Spatial Analysis of Road Safety and Traffic Behaviour using High Resolution Multi-parametric Data

Apostolos Ziakopoulos Civil – Transportation Engineer PhD Candidate – Researcher National Technical University of Athens <u>www.nrso.ntua.gr/apziak</u> <u>apziak@central.ntua.gr</u>

July 2020

Scope of the dissertation

Spatial analysis of harsh event frequencies (harsh brakings/accelerations) in road segments

Exploitation of **multi-parametric** high-resolution data:

- 1. Road segment **geometric** and **road network** characteristic data from digital maps
- 2. Naturalistic driving data from smartphone sensors
- 3. High resolution traffic data

Literature review: Spatial analyses (1/2)

Thorough review of **132 international scientific studies** of **spatial analysis** applications in road safety

Available methodologies:

- 1. Geographically Weighted Regression (GWR)
- 2. Bayesian Conditional Autoregression (CAR)
- 3. Full/Empirical Bayesian Analyses
- 4. Machine learning approaches
- 5. Kernel density approaches etc.

Wide array of **parameters** related to:

- 1. Road traffic (speed, traffic volume, vehicle-kilometers)
- 2. Road environment (gradient, curvature, lane number/width, intersection number/density etc.)
- 3. Demographic characteristics (population, road user age)
- 4. Socio-economic characteristics (income, employment)
- 5. Land use (commercial, industrial, residential)

Several available **unit scales** for spatial analysis (road segment, TAZ, region, grid structures)

Literature review: Spatial analyses (2/2)

The majority of studies analyze crash frequency specially with **count-data models** (GWPR/CAR Poisson)

Additional issues:

- 1. **Boundary** problem
- 2. Modifiable areal unit problem
- 3. Lack of common working **framework**
- 4. Most research done in **modernized countries**
- 5. Harder examination of certain **parameters** due to lack of data or means of calculation (e.g. geometric characteristics)

All variables – parameters are examined and analyzed on a **spatial unit basis** (AADT/zone, average speed/road section)

Methodological advantages and disadvantages:

- 1. Frequentist models (e.g. GWPR): Intuitive interpretation, reduced fit capabilities
- 2. Bayesian models (e.g. CAR): Wide applications & adaptation to new data trends, lack of informative priors for initialization
- **3.** Machine learning (e.g. SVM/CNN): Flexibility & handling of big data, harder interpretation occasional 'black box' effect

Literature review: Knowledge gaps in road safety spatial analyses

Spatial analysis objectives are dictated by **data availability:**

• No research was found in **urban road networks** due to lack of data

Dependent variables:

- Limited analyses regarding crash injury severity
- No research pertinent with spatial analysis of harsh events was found
- Despite precise hotspot location capabilities, there is a lack of transferability of spatial analysis results:
- No predictions are conducted for **different study areas**

Large margins for exploitation of **new technological advancements** for spatial analyses:

• Enhancement of existing data – production of new datasets

Literature review: Meta-regressions

Parameters of exposure to danger

- Serve for the creation of a **common baseline** between models and results
- Most prevalent parameters: roadway length, vehicle-miles/kms, AADT

Meta-regressions: Original research

- **Quantitative investigation** of factors which systematically influence exposure parameters
- A means of investigating **heterogeneity** of scientific study results
- Conducted with the **inverse variance technique**

Results for road safety spatial analyses

- 1. AADT coefficients are positively correlated with taking **speed limit and road user age** into consideration
- 2. Roadway length coefficients are positively correlated with analyzing **only fatal crashes** compared to total crashes
- 3. AADT coefficients are positively correlated with analyzing crashes on a **county level** compared to TAZ level

Adjusted estimates of VMT

Literature review: Driver recording tools

A significant number of **driver recording tools** was identified

Recording tools	Main advantages	Main disadvantages
Surveys on opinion and stated behaviour	low cost, flexibility	hypothetical questions, lower detail/reliability, biased data
Past police or hospital record investigation	low cost, official records	missing data/variables, underreporting, maintenance requirements, time delays
Direct observer method	observer specialization, removal of intermediaries	high person-hours, lack of randomization, observer bias
Driving simulator	safe environment, greater experimental control, precise reaction time	learning effects, nausea, high costs, maintenance requirements
Naturalistic driving - Vehicle instrumentation (& On-road driving)	examination of real traffic conditions and events, uses in driver training – evaluation, interdisciplinary extensions	rare traffic incidents, high costs, driver screening requirements, time- consuming process
OBD/IVDRs	Real-time recording, accurate indications of crash involvement probability	unclear sampling frame
In-depth incident investigation	identification and reconstruction of crash factors, research of injury prevention	insufficient reconstruction evidence, long analysis time, demanding data analysis
Smartphone data exploitation	seamless and rapid data recording and storage, programmable means, increased flexibility, phone distraction measurements	demanding in data storage/analysis, upfront costs during development, lower cost during collection

