysis unfolded in three key pillars: 

 

1. Impact of Feedback: This pillar assessed the immediate effects of feedback on i) driver 

speeding and distracted behavior, focusing on speeding among motorcyclists and 

distraction due to mobile phone use while driving in car drivers, and ii) driver harsh events, 

focusing on harsh braking and harsh accelerations among car drivers, and professional 

drivers on highways. Generalized Linear Mixed-Effects Models (GLMM) were then 

employed in all cases to evaluate the effects of feedback while accounting for individual 

differences and contextual factors. 

 

2. Effects of Different Feedback Features: A Structural Equation Model (SEM) was 

developed to explore the complex relationships between feedback features (e.g. scorecards, 

maps, peer comparisons, motivations, gamification, rewards) and driver behavior, 

exposure metrics and safety outcomes, allowing for the simultaneous analysis of multiple 

variables and their interactions. 

 

3. Post-Feedback Effects: Effects on long-term driver behavior, with a particular emphasis on 

understanding the relapse of driving behaviors following the withdrawal of feedback 

telematics during the last phase of the experiment. Survival Analysis methods were 

employed to investigate relapse patterns across various indicators, including harsh 

accelerations, harsh braking, speeding behavior, and mobile phone use while driving. 

These analyses leverage Kaplan-Meier curves, Cox-PH models with frailty, Weibull AFT 

models with clustered heterogeneity, and Random Survival Forests to evaluate and 

compare the predictive power and insights offered by each model. 

 

Ultimately, the synthesis of all the analyses carried out within the framework of this doctoral 

dissertation resulted in a driver behavior telematics feedback mechanism with numerous original 

and interesting results, which are discussed in the following concluding subsections. 

 

9.2 Main Findings 
 

9.2.1 Main findings of the feedback impact on driver behavior  
 

The investigation of feedback impacts on driver behavior yielded significant findings across 

different user groups, driving environments, and behavioral metrics. Overall, during the two 

phases of the experiment a large dataset of 3,537 trips from a sample of 13 motorcyclists were 

recorded and analysed. Using Generalized Linear Mixed-Effects Models with random intercepts 

and random slopes for total trip duration revealed that providing motorcyclists with feedback about 

their riding performance during experiment Phase 2 led to a remarkable decrease in speeding 

percentage over a trip. Particularly, in the developed models rider feedback seems to decrease 

speeding percentage, having a risk ratio of exp(β=-0.145) = 0.865 for the overall model (13.5% 

decrease), and exp(β=-0.031) = 0.970 and exp(β=-0.420) = 0.657 for urban (3.0% decrease) and 

rural (34.3%) road types respectively. These results highlight the effectiveness of feedback in 

targeting high-risk behaviors, offering a foundation for scalable interventions in rider training and 

policy design. 
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Similarly, distracted driving, particularly mobile phone use, was examined across urban, rural, and 

highway contexts via GLMM models for 65 car drivers over 21,167 trips. Feedback emerged as a 

strong restrictive in using the mobile phone while driving overall (β = −0.4276, p < 2e−16), 

particularly in urban settings (β = −0.3687, p < 2e−16), while its impact was notably weaker in 

rural environments (β = −0.1180, p < 2e−16) and unexpectedly positive on highways (β = 0.5490, 

p < 2e−16), suggesting compensatory behaviors or a perceived lower risk of distraction on high-

speed roads. The substantial variability in random intercepts (SD = 1.4024 overall) highlights 

notable individual differences in baseline behavior, while random slopes for trip duration (SD = 

0.2827 overall) show diverse responses to prolonged trips. 

 

In the domain of harsh events such as accelerations and brakings, feedback mechanisms 

demonstrated significant behavioral improvements, as well. Results from the analysis of 65 car 

drivers during the first two phases of the experiment, revealed a significant reduction in harsh 

accelerations (12%) and harsh brakings (10%), both changes being statistically significant (p < 

0.001). The GLMM models further reinforce these findings, as feedback was consistently 

associated with reduced frequencies of harsh events, particularly in urban and rural environments. 

