

MODEL FOR SIGHT DISTANCE CALCULATION AND THREE-DIMENSIONAL ALIGNMENT EVALUATION IN DIVIDED AND UNDIVIDED HIGHWAYS

Mertzanis Fotis Hatzi Viviana

School of Civil Engineering
Department of Transportation Planning and Engineering
National Technical University of Athens

Presentation Overview

- Background
- Objective
- H11 System
- Methodology
- Applications
- Conclusions

Background

- Driving safety and highway esthetics
 - Design consistency
 - Mental workload
 - Visual cues
 - Coordination of horizontal and vertical alignment
 - Human factors

Background

- > Tool for spatial road alignment evaluation:
 - ✓ Perspective images from the driver's eye position!
- Current design practices
- Contemporary road design softwares

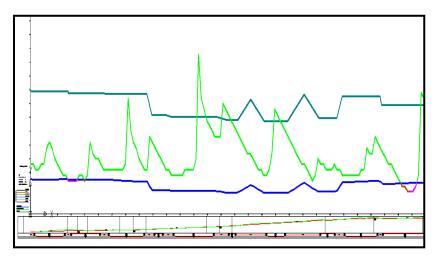
3rd RSS Conference,14-16 Sept 2011,Indianapolis,USA

Objective

- Perspective views generation from all the driver's successive viewpoints along the roadway
- Integration of the <u>calculable</u> concept of **sight** distance

- > NTUA
- > All tasks related to highway geometric design
- Respective drawings
 - > AASHTO 2004
 - > RAA 2008
 - > Austroads 2009
 - ➤ OMOE 2001

- ✓ Operating speed diagram
 - **■** V85
 - Calculation for every single geometric element
 - Greek guidelines
 - Design consistency evaluation

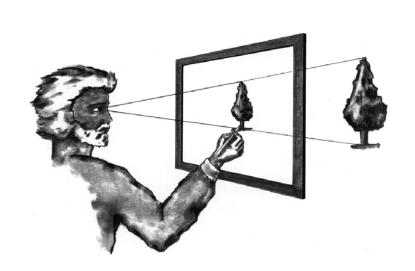

¤	Design evaluation::		
Safety Criterion:	Good⊠	Fair	Poor
Ια	V _{85i} -V _{ei} ≤10km/h¤	10km/h < V _{85i} -V _{ei} ≤ 20km/h¤	V _{85i} -V _{ei} > 20km/h¤
II¤	V _{85i} -V _{85i+1} ≤ 10km/h¤	10 km/h < V _{85i} -V _{85i+l} ≤ 20km/h¤	$ V_{85i}-V_{85i+1} \ge 20 \text{km/h} \approx$

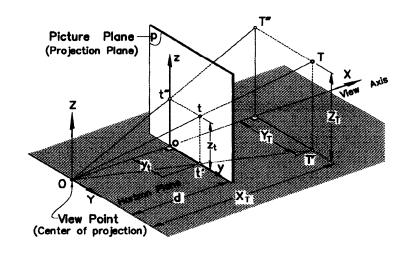
- ✓ Visibility diagram
 - 3D model of the road and its environment (cuts, central medians, barriers)
 - SSD: equations from current guidelines
 - ASSD: intersection of driver's line of vision with the first triangle that restricts his visibility
 - PSD: standard values from current guidelines
 - APSD: similarly to ASSD (only undivided highways)
 - Any desired interval, both directions

ASSD diagram for an undivided highway

ASSD diagram for a divided highway

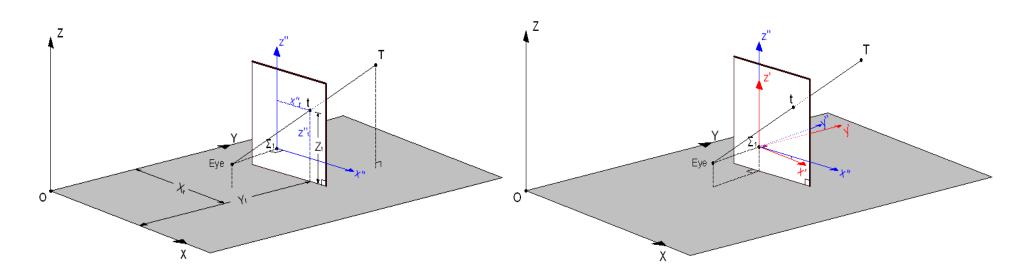
- ✓ Perspective images
- ➤ Depiction of:
 - Road surface
 - Roadside natural and possible artificial features
 - Central medians
 - Back image of a vehicle at the SSD
 - Front image of a vehicle at the PSD