Apostolos Ziakopoulos | Spatial Analysis of Road Safety and Traffic Behaviour using High Resolution Multi-parametric Data

Literature review: Harsh events

Harsh events: **harsh brakings** and **harsh accelerations** occurring during naturalistic driving

- Parameters measuring **road safety levels** (correlations with spatial and temporal headways)
- **Different phenomena**, correlations with different variables
- Correlation with **driver risk**

Considerable comparative advantages for investigation:

- 1. Applications in driver evaluation and classification
- 2. **Proactive** road safety indicators evaluations **before** crashes occur
- 3. Considerable **research gaps** regarding the investigation of harsh event frequencies

Research questions

- 1. How can smartphone data and map data be **combined** (mapmatched) and **examined** in road safety investigations?
- 2. How can **harsh event** frequencies be **analyzed spatially** in these environments, and which methods are appropriate for that purpose?
- 3. Is there **spatial autocorrelation** present in harsh event frequencies for road segments in urban road environments?
- 4. Which **road geometry** and **road network characteristics** affect harsh event frequencies in urban road network environments? **How transferable** are the previous results in a different study area?
- 5. Do **traffic** and **driver behavioural parameters** have a statistical impact on harsh event frequencies?

Methodological approach

Spatial analysis of harsh event frequencies along two pillars:

1. Urban road networks

Predictive modelling – Measurement of result transferability

2. Urban arterials

Explanatory modelling – Examination of additional traffic and driver behaviour characteristics (without result transferability)

Exploratory spatial analyses (Moran's I coefficients and variograms)

Selection of **four spatial analysis** methods

- 1. Geographically Weighted Poisson Regression (GWPR)
- 2. Conditional Autoregressive Prior Regression (CAR)
- 3. Extreme Gradient Boosting (**XGBoost**) with Random Cross-Validation (**RCV**)
- 4. Extreme Gradient Boosting (**XGBoost**) with Spatial Cross-Validation (**SPCV**)

Model averaging for harsh event predictions in urban road networks

Conclusions

Section 8

Literature review

Spatial approaches in road safety

Research Questions

Combination of data/Map-matching

Presence of spatial autocorrelation

Theory of exploratory spatial analyses

"Everything is related to everything else, but near things are more related than distant things." – Tobler, 1970

1. Moran's I

- Measurement of **spatial autocorrelation**
- Can be calculated **globally** [-1, 1] and **locally** (∈ R)
- Several available geographical weighting options

2. Variograms

- Measurement of **distance** of spatial autocorrelation
- Graphs of (semi)variance of the measured quantity by distance
- **Theoretical** (mathematical curves) and **Empirical** (real observation cluster points)
- Additional information: geographical anisotropy and cyclicity

Theory of spatial statistical models

Integration of **spatial heterogeneity**

Event frequencies: Log-normal Poisson framework

- 1. Geographically Weighted Poisson Regression (GWPR)
- Frequentist functional models: local micro-regressions are conducted, b coefficients can vary locally
- 2. Conditional Autoregressive Prior Regression (CAR)
- Bayesian functional models: Bayesian regressions are conducted with spatially structured and unstructured terms, b coefficient distributions are obtained
- 3. Extreme Gradient Boosting (XGBoost)
- Machine learning: Multiple additive regression trees (ensemble),obtained information regarding variable contribution (gain)
- Random Cross-Validation **RCV**
- Spatial Cross-Validation SPCV

Source: Lovelace et al. (2019)

Evaluation of model performance

Model performance metrics:

Difference between true and predicted values

- 1. Root Mean Squared Error (RMSE)
- 2. Mean Absolute Error (MAE)
- 3. Root Mean Squared Log Error (RMSLE)

Additional indicator:

 4. Custom accuracy (CA – percentage): Percentage of accurate predictions within a ± 1 margin over total number of predictions

Performance metric selection is also affected by input and output data

Frequencies: Natural numbers (positive integer or zero values)

Data collection (1/3): Digital map road geometry data

Data of **road segment geometry** and **road network** characteristics on a **microscopic level** from digital maps

OpenStreetMap: Open source digital map platform Hierarchical elements:

- 1. Nodes
- 2. Ways from node groups
- 3. **Relations** from node and way groups

Obtaining a wealth of data in WGS84 through API queries (Overpass Turbo API through Overpass Query Language)

NASA SRTM topography

Altitude data provided by NASA:

- Freely available
- Altitude resolution per **10 cm**
- Majority of **populated areas** available

Source: SRTM website, (2020)

Data collection (2/3): Naturalistic driving data from smartphones

Naturalistic driving data from real-world conditions obtained from smartphones (per trip-second)

Utilization of the application/platform of **OSeven Telematics**

- APIs utilization for data reading from **smartphone sensors**
- Exploited sensors: GPS, accelerometer, gyroscope, device orientation
- **Transmission** from smartphone to central storage database
- **Data cleaning** and **processing** via a series of filtering, signal processing, Machine Learning (ML) and scoring algorithms
- Several data are provided, **indicatively**: trip position, speed, acceleration, harsh brakings/accelerations, event intensity, speeding, mobile phone use
- Total anonymity during all data handling phases (GDPR)