Notably, the relative risk ratios for speeding duration and trip duration indicate strong positive 

associations with harsh events, though feedback appears to mitigate these effects to a degree in 

Phase 2 of the experiment. Importantly, driver-specific variability, captured through random 

intercepts and slopes, underscores the need for tailored feedback mechanisms to address unique 

behavioral traits. 

 

Professional drivers, due to their prolonged driving hours and distances, were also a key area of 

exploration. Using GLMMs calibrated on a dataset of 5,345 trips from 19 professional drivers, the 

analysis revealed that participation in a social gamification scheme with incentives led to notable 

improvements in harsh events of professional drivers. During the competition phase, the likelihood 

of harsh accelerations was reduced by a factor of 0.348 (p < 0.001), while harsh brakings decreased 

by a factor of 0.404 (p < 0.001), indicating the efficacy of gamification in promoting safer driving 

practices. Additionally, trip duration showed a positive association with harsh events, with a 1-

second increase in driving time raising the odds of harsh accelerations and harsh brakings by 

factors of 1.558 and 1.564, respectively, highlighting the cumulative effects of extended driving. 

The inclusion of random intercepts in the models underscored substantial variability in baseline 

driver behavior, emphasizing the importance of personalized interventions. 

 

9.2.2 Main findings of the different feedback features effects  
 

The Structural Equation Model (SEM) analysis provided significant insights into the impact of 

different effects of feedback features on driver behavior, specifically speeding, harsh braking, and 

harsh acceleration events. The dataset, comprising 73,869 trips from 175 car drivers over 21 

months, offered a robust basis for modeling. The SEM results identified two latent variables, 

namely feedback and exposure as critical influences. The model exhibited excellent goodness-of-

fit measures, with Comparative Fit Index (CFI) = 0.940, Tucker–Lewis Index (TLI) = 0.944, Root 

Mean Square Error Approximation (RMSEA) = 0.049, and Standardized Root Mean Square 

Residual (SRMR) = 0.025, indicating a robust and well-specified structure. The inclusion of 

covariances among variables, guided by residual correlation analysis, further improved the model 

fit and highlighted critical relationships, such as those between speeding and harsh braking 

behaviors. 
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Among the feedback features analyzed, the scorecard emerged as the most influential feature, with 

the highest positive estimate (β = 2.076, p < 0.001), demonstrating its powerful role in promoting 

safer driving habits by immediately altering risky behaviors in comparison with the baseline phase. 

This result can be attributed to the clear, concise, and actionable nature of scorecards, which 

provide drivers with straightforward insights into their performance and specific areas for 

improvement, making it easier to adjust their behavior. Similarly, the maps feature showed a strong 

impact (β = 1.646, p < 0.001), emphasizing the importance of spatial awareness in enhancing 

driving practices. The compare feature allowed drivers to assess their performance relative to 

peers, positively influencing behavior (β = 1.215, p < 0.001). Additionally, the competition & 

challenges feature proved highly effective (β = 2.053, p < 0.001) by motivating drivers to adopt 

safer driving behaviors through gamified elements and rewards for safe driving. 

 

In terms of driving behavior metrics, driver telematics feedback significantly reduced the 

percentage of speeding time (β = -0.214, p < 0.001) and harsh braking events per 100km (β = -

0.027, p < 0.001). However, an increase in harsh accelerations per 100km (β = 0.026, p < 0.001) 

suggests the need for further refinement of feedback systems to address unintended consequences. 

Exposure factors also played a key role in shaping driver behavior, with morning peak exposure 

correlating with increased risk-taking (β = 2.473, p < 0.001), likely driven by time pressure during 

commuting hours. Conversely, afternoon peak exposure was associated with less aggressive 

behavior (β = -1.360, p < 0.001), providing insights into temporal variations in driving patterns. 

 

Regression analysis confirmed these findings, highlighting the interplay between exposure and 

feedback features. While exposure positively influenced speeding (β = 0.326, p < 0.001), feedback 

features effectively mitigated this behavior. The competition & challenges feature, in particular, 

showed promise in moderating harsh accelerations (β = -0.001, p < 0.001). Harsh braking incidents 

were also significantly reduced by feedback, reinforcing the role of feedback in promoting safer 

driving practices. Covariance analysis further revealed strong interrelationships between risky 

behaviors, such as speeding and harsh braking, underscoring the complexity of driver behavior 

patterns. These findings suggest that speeding often necessitates sudden corrections, like harsh 

braking, and both behaviors may stem from underlying traits such as risk-taking tendencies or 

aggressive driving habits. 

