

#### National Technical University of Athens Road Safety Observatory

# www.nrso.ntua.gr

Monday

May

at 14:00

## Workshop

in the framework of the

FOURTH UNITED NATIONS GLOBAL ROAD SAFETY
WEEK



#### The future of road safety research

NTUA Zografou Campus, Athens
Railways Amphitheatre of the
Department of Transportation Planning and Engineering

# Monitoring behaviour of drivers with cognitive impairments DriverBrain

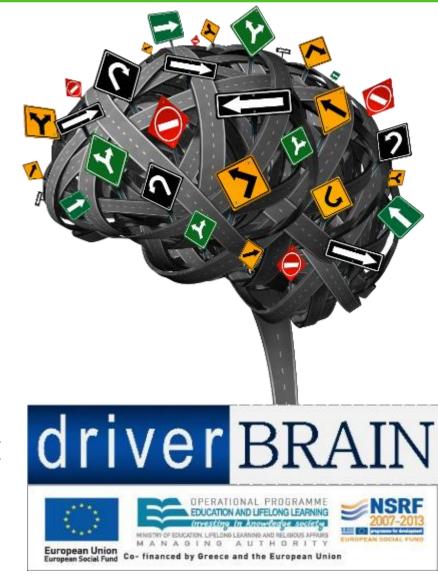
#### **Dimos Pavlou**

Civil - Transportation Engineer, PhD
Research Associate



Department of Transportation Planning and Engineering, National Technical University of Athens, Athens, Greece

Website: <a href="www.nrso.ntua.gr/dpavlou">www.nrso.ntua.gr/dpavlou</a>
e-mail: <a href="mailto:dpavlou@central.ntua.gr">dpavlou@central.ntua.gr</a>


#### Together with:

Eleonora Papadimitriou, Panagiotis Papantoniou, Sophia Vardaki, Costas Antoniou, John Golias, George Yannis

#### **DRIVERBRAIN**

Performance of drivers with cerebral diseases at unexpected incidents

- ARISTEIA research programme
  - (2012-2015)
- Inter-disciplinary project
  - Transportation Engineers (NTUA)
  - Neurologists (Attikon Hospital NKUA)
  - Neuropsychologists (Attikon Hospital NKUA)
- Objective: Investigation of the performance of drivers with cerebral diseases (AD, PD, and MCI) at unexpected incidents through a driving simulator experiment



## The problem



- Driving requires the ability to receive sensory information, process the information, and to make proper, timely judgments and responses
- Various motor, visual, cognitive and perceptual deficits can affect the ability to drive and lead to reduced driver fitness and increased accident probability
- More specifically, diseases affecting a person's brain functioning may significantly impair the person's driving performance (Mild Cognitive Impairment, Alzheimer's Disease, Parkinson's Disease)



#### Methodological Challenges





Medical/neurological assessment: administration of a full clinical medical, ophthalmological and neurological evaluation

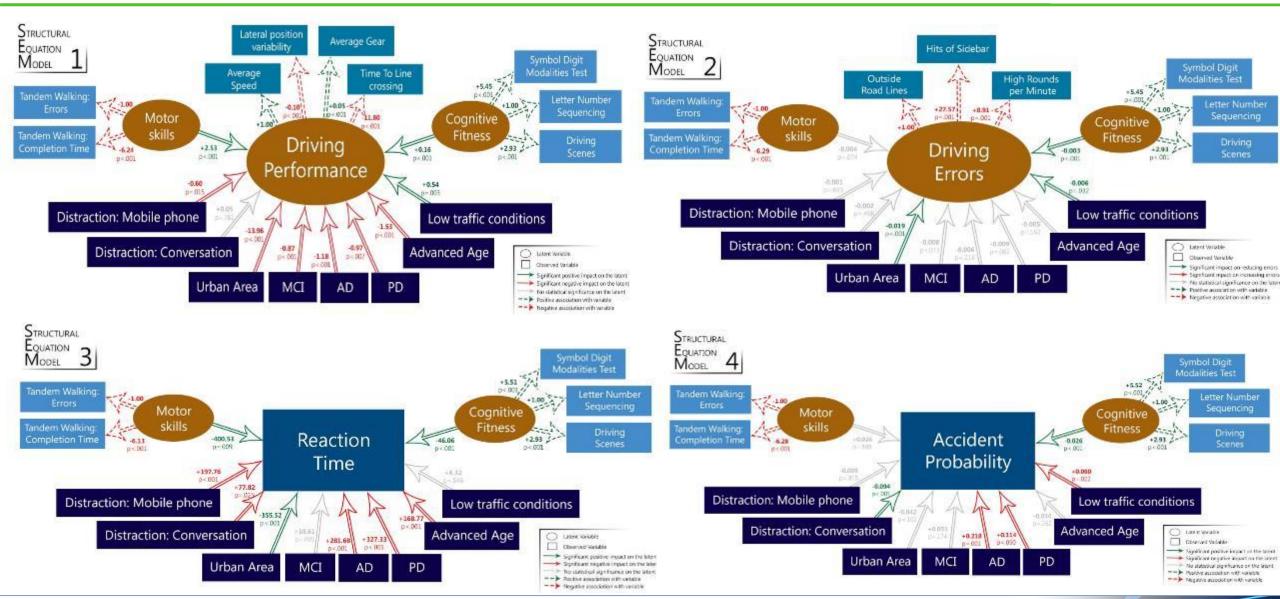
Neuropsychological assessment: administration of a series of neuropsychological tests and psychological - behavioral questionnaires to the participants which cover a large spectrum of Cognitive Functions