Obtained **high resolution big data** from driver trips including behaviour indicators

Driving pattern recognition

Data collection (3/3): Traffic data

Traffic data in **urban arterials** provided by the Traffic Management Centre of Attica Region

- Instrumentation in urban arterial corridors in Attica
- 550 inductive loop detectors
- 217 computer vision traffic cameras
- 24 variable message signs (VMS)

Regulation of ~ 1500 traffic lights in 850 intersections

Through vehicle time occupancy as a percentage, the TMC collects:

- Occupancy [% of time]
- Traffic volume [vehicle number / temporal unit]

Secondarily, traffic speed [km/h] is calculated as well

Source: TMC, (2020)

Several temporal resolutions for data: 1 h, 5 min or 90 s (high resolution)

Study areas

- 1. Urban road networks (URNs)
- (i) Chalandri (spatial model calibration for URNs)
- (ii) Omonoia (accuracy evaluation transferability assessment for URNs)

Road geometry and naturalistic driving high resolution data collection

2. Urban arterials (UA)Kifisias Avenue (increased modelling depth with added characteristics in UA)

Road geometry, naturalistic driving and traffic high resolution data collection

Data processing: Geometric characteristics (1/2)

Calculation of geometric characteristics based on **OSM node coordinates**

Roadway segment length

- Calculation based on modern geoids/ellipsoid models through available libraries
- Sum of elementary lengths (2 nodes each)

Determination of road segment centroids

Gradient

- Sum of elementary gradients (2 nodes each)
- Road segment average, weighted by elementary lengths

Curvature

- Menger's formula per elementary triangle (3 nodes each)
- Road segment average, weighted by elementary lengths

Data processing: Geometric characteristics (2/2)

Neighborhood complexity calculation

- Measurement of density and complexity of immediate road segment environment: (i) in reality (ii) on the digital maps
- Logarithm of nodes within a window of 470m * 470m from each road segment centroid

Obtaining of additional **road segment characteristics** from OSM:

- 1. Presence of **pedestrian crossing**
- 2. Presence of **traffic lights**
- 3. Lane number
- 4. Road type

(exclusion of walkways/footpaths/surfaces without vehicles)

5. Direction **number** (one-way or two-way)

Calculation with original purpose-made algorithms and sub-routines created in R-studio, iteratively for each road segment

Data processing: Map-matching (1/2)

Map-matching: Plotting of naturalistic driving data on maps after determination of the corresponding segment

Matching of GPS trace to each road segment per second

Identification of:

- 1. Nearest node (point-to-point distance)
- 2. Minimum distance way MDW (point-to-polyline distance)
 - Moving polygon serving to reduce candidate ways
 - Time-consuming and computationally demanding process
 - **Corrections** are essential in dense road segments with parallel axes through a specialized vote-count algorithm

Recording and assignment per road segment:

- 1. Pass count
- 2. Harsh brakings/accelerations
- 3. Speeding seconds
- 4. Mobile use seconds

Data processing: Map-matching (2/2)

Data processing: Traffic parameter integration

Theory of three traffic states (indicatively Kerner, 2012)

- 1. Free flow
- 2. Synchronized flow
- 3. Congested flow

Matching of **naturalistic driving** data with **traffic** data spatio-temporally (closest measurement)

Classification of each trip-second per traffic state based on traffic data and on determined limits (Vlahogianni et al., 2008)

Map-matching of trips and maps: Creation of spatial data per **traffic flow state** for each **road segment**

Urban road networks: Sample description (1/2) – Chalandri

- **869** road segments (removal of 14 footways) with **4293** nodes
- 49 road segments with traffic lights
- 80 road segments with pedestrian crossings

Naturalistic driving data:

- Trips between 01-10-2019 & 29-11-2019 **2 months**
- A total of 3294 trips from 230 drivers
- 1,000,273 **driving seconds**: average trip duration 304 s
- 1348 harsh brakings
- 921 harsh accelerations

90% of road segments feature at least 1 trip

Variable distributions

- **Positive** skewness (larger right tails)
- **High** kurtosis (non-normal distributions)

Urban road networks: Sample description (2/2) – Omonoia

- **1237** road segments (removal of 78 footways) with **6115** nodes
- **319** road segments with traffic lights
- 317 road segments with pedestrian crossings

Naturalistic driving data:

- Trips between 01-10-2019 & 29-11-2019 **2 months**
- A total of 2615 trips from 257 drivers
- 964,693 driving seconds: average trip duration 369 s
- 1036 harsh brakings
- 938 harsh accelerations

86% of road segments feature at least 1 trip

Variable distributions

- **Positive** skewness (larger right tails)
- **High** kurtosis (non-normal distributions)

Urban road networks: Exploratory spatial analyses (1/2)

Global and local Moran's I coefficients (Chalandri area)