 

The practical implications of these findings are substantial. Feedback features, particularly those 

leveraging personalized scorecards, spatial tools, and gamification elements, hold great promise 

for improving driver safety. Tailored interventions targeting specific behaviors and times of day 

could further enhance the efficacy of these systems. However, limitations such as the exclusion of 

mobile phone use from the final model and potential selection biases due to the voluntary nature 

of participation should be addressed in future research. 

 

9.2.3 Post-feedback effect on long-term driver behavior  

 

Survival analysis techniques were applied to a dataset of 24,904 trips from 31 car drivers, each 

contributing at least 20 trips in the post-feedback phase, to investigate the long-term effects of 

driver telematics feedback on driving behavior. The analysis focused on relapse patterns in mobile 

phone use, speeding, harsh braking, and harsh accelerations. The methods utilized included 

Kaplan-Meier curves, Cox-PH models with frailty, Weibull Accelerated Failure Time (AFT) 

models incorporating clustered heterogeneity, and Random Survival Forests. The findings 
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demonstrate the effectiveness of feedback interventions in achieving significant short-term 

behavioral improvements during the feedback phase. However, the post-feedback phase reveals 

varied relapse tendencies, emphasizing the need for sustained interventions to maintain these 

improvements over time. 

 

The Kaplan-Meier survival analysis emphasized relapse trends, showing a steady decline in 

improved behavior over successive trips in the post-feedback phase. For harsh accelerations, 

survival probabilities dropped from 84.8% at 50 trips to 49.2% by 150 trips. Similar trends were 

observed for harsh braking and speeding, with survival probabilities declining to approximately 

40.3% and 46.8%, respectively, by the 150-trip mark. These patterns underscore the transient 

nature of feedback effects and the need for continuous reinforcement mechanisms. Mobile phone 

use showed slightly greater resilience, with survival probabilities remaining above 80% at 100 

trips, but the gradual relapse was evident over time. 

 

Among the survival analysis models applied, the Weibull Accelerated Failure Time (AFT) model 

consistently emerged as a robust performer across the examined indicators, balancing predictive 

accuracy and interpretability. The concordance index (C-index) values ranged between 0.677 and 

0.773, with the model achieving the highest predictive ability for mobile phone use relapse (C-

index = 0.773), indicating strong discriminative capacity in identifying drivers most at risk of 

relapse. Key predictors such as age group [35-54] (β = 0.165, p = 0.041), trip duration (β = -0.022, 

p < 0.001), and self-reported aggressiveness (approaching significance at p = 0.089) were 

highlighted, providing actionable insights into relapse behavior. The model also captured 

heterogeneity across drivers by incorporating random effects, with frailty effects showing 

significant variability in survival times.  

 

For speeding relapse, the Weibull AFT model achieved a C-index = 0.700 with significant 

predictors including trip duration (β = -0.022, p < 0.001) and morning peak hours (β = -0.096, p = 

0.004). Trip duration, in particular, emerged as the dominant predictor, consistently reducing 

survival time across all relapse indicators, underscoring the role of prolonged driving in behavioral 

regression. Similarly, in the analysis of harsh braking relapse, the model achieved a moderate 

predictive accuracy (C-index = 0.724) with significant contributions from variables such as age 

group [35-54] (β = 0.360, p = 0.010) and vehicle engine capacity (>1400cc) (β = -0.508, p = 0.012). 

These findings highlight that younger age groups and drivers of larger-engine vehicles are more 

prone to relapse. 

