MODEL FOR SIGHT DISTANCE CALCULATION AND THREE-DIMENSIONAL ALIGNMENT EVALUATION IN DIVIDED AND UNDIVIDED HIGHWAYS

Mertzanis Fotis
Hatzi Viviana
School of Civil Engineering
Department of Transportation Planning and Engineering
National Technical University of Athens

3rd RSS Conference, 14-16 Sept 2011, Indianapolis, USA
Presentation Overview

- Background
- Objective
- H11 System
- Methodology
- Applications
- Conclusions
Background

- Driving safety and highway esthetics

 - Design consistency
 - Mental workload
 - Visual cues
 - Coordination of horizontal and vertical alignment
 - Human factors
Background

➢ Tool for spatial road alignment evaluation:

✓ Perspective images from the driver’s eye position!

➢ Current design practices

➢ Contemporary road design softwares
Objective

- Perspective views generation from all the driver’s successive viewpoints along the roadway

- Integration of the calculable concept of sight distance
H11 System

- NTUA
- All tasks related to highway geometric design
- Respective drawings
 - AASHTO 2004
 - RAA 2008
 - Austroads 2009
 - OMOE 2001
H11 System

✓ Operating speed diagram

- V_{85}
- Calculation for every single geometric element
- Greek guidelines
- Design consistency evaluation

Safety Criterion	Design Evaluation								
------------------	____________________								
I α	Good: $	V_{85i} - V_{ei}	\leq 10\text{km/h}$	Fair: $10\text{km/h} <	V_{85i} - V_{ei}	\leq 20\text{km/h}$	Poor: $	V_{85i} - V_{ei}	> 20\text{km/h}$
II α	Good: $	V_{85i} - V_{85i+1}	\leq 10\text{km/h}$	Fair: $10\text{km/h} <	V_{85i} - V_{85i+1}	\leq 20\text{km/h}$	Poor: $	V_{85i} - V_{85i+1}	> 20\text{km/h}$
H11 System

✓ Visibility diagram
 ▪ 3D model of the road and its environment (cuts, central medians, barriers)
 ▪ SSD: equations from current guidelines
 ▪ ASSD: intersection of driver’s line of vision with the first triangle that restricts his visibility
 ▪ PSD: standard values from current guidelines
 ▪ APSD: similarly to ASSD (only undivided highways)
 ▪ Any desired interval, both directions
H11 System

ASSD diagram for an undivided highway

ASSD diagram for a divided highway
H11 System

✓ Perspective images

➢ Depiction of:
 ▪ Road surface
 ▪ Roadside natural and possible artificial features
 ▪ Central medians
 ▪ Back image of a vehicle at the SSD
 ▪ Front image of a vehicle at the PSD
H11 System

✓ Perspective images
 ➢ Any desired step
 ➢ Both directions
 ➢ Roadlines
 ➢ Visibility angle
 ➢ Successive images one above the other
 ✓ Direct supervision of the whole length of the project
 ✓ Feeling of movement
 ➢ Perspective from any spot of the 3D space around the driver’s station
 ➢ View axis: tangent to driver’s roadline
Methodology

Principles of Perspective Geometry

- Central projection at a perpendicular plane in front of the driver of a large number of points with known spatial coordinates X, Y, Z, which approximately form the spatial layout of the project

(Source: Taiganidis & Kanellaidis, 1999)
Methodology

Use of analytical friction models for:

- the expression of the projection plane
- the expression of the line of vision at 3D space
- the definition of the intersection point of the line of vision and the projection plane
- the transformation of the 3D coordinates of the intersection points into the corresponding 2D coordinates of the projection plane
Applications

Perspective view from a station of a two-way two-lane undivided highway where both ASSD and APSD are adequate
Applications

Perspective view from a station of a divided highway where ASSD is adequate.
Applications

Perspective view from a station of a two-way two-lane undivided highway where ASSD is adequate but APSD is not.
Applications

Optical alignment breakage due to small horizontal curve

Hidden dip at horizontal tangent

Flutter at horizontal curve
Conclusions

H11 system gives its operator the capability to:

✓ “travel” all along a new project and evaluate its spatial alignment, its consistency and its visibility conditions during the preliminary design

✓ use a quantitative criterion when evaluating the perspective images

✓ directly localize the element that restricts driver’s visibility at any station
Thank you for your attention!

Mertzanis Fotis
Hatzi Viviana
School of Civil Engineering
Department of Transportation Planning and Engineering
National Technical University of Athens