- 1. Distance-based weighting (DB)
- 2. k nearest-neighbor weighting (kNN)

Interpretation of k nearest-neighbors is more **reasonable**:

- Harsh event frequencies are influenced from the **more proximal** road environment
- **Positive spatial autocorrelation** manifests in harsh event frequencies

Very few outlier values appear for local Moran's I (within 2σ per Anselin, 1995)

Volatility of the coefficient: appropriate for preliminary – exploratory analysis

kNN Global Moran's I	Correlation threshold	k	Coefficient value	Expectation	p-value
Harsh brakings	0.0	15	0.0806	-0.0012	0.000
Harsh accelerations	0.0	39	0.0945	-0.0012	0.000
Harsh brakings	0.1	5	0.1421	-0.0012	0.000
Harsh accelerations		5	0.2206	-0.0012	0.000

Urban road networks: Exploratory spatial analyses (2/2)

Variograms of semivariance per directional axis [N-S, W-E]

Spherical theoretical variograms describe harsh event frequencies per road segment with a better fit

Spatial autocorrelation manifests mainly:

- Within **190** m from road segment centroids for harsh brakings
- Within **200** m from road segment centroids for harsh accelerations

In large theoretical road segment samples, harsh events are expected to have:

- Mean values of **4.83** and majority within [0.00, 9.65] for harsh brakings
- Mean values of **3.00** and majority within [0.00, 6.00] for harsh accelerations
- Geographical **anisotropy** along the N-S axis as opposed to the W-E axis
- Partial geographical cyclicity (wave patterns) along the N-S axis

Directional variograms of harsh acceleration frequencies

Directional variograms of harsh braking frequencies

Urban road networks: Harsh braking spatial analyses

Positive correlation: Segment length Pass count

Negative correlation: Gradient Neighborhood complexity Road type [Residential]

Marginally positive correlation: Road type [Secondary] Traffic lights Pedestrian crossing

Marginally negative correlation: Road type [Tertiary]

Independent veriebles	GWPR	CAR	RCV XGBoost	SPCV XGBoost			
independent variables	Coefficients	Mean posterior values	Gain values	Gain values			
Intercept	0.4636	-1.4134	N/A	N/A			
Gradient	-2.4864	-9.7538	0.0806	0.0860			
Curvature	—	—	0.0444	0.0626			
Neighborhood complexity	-0.2919	-0.1787	0.0344	0.0684			
Segment length	0.0039	0.0075	0.1436	0.1400			
Pass count	0.0040	0.0086	0.6788	0.6271			
Traffic lights: Yes [Ref.: Traffic lights: No]	0.2563	-0.0902	0.0037	0.0010			
Pedestrian crossing: Yes [Ref.: Pedestrian crossing: No]	-0.1463	0.3820	0.0024	0.0024			
Lanes: 2 [Ref.: Lanes: 1]	-0.2435	-0.1713					
Lanes: 3 [Ref.: Lanes: 1]	0.3669	-0.5719	9 0.0072	0.0048			
Lanes: 4 [Ref.: Lanes: 1]	0.3578	1.9169					
Road type: secondary [Ref.: Road type: primary]	1.0520	-0.1094					
Road type: tertiary [Ref.: Road type: primary]	-0.0070	-1.6389	0.0049	0.0078			
Road type: residential [Ref.: Road type: primary]	-1.0084	-2.5578					
Sigma-phi ² [Spatially structured effects]	N/A	700.3172	N/A	N/A			
Sigma-theta ² [Spatially unstructured effects]	N/A	2.3455	N/A	N/A			
Performance metrics							
RMSE	3.2954	1.2830	1.4215	1.8293			
MAE	1.3048	0.4115	0.4971	0.4994			
RMSLE	0.5569	0.1727	0.3140	0.2390			
CA	80.90%	96.32%	90.56%	91.71%			

Urban road networks: Harsh braking prediction & transferability

Predictions using Omonoia spatial data

- 1. Geographically Weighted Poisson Regression (GWPR)
 - Local b-coefficient fluctuations are not transferable
 - Predictions using global Poisson regression
- Bayesian Conditional Autoregressive Prior Regression (CAR)
 - Spatially structured and unstructured effects are not transferable
 - Predictions using new Bayesian Poisson regression
- 3. Extreme Gradient Boosting (XGBoost)
 - Seamless transferability of machine learning ensemble trees/rules using both RCV and SPCV

SPCV XGBoost has the **best individual performance** from all implemented methods

Performance metrics	GWPR global Poisson	Bayesian Poisson	RCV XGBoost	SPCV XGBoost	Combined Average
RMSE	1.9792	1.9804	1.9834	1.8418	1.6114
MAE	1.0265	1.0290	0.8415	0.7542	0.6645
RMSLE	0.5508	0.5520	0.5484	0.5189	0.4514
CA	82.64%	82.74%	83.40%	85.27%	87.55%

Urban road networks: Combined harsh braking predictions

Using combined average, spatial models mitigate their weaknesses and lead to a balanced predictive outcome for harsh brakings