 

The Random Survival Forest (RSF) model demonstrated superior predictive performance in some 

examined indicators, excelling in capturing non-linear interactions and complex relationships 

between predictors. With Root Mean Squared Error (RMSE) values as low as 85.87 and out-of-

bag (OOB) prediction errors of 24.3% for mobile phone use relapse, RSF identified critical 

predictors such as trip duration, aggressive driving tendencies, and vehicle engine size. Its 

flexibility in handling diverse predictors and uncovering nuanced dynamics makes RSF an 

invaluable tool for predictive analyses. However, the model's "black box" nature and reliance on 

larger datasets limit its interpretability and applicability for explanatory purposes. 

 

Overall, comparing the models, the Weibull AFT model stands out for balancing interpretability 

and predictive accuracy, making it particularly suited for contexts requiring actionable insights 

into survival dynamics. The Cox model offers a useful compromise with its interpretability and 

ability to handle frailty, however repeatedly failed to meet model assumptions. The RSF model is 
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most appropriate for predictive tasks where capturing non-linear relationships and complex 

interactions is critical, though its lack of transparency limits its utility in understanding the 

underlying behavioral mechanisms. These findings emphasize the importance of aligning model 

configuration with research objectives. For studies focused on understanding behavioral dynamics 

and guiding intervention design, the Weibull AFT model provides robust insights. Conversely, 

when predictive accuracy is paramount, RSF offers a superior alternative. 

 

While this study offers valuable insights into the dynamics of driver feedback and relapse, 

limitations such as the relatively small sample size, exclusion of traffic conditions, and 

macroscopic focus should be noted. Future research could incorporate more granular data, such as 

traffic dynamics and moment-to-moment driver decisions, to provide a deeper understanding of 

behavioral patterns. Employing advanced modeling techniques, such as random parameters with 

heterogeneity-in-means, could further enhance the analysis by accounting for driver-specific 

variability.  

 

9.3 Innovative Scientific Contributions 
 

The innovative contributions of this doctoral dissertation consist of five original scientific 

contributions, as described below, and illustrated in Figure 9.1. 

 

 
Figure 9.1: Innovative contributions of the doctoral dissertation 

 

9.3.1 Extensive naturalistic driving data collection 
 

The present dissertation represents a significant step forward in naturalistic driving (ND) research 

by leveraging non-intrusive data collection methods that rely on smartphone sensors. Unlike 

traditional approaches, this methodology minimizes disruption to participants, enabling the 

unobtrusive capture of real-world driving behaviors. The data spans a large sample size of drivers 

(230) across diverse road environments and vehicle types, including car drivers, motorcyclists, and 

professional van drivers. This inclusivity ensures that findings are not only representative but also 
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account for variations across driver demographics and vehicle categories. The dataset's rich 

temporal resolution provides detailed insights into driving behaviors at the trip level, offering a 

granular perspective on driver behavior dynamics. 

 

Moreover, the long-term data collection 21-month period, spanning multiple feedback phases and 

covering various road environments, adds unique value. By capturing behavior changes over time, 

the study bridges a critical gap in existing ND research, which often relies on short-term 

observations. This long-term perspective enables the assessment of sustained behavior 

modifications and relapse tendencies, providing a robust foundation for developing adaptive and 

sustainable interventions to improve road safety. The methodology sets a new benchmark for ND 

experiments, paving the way for more scalable, cost-effective, and technologically advanced 

driving behavior studies. 

 

9.3.2 Multi-modal approach to driver behavior analysis 

 

This dissertation takes a multi-modal approach, emphasizing the importance of understanding 

driving behaviors across diverse road user groups and environments. By including car drivers, 

motorcyclists, and professional van drivers, the research recognizes the critical need to study 

vulnerable road users, such as motorcyclists, who face heightened risks, and professional drivers, 

who spend extended hours on the road. This inclusive focus ensures a comprehensive evaluation 

of driver telematics feedback, highlighting their relevance across varying risk profiles and 

exposure levels. 

 

The investigation also considers the influence of urban, rural, and highway environments, 

acknowledging the distinct challenges posed by each road type. This contextual approach reveals 

that feedback effectiveness is not uniform; behaviors like mobile phone use or speeding respond 

differently to interventions depending on the driving environment. For instance, motorcyclists may 

benefit more from feedback targeting situational awareness, while professional drivers might 

require tailored interventions addressing fatigue and repetitive exposure to high-risk scenarios. 