Driving at the simulator:

- 1 rural route and 1 urban route
- 2 traffic scenarios for each route:
  - QL: Moderate traffic conditions (Q=300 vehicles/hour)
  - QH: High traffic conditions (Q=600 vehicles/hour)
  - 3 distraction conditions for each route:
    - Undistracted driving
    - Driving while conversing with a passenger
    - Driving while conversing on a hand-held mobile phone
  - 2 unexpected incidents during each trial

#### Dataset in numbers




316 800 200 2.500 6.000.000 13.000.000 635

participants in total hours of neurological/neuropsychological tests hours of driving at the simulator trials driven in the simulator bytes of "row" data rows in the database

variables (driving simulator + questionnaire + neurological/neuropsy

## Main findings 1/2





## Main findings 2/2

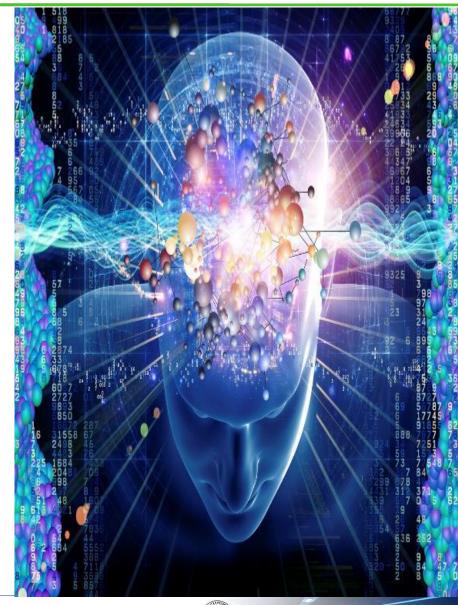



- Patients have a more conservative and cautious driving pattern
- Patients drive significantly slower than healthy controls
- Patients have significantly worse reaction time and higher accident probability
- #SlowDown is not sufficient to counterbalance the driving deficits due to cognitive impairments

|                               | Rural    | Urban       | Comment                                                                                                             |
|-------------------------------|----------|-------------|---------------------------------------------------------------------------------------------------------------------|
| Mean speed                    | •        | 1           | Lower speed for all groups of patients in all examined contitions                                                   |
| Time headway                  | 1        |             | Larger headways for AD and PD group in<br>rural area                                                                |
| Lateral position              |          | <b>&gt;</b> | More closely to the right border for the MCI group in urban road                                                    |
| Steering angle<br>variability | <b>+</b> |             | Lower variability in steering angle for th<br>PD group in rural area in high traffic                                |
| Reaction time                 | 1        | 1           | Larger reaction times for all groups of patients in all examined contitions                                         |
| Accident probability          | 1        | 1           | Higher accident probability for the AD group in all examined conditions and for the MCI and PD groups in urban area |
| Driving errors                |          |             | No significant differences                                                                                          |

## Solutions to implement




- Periodically assess the driving behaviour of patients with cerebral diseases over time, in order to identify to which extent, the progression of the disease deteriorates several driving performance measures
- Structural Equation Models can be developed on on-road and naturalistic experiments
- Every driver with a neurological disease affecting cognitive functions should be treated individually, through a modern interdisciplinary driving evaluation



### Future challenges



- The **continuous monitoring** of the driving behaviour of drivers with neurological diseases affecting cognitive functions will allow the identification of the driving ability threshold
- **Early detection** of the degradation of fitness to drive is highly useful for early implementation of early remedial measures
- Scientific **inter-disciplinarity** is the key success factor for monitoring behaviour of drivers with cognitive impairments





#### National Technical University of Athens Road Safety Observatory

# www.nrso.ntua.gr

Monday

May

at 14:00

## Workshop

in the framework of the

FOURTH UNITED NATIONS GLOBAL ROAD SAFETY
WEEK



#### The future of road safety research

NTUA Zografou Campus, Athens
Railways Amphitheatre of the
Department of Transportation Planning and Engineering

# Monitoring behaviour of drivers with cognitive impairments DriverBrain

#### **Dimos Pavlou**

Civil - Transportation Engineer, PhD
Research Associate



Department of Transportation Planning and Engineering, National Technical University of Athens, Athens, Greece

Website: <a href="www.nrso.ntua.gr/dpavlou">www.nrso.