Urban road networks: Harsh acceleration spatial analyses

Negative correlation: Road type [Residential]

Marginally positive correlation: Pedestrian crossing

Marginally negative correlation: Neighborhood complexity

Independent veriebles	GWPR	CAR	RCV XGBoost	SPCV XGBoost			
	Coefficients	Mean posterior values	Gain values	Gain values			
Intercept	-1.4230	-1.2399	N/A	N/A			
Gradient	—	—	0.0588	0.0189			
Curvature	9.0471	6.3926	0.0323	0.0309			
Neighborhood complexity	—	-0.2308	0.0532	0.0355			
Segment length	0.0030	0.0038	0.1058	0.0766			
Pass count	0.0042	0.0071	0.7184	0.8253			
Traffic lights: Yes [Ref.: Traffic lights: No]	0.3791	0.1147	0.0069	0.0026			
Pedestrian crossing: Yes [Ref.: Pedestrian crossing: No]	—	0.4554	0.0045	0.0011			
Lanes: 2 [Ref.: Lanes: 1]	0.0794	-0.0134	34 02 0.0033 80	0.0027			
Lanes: 3 [Ref.: Lanes: 1]	0.4741	-0.1702					
Lanes: 4 [Ref.: Lanes: 1]	0.3828	0.4380					
Road type: secondary [Ref.: Road type: primary]	0.7323	0.7202		0.0065			
Road type: tertiary [Ref.: Road type: primary]	0.3720	0.3610	0.0109				
Road type: residential [Ref.: Road type: primary]	-0.6642	-0.6715					
Sigma-phi ² [Spatially structured effects]	N/A	255.3276	N/A	N/A			
Sigma-theta ² [Spatially unstructured effects]	N/A	0.2827	N/A	N/A			
Performance metrics							
RMSE	2.0861	0.7961	0.9128	1.1327			
MAE	0.9125	0.4111	0.3728	0.4891			
RMSLE	0.4704	0.2512	0.3000	0.3504			
СА	84.69%	95.74%	93.32%	89.87%			

Urban road networks: Combined harsh acceleration predictions

Performance metrics	GWPR global Poisson	Bayesian Poisson	RCV XGBoost	SPCV XGBoost	Combined Average
RMSE	1.6836	1.6841	1.9834	1.6250	1.5010
MAE	0.8721	0.8700	0.8415	0.7064	0.6903
RMSLE	0.5082	0.5071	0.5484	0.4791	0.4316
CA	87.71%	87.62%	83.40%	87.42%	89.09%

Apostolos Ziakopoulos | Spatial Analysis of Road Safety and Traffic Behaviour using High Resolution Multi-parametric Data

Urban road networks: Main findings

- **Spatial analyses** of harsh braking and harsh acceleration frequencies are feasible using GWPR, CAR, RCV XGBoost and SPCV XGBoost methodologies
- Very good model fit on training spatial data (Chalandri) and precise predictions in the test spatial data (Omonoia)
- The investigated **exposure parameters** (segment length and pass count) are consistently **positively correlated** with harsh braking and harsh acceleration frequencies
- The presence of pedestrian crossings and traffic lights is **mostly positively correlated** with harsh braking and harsh acceleration frequencies
- Conversely, **gradient** and **neighborhood complexity** are negatively correlated with harsh acceleration frequency
- Curvature is positively correlated with harsh acceleration frequency
- **Road type** and **number of lanes** are parameters with unclear influence: However, they offer useful information for the calibration of spatial terms/ tree separation limits

Urban arterial: Sample description – Kifisias Avenue (1/2)

152 road segments with 658 nodes

- **15** road segments with traffic lights
- 21 road segments with pedestrian crossings

Naturalistic driving data:

- Trips between 01-09-2019 & 29-11-2019 **3 months**
- A total of 8756 trips from 314 drivers
- 930,346 **driving seconds**: average trip duration 221 s
- 1543 harsh **brakings**
- 1033 harsh accelerations

Variable distributions

- **Positive** skewness (larger right tails)
- **High** kurtosis (segment length/neighborhood complexity) and **low** kurtosis (gradient/curvature) – **non-normal** distributions

Urban arterial: Sample description – Kifisias Avenue (2/2)

Classification of trip-seconds and traffic data per **traffic state**

At least 1 trip:

- 100% of road segments under free flow conditions
- 94.74% of road segments under synchronized flow conditions
- 95.39% of road segments under congested flow conditions

Free flow conditions

• 563 harsh brakings & 363 harsh accelerations

Synchronized flow conditions

• 215 harsh brakings & 142 harsh accelerations

Congested flow conditions

- 10 harsh brakings & 4 harsh accelerations
- No sufficient harsh event frequencies to conduct spatial analysis

Urban arterial: Exploratory spatial analyses (1/2)

Global and local Moran's I coefficients (Chalandri area)

- 1. Distance-based weighting (DB)
- 2. k nearest-neighbor weighting (kNN)