 

By integrating this diversity of user groups and contexts, the dissertation provides actionable 

insights for policymakers, road safety advocates, and technology developers. It emphasizes the 

importance of developing tailored feedback systems that cater to the unique needs of vulnerable 

road users, such as motorcyclists, and professional drivers, who contribute significantly to road 

traffic activity. This comprehensive approach supports the creation of adaptive, context-sensitive 

interventions, ultimately improving road safety for all users. 
 

9.3.3 Comprehensive suite of three-layer models 
 

This dissertation employs a comprehensive suite of advanced statistical and machine learning 

models, tailored to address the multifaceted nature of driving behavior analysis. By incorporating 

Generalized Linear Mixed-Effects Models, Structural Equation Models, and Survival Analysis 

techniques (e.g., Weibull AFT, Cox-PH with frailty, and Random Survival Forest), the study 

provides a rigorous analytical framework capable of uncovering both linear and non-linear 

relationships between variables. Each model is carefully selected to align with the research 

objectives, balancing predictive accuracy with interpretability to ensure actionable insights. 

 



Armira Kontaxi | The Driver Behavior Telematics Feedback Mechanism 

 

205 

 

This model suite also enables the exploration of complex phenomena, such as the interplay 

between feedback features, driving behaviors, and contextual factors like time of day or road type. 

For example, survival models uniquely capture relapse dynamics, offering novel insights into post-

feedback behavioral tendencies. Machine learning techniques further enhance the study by 

capturing nuanced, non-linear interactions, ensuring that the models are equipped to handle the 

complexity of real-world driving data. This innovative analytical framework not only elevates the 

scientific rigor of the research but also demonstrates the potential of combining traditional 

statistical methods with state-of-the-art machine learning approaches for driver behavior studies. 
 
9.3.4 In-depth analysis of post-feedback effects 
 

This dissertation is among the first to analyze thoroughly post-feedback effects on driver behavior 

using advanced statistical and machine learning techniques, addressing a critical gap in existing 

research. Through survival analysis methods, such as Weibull AFT and Random Survival Forest, 

the study evaluates long-term behavior changes and relapse patterns after feedback withdrawal. 

These techniques enable a detailed exploration of the factors influencing relapse in risky behaviors 

like speeding, harsh events, and mobile phone use, providing actionable insights for the design of 

sustained intervention strategies. 

 

The findings reveal the importance of adaptive feedback systems that can maintain behavior 

improvements over time. For example, survival analysis showed that trip duration and time of day 

significantly influence relapse dynamics, emphasizing the need for context-aware feedback 

mechanisms. This innovative focus on the post-feedback phase provides a novel framework for 

understanding the longevity of feedback-induced improvements, allowing for more durable and 

impactful road safety interventions. It also sets a precedent for future research to integrate long-

term perspectives into the evaluation of driving behavior modification strategies. 

 

9.3.5 Driver feedback mechanism as a holistic system 
 

This dissertation uniquely approaches the feedback mechanism as a holistic system, examining its 

full lifecycle through a multiparametric analytical framework. By systematically analyzing the pre-

feedback, feedback, and post-feedback phases, the study offers a comprehensive understanding of 

how feedback influences driver behavior across time. The integration of diverse feedback features, 

such as scorecards, maps, comparison tools, and competition elements, enables the evaluation of 

their individual and combined impacts on behavior modification. This multi-phase perspective not 

only captures immediate behavior changes but also sheds light on long-term patterns and relapse 

tendencies. 

 

Furthermore, the holistic framework provides valuable insights into the synergies and trade-offs 

between different feedback features. For instance, while scorecards and competition elements are 

highly effective in reducing speeding, their impact on other behaviors like harsh accelerations 

requires further refinement. This systemic approach advances the field by moving beyond isolated 

feedback evaluations, offering a scalable, data-driven framework for designing and implementing 

telematics-based interventions. The findings emphasize the potential of adaptive feedback systems 

to improve driving behavior sustainably, ultimately contributing to safer road environments. 
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9.4 Challenges Ahead 

 
While this thesis provides significant contributions to understanding driver behavior and the role 

of telematics-based feedback mechanisms, several limitations should be acknowledged. One 

notable limitation lies in the lack of traffic data, which could have provided essential context for 

interpreting driving behavior. Traffic density, flow patterns, and congestion levels are known to 

significantly influence driver decisions, such as speeding, harsh braking, and aggressive 

maneuvers. The absence of such data limits the ability to fully account for external conditions that 

may contribute to risky driving behaviors. Future studies should aim to integrate traffic data from 

external sources, such as real-time traffic monitoring systems or connected infrastructure, to 

provide a more holistic understanding of driver behavior in various traffic conditions. 