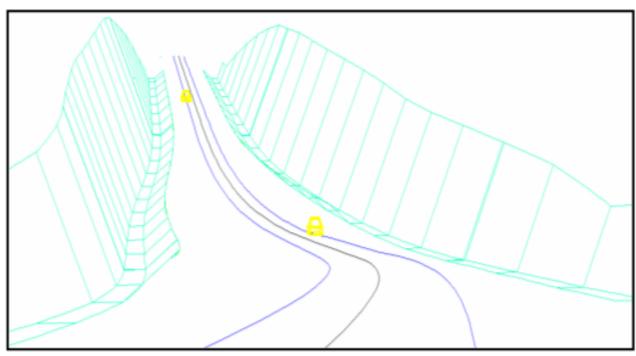

- ✓ Perspective images
 - ➤ Any desired step
 - Both directions
 - > Roadlines
 - Visibility angle
 - Successive images one above the other
 - ✓ Direct supervision of the whole length of the project
 - ✓ Feeling of movement
 - Perspective from any spot of the 3D space around the driver's station
 - View axis: tangent to driver's roadline

Methodology

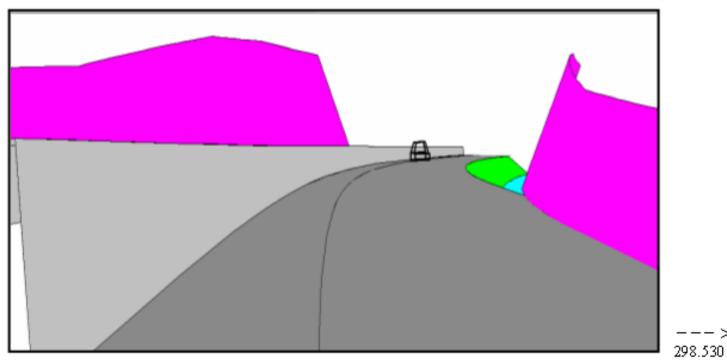
Principles of Perspective Geometry


(Source: Taiganidis & Kanellaidis, 1999)

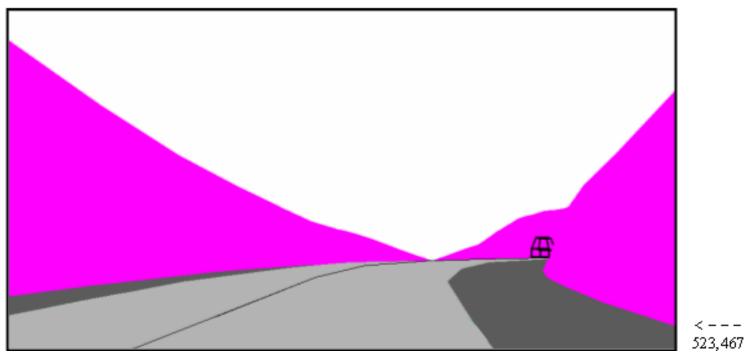
 Central projection at a perpendicular plane in front of the driver of a large number of points with known spatial coordinates X, Y, Z, which approximately form the spatial layout of the project

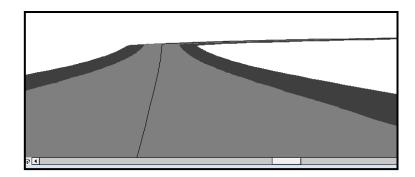

<u>Methodology</u>

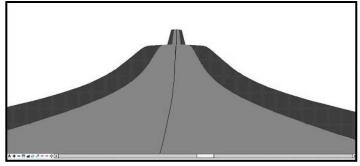
- Use of analytical friction models for:
 - the expression of the projection plane
 - the expression of the line of vision at 3D space
 - the definition of the intersection point of the line of vision and the projection plane
 - the transformation of the 3D coordinates of the intersection points into the corresponding 2D coordinates of the projection plane



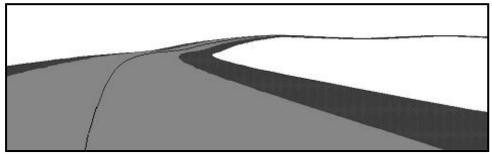
808.448


Perspective view from a station of a two-way two-lane undivided highway where both ASSD and APSD are adequate


Perspective view from a station of a divided highway where ASSD is adequate



Perspective view from a station of a two-way two-lane undivided highway where ASSD is adequate but APSD is not



Optical alignment breakage due to small horizontal curve

Hidden dip at horizontal tangent

Flutter at horizontal curve

Conclusions

H11 system gives its operator the capability to:

- ✓ "travel" all along a new project and evaluate its spatial alignment, its consistency and its visibility conditions during the preliminary design
- ✓ use a quantitative criterion when evaluating the perspective images
- ✓ directly localize the element that restricts driver's visibility at any station

Thank you for your attention!

Mertzanis Fotis Hatzi Viviana

School of Civil Engineering
Department of Transportation Planning and Engineering
National Technical University of Athens