Interpretation of k nearest-neighbors is more **reasonable:**

- **Rapid reduction** of spatial autocorrelation between segments (fewer neighboring segments)
- **Positive spatial autocorrelation** manifests in harsh event frequencies

Very few outlier values appear for local Moran's I (within 2σ per Anselin, 1995)

Volatility of the coefficient:

appropriate for preliminary – exploratory analysis

kNN Global Moran's I	Correlation threshold	k	Coefficient value	Expectation	p-value
Harsh brakings	0.0	5	0.0913	-0.0066	0.0389
Harsh accelerations	0.0	9	0.1261	-0.0066	0.0002

Urban arterial: Exploratory spatial analyses (2/2)

Merged variograms of semivariance

Exponential theoretical variograms describe harsh event frequencies per road segment with a better fit

Spatial autocorrelation manifests mainly:

- Within **310** m from road segment centroids for harsh brakings
- Within 320 m from road segment centroids for harsh accelerations

In large theoretical road segment samples, harsh events are expected to have:

- Mean values of **9.89** and majority within [0.00, 19.78] for harsh brakings
- Mean values of 7.88 and majority within [0.00, 15.75] for harsh accelerations

Additional observations:

- Greater empirical variogram volatility compared to urban road networks
- Partial geographical cyclicity (wave patterns), denoting patterns of **repetition** in the data

120

Urban arterial: Harsh braking analyses under free flow

Positive correlation:

Segment length Pass count Mobile phone use seconds Speed difference (driver – traffic)

Marginally positive correlation: Average occupancy

Marginally negative correlation: Bearing [Southbound] Standardized traffic flow

Independent veriebles	GWPR	CAR	RCV XGBoost	SPCV XGBoost			
independent variables	Coefficients	Mean posterior values	Gain values	Gain values			
Intercept	-0.2544	-0.4664	N/A	N/A			
Gradient	-1.1013	—	0.0642	0.0408			
Curvature	—	—	0.0208	0.0183			
Segment length	0.0033	0.0031	0.0454	0.0572			
Pass count	0.0023	0.0027	0.0577	0.0364			
Speeding seconds	—	—	0.1374	0.0330			
Mobile use seconds	0.0022	0.0042	0.4583	0.5496			
Speed difference	0.0385	0.0318	0.0755	0.0548			
Average std. current traffic volume	-0.1640	-0.0417	0.0328	0.0469			
Average occupancy	0.0595	—	0.0370	0.0310			
Average driver speed	—	—	0.0387	0.0687			
Average traffic speed	—	—	0.0115	0.0493			
Lane number	—	—	0.0013	0.0027			
Bearing: Southbound [Ref.: Northbound]	-0.2611	-0.2746	0.0195	0.0067			
Pedestrian crossing: Yes [Ref.: Pedestrian crossing: No]	—	—	—	0.0025			
Traffic lights: Yes [Ref.: Traffic lights: No]	—	—	—	0.0021			
Sigma-phi ² [Spatially structured effects]	N/A	0.0662	N/A	N/A			
Sigma-theta ² [Spatially unstructured effects]	N/A	0.3796	N/A	N/A			
Performance metrics							
RMSE	2.8905	1.1052	0.4730	0.4730			
MAE	2.0705	0.9002	0.1579	0.1316			
RMSLE	0.6046	0.3565	0.0579	0.2105			
СА	56.58%	84.22%	98.03%	99.34%			

Urban arterial: Harsh braking analyses under synchronized flow

Segment length Pass count Mobile phone use seconds Average occupancy

Independent veriables	GWPR	CAR	RCV XGBoost	SPCV XGBoost			
Independent variables	Coefficients	Mean posterior values	Gain values	Gain values			
Intercept	-2.1012	-2.4520	N/A	N/A			
Gradient	—	1.0782	0.0491	0.0638			
Curvature	71.643	6.6068	0.0084	0.0269			
Segment length	0.0024	0.0019	0.0282	0.0533			
Pass count	0.0059	0.0057	0.0833	0.4146			
Speeding seconds	—	0.0020	0.0810	0.0781			
Mobile use seconds	0.0113	0.0134	0.6446	0.2250			
Speed difference	—	—	0.0167	0.0231			
Average std. current traffic volume	—	-0.0195	0.0298	0.0266			
Average hourly traffic volume	-0.0002	—	—	—			
Average occupancy	0.0495	0.0371	0.0216	0.0172			
Average driver speed	_	—	0.0219	0.0610			
Average traffic speed	—	—	0.0092	—			
Lanes: 2 [Ref.: Lanes: 1]	—	0.2878					
Lanes: 3 [Ref.: Lanes: 1]	_	-0.0207	_	_			
Lanes: 4 [Ref.: Lanes: 1]	—	-1.9839					
Bearing: Southbound [Ref.: Northbound]	_	0.0119	0.0060	0.0095			
Pedestrian crossing: Yes [Ref.: Pedestrian crossing: No]	_	—	_	0.0006			
Traffic lights: Yes [Ref.: Traffic lights: No]	—	—	0.0000	0.0002			
Sigma-phi ² [Spatially structured effects]	N/A	0.0309	N/A	N/A			
Sigma-theta ² [Spatially unstructured effects]	N/A	0.3916	N/A	N/A			
Performance metrics							
RMSE	1.6733	0.7472	0.2433	0.3441			
MAE	0.9404	0.5206	0.0461	0.0472			
RMSLE	0.4306	0.2971	0.0268	0.0921			
CA	83.55%	90.79%	99.34%	98.68%			