 

A related limitation is the geographic and sample constraints of the study. The data collection was 

conducted within specific regions, focusing on a sample of drivers that, while diverse in terms of 

vehicle types and road environments, may not represent the global driving population. Cultural, 

legal, and infrastructural differences across regions may affect driving behaviors and the 

effectiveness of feedback mechanisms. To enhance the generalizability of the findings, future 

research should replicate the study across multiple geographic locations, incorporating diverse 

road environments, legal frameworks, and driving cultures. 

 

The study also faced challenges related to self-selection bias, inherent in naturalistic driving 

experiments. Participants voluntarily agreed to take part, which may introduce bias as these 

individuals might already be more safety-conscious or willing to improve their driving behavior. 

This could lead to an overestimation of the effectiveness of feedback mechanisms. Future research 

should aim for broader recruitment strategies, such as random sampling or targeted incentives, to 

ensure a more representative sample of the driving population. 

 

The technological constraints of using smartphone sensors for data collection pose another 

limitation. While the use of smartphones provides a low-cost, non-intrusive method, they have 

inherent limitations in data accuracy and coverage. For example, harsh event detection, such as 

accelerations and brakings, is sensitive to the smartphone's placement and calibration. Moreover, 

smartphones lack the ability to capture critical parameters such as traffic conditions, weather, and 

external environmental factors, which could significantly influence driving behavior. Future 

studies should explore integrating data from multiple sources, such as connected vehicle systems, 

external traffic monitoring systems, and weather data, to create a richer and more robust dataset. 

 

The study's temporal scope, although extensive compared to many prior studies, is still limited in 

capturing the full lifecycle of behavior changes induced by feedback. While the research examines 

pre-feedback, feedback, and post-feedback phases, the long-term sustainability of these changes 

remains unclear. Behavioral relapses may evolve over years, requiring more longitudinal studies 

to understand how feedback interventions impact behavior over extended periods. This challenge 

is particularly pertinent as driving technologies and environments continue to evolve, potentially 

altering the dynamics of driver behavior. 

 

A further limitation arises from the complexity of modeling and interpretation. Advanced 

statistical and machine learning models were used to analyze the data, each with its strengths and 

limitations. While machine learning models, such as Random Survival Forests, excel in predictive 
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accuracy, they lack transparency, making it challenging to derive actionable insights. Conversely, 

traditional models like the Cox Proportional Hazards model offer interpretability but may fail to 

capture complex, non-linear relationships. Future research should explore hybrid modeling 

approaches that combine the strengths of these methodologies, enhancing both predictive power 

and practical applicability. 

 

Lastly, the integration of feedback with other road safety pillars, such as vehicle technology and 

road infrastructure, remains underexplored. While the thesis emphasizes driver behavior, the 

interaction between drivers, vehicles, and the built environment is a critical area for future 

exploration. Emerging technologies, including connected and autonomous vehicles, will further 

complicate these dynamics. Adaptive feedback systems that incorporate real-time traffic and 

infrastructure data will be necessary to address these complexities. Additionally, studying 

feedback interventions for vulnerable road users, such as pedestrians and cyclists, can extend the 

applicability of these findings to broader road safety contexts. 

 

Addressing these limitations will require innovative methodologies, expanded datasets, and 

interdisciplinary collaborations. The increasing availability of advanced sensors, telematics 

platforms, and artificial intelligence provides an opportunity to overcome many of these 

challenges. By incorporating traffic data, expanding geographic and temporal scope, and 

leveraging advanced analytical techniques, future research can build upon this thesis to further 

advance road safety and driver behavior analysis.  
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