Urban arterial: Harsh acceleration analyses under free flow

Pass count Mobile phone use seconds Speed difference (driver – traffic) Average occupancy

Negative correlation: Speeding seconds

Marginally positive correlation: Segment length

Marginally negative correlation: Bearing [Southbound]

Independent variables	GWPR	CAR	RCV XGBoost	SPCV XGBoost			
	Coefficients	Mean posterior values	Gain values	Gain values			
Intercept	-0.2237	-1.0912	N/A	N/A			
Gradient	—	1.2874	0.0573	0.0756			
Curvature	—	—	0.0337	0.0413			
Segment length	0.0017	0.0011	0.0831	0.0759			
Pass count	0.0032	0.0022	0.1097	0.1183			
Speeding seconds	-0.0011	-0.0012	0.0711	0.0631			
Mobile use seconds	0.0027	0.0047	0.2865	0.2212			
Speed difference	0.0528	0.0323	—	0.0749			
Average std. current traffic volume	—	—	0.0795	0.1281			
Average occupancy	0.0258	0.0328	0.0500	0.0656			
Average driver speed	_	—	0.1457	0.1136			
Average traffic speed	-0.0240	—	0.0585	—			
Lane number	—	—	0.0148	0.0092			
Bearing: Southbound [Ref.: Northbound]	-0.2434	-0.2327	0.0001	0.0021			
Pedestrian crossing: Yes [Ref.: Pedestrian crossing: No]	—	—	—	0.0056			
Traffic lights: Yes [Ref.: Traffic lights: No]	—	—	0.0100	0.0058			
Sigma-phi ² [Spatially structured effects]	N/A	0.5614	N/A	N/A			
Sigma-theta ² [Spatially unstructured effects]	N/A	0.3253	N/A	N/A			
Performance metrics							
RMSE	2.2817	1.0912	0.3974	0.3536			
MAE	1.5816	0.8612	0.1316	0.1118			
RMSLE	0.6305	0.4286	0.0776	0.0507			
CA	63.16%	86.18%	98.68%	99.34%			

Urban arterial: Harsh acceleration analyses in synchronized flow

Positive correlation:

Pass count Mobile phone use seconds

Marginally positive correlation: Traffic flow (hourly or standardized)

Independent variables	GWPR	CAR	RCV XGBoost	SPCV XGBoost		
	Coefficients	Mean posterior values	Gain values	Gain values		
Intercept	-1.2573	-2.9399	N/A	N/A		
Gradient	—	1.7464	0.0243	0.0258		
Curvature	—	—	0.0183	0.0180		
Segment length	—	-0.0005	0.0240	0.0259		
Pass count	0.0035	0.0065	0.2169	0.5617		
Speeding seconds	—	-0.0039	0.0017	0.0071		
Mobile use seconds	0.0148	0.0159	0.5723	0.2209		
Speed difference	—	—	0.0332	0.0144		
Average std. current traffic volume	—	—	0.0032	0.022		
Average traffic volume	0.0003	0.0008	_	_		
Average occupancy	_	0.0237	0.0457	0.0407		
Average driver speed	_	-0.0224	0.0604	0.0568		
Average traffic speed	-0.0240	—	—	—		
Lanes: 2 [Ref.: Lanes: 1]	—	-1.0085	—	_		
Lanes: 3 [Ref.: Lanes: 1]	—	-1.8321				
Lanes: 4 [Ref.: Lanes: 1]	—	-2.8837				
Bearing: Southbound [Ref.: Northbound]	0.4721	0.2981	—	0.0067		
Sigma-phi ² [Spatially structured effects]	N/A	0.0699	N/A	N/A		
Sigma-theta ² [Spatially unstructured effects]	N/A	1.0935	N/A	N/A		
Performance metrics						
RMSE	1.2978	0.5404	0.5000	0.281		
MAE	0.8258	0.3904	0.1711	0.0658		
RMSLE	0.4507	0.2475	0.1638	0.0842		
CA	86.84%	97.36%	97.37%	98.68%		

Urban arterial: Main findings

- **Spatial analyses** of harsh braking and harsh acceleration frequencies are feasible using GWPR, CAR, RCV XGBoost and SPCV XGBoost methodologies **per traffic state as well**
- Very good model fit on study area data, with the exception of GWPR under free flow conditions
- **GWPR** performance seems to be affected by the pronounced geographical **anisotropy** under free flow conditions the avenue is practically 1-dimensional
- The other methodologies (CAR, RCV XGBoost and SPCV XGBoost) are not likewise affected
- Results indicate that **different traffic parameters** are correlated with harsh event frequencies per traffic state
- The **exposure parameters** (segment length and pass count) continue to display a **positive influence** on harsh braking and harsh acceleration frequencies
- The creation examination of directional variograms does not have physical meaning: merged variograms are appropriate

Conclusions of the dissertation (1/5)

- 1. It is **possible to combine** high resolution **multi-parametric** naturalistic driving, geometric and traffic data that can be combined and exploited to conduct meaningful spatial analyses on a road segment basis
- The implementation of both common spatial methods (GWPR, CAR, Moran's I and variograms) and innovative methods (RCV & SPCV XGBoost) is feasible for spatial analyses of harsh event frequencies on a road segment basis
- **3. Positive autocorrelation** is detected in harsh braking and harsh acceleration frequencies in both urban road networks and urban arterials
- 4. In urban road networks, spatial autocorrelation manifests mainly within 190 m from road segment centroids for harsh brakings and within 200 m from road segment centroids for harsh accelerations. The respective distances for urban arterials are estimated at 310 m and 320 m

Urban road networks:

- 1. The exposure parameters (segment length and pass count) are positively correlated with harsh braking and harsh acceleration frequencies.
- 2. Conversely, gradient, neighborhood complexity and residential road type are parameters negatively correlated with harsh braking frequencies.
- **3.** Curvature, traffic lights and secondary and tertiary road types are parameters positively correlated with harsh acceleration frequencies.
- **4. Residential road type** is negatively correlated with harsh acceleration frequencies.

Conclusions of the dissertation (3/5)

Urban road networks:

5. Precise predictions of harsh event frequencies can be successfully conducted via the exploitation of the examined data and using the implemented methods.

Custom accuracy achieved: **87.6%** for harsh brakings and **89.1%** for harsh accelerations.

6. Using **combined average**, spatial models **mitigate** their weaknesses and lead to a **balanced** predictive outcome for harsh events. A **more complete** image of hotspots is obtained.

Conclusions of the dissertation (4/5)

Urban arterial:

- 1. It is meaningful to create and examine spatial data **per traffic state** in order to analyze harsh event frequencies; as a bridge between road safety and traffic flow disciplines.
- 2. Results indicate that **different variables** are correlated with increased harsh event frequencies under **free flow** conditions compared to **synchronized flow** conditions.
- 3. The inclusion of **traffic** and **driver behaviour** parameters offers additional capabilities for in-depth examination of causal parameters, without any transferability or prediction capabilities.

Conclusions of the dissertation (5/5)

Urban arterial:

- 4. The exposure parameters (segment length and pass count) as well as mobile use seconds are positively correlated with harsh braking and harsh acceleration frequencies.
- 5. The parameter of **average occupancy** is positively correlated with harsh event frequencies under synchronized flow and marginally positively correlated under free flow.
- 6. The parameter of **speed difference of driver and vehicle** is positively correlated with harsh braking frequencies under free flow and with harsh acceleration frequencies (under both conditions).
- 7. Circumstantial correlations are found with **traffic flow parameters** (reduction of brakings under free flow, increase of accelerations under synchronized flow).

Innovative contributions

- Novel methodological research framework
 Conducting road safety spatial analysis for harsh event frequencies using multi-parametric high-resolution data per road segment
- 2. Inception of a number of purpose-made big-data algorithms Implementation of the algorithms for critical functions:

 (i) calculation of additional geometric characteristics
 (ii) data processing and merging
 (iii) map-matching of trip-seconds to road segments

3. Innovative types of spatial analyses

- (i) spatial analyses of urban road networks
- (ii) spatial analyses results were used for **successful predictions** of harsh event frequencies
- 4. Spatial analyses with added depth for urban arterials Separate examinations for **free flow** and **synchronized flow** traffic states
- 5. Original insights and statistical correlations were obtained for the parameters affecting harsh event frequencies

Future research

1. Correlation with crash data

Conducting spatial analyses including crash data per road segment –examination of possible hotspot overlap

- 2. Introduction of temporal dimension Conducting spatio-temporal analyses for the identification of seasonal trends and the detection of any hotspot migration effects
- **3. Analyses per driver aggressiveness** Driver classification based on their aggressiveness and produced harsh events
- 4. Implementation of additional spatial or machine learning models Indicatively: Neural networks, additional CAR priors, spatial lag models
- 5. Investigation of additional environments or parameters Rural roads, multiple countries, presence of public transport, low speed zones

Spatial Analysis of Road Safety and Traffic Behaviour using High Resolution Multi-parametric Data

Apostolos Ziakopoulos Civil – Transportation Engineer PhD Candidate – Researcher National Technical University of Athens <u>www.nrso.ntua.gr/apziak</u> <u>apziak@central.ntua.gr</u>

July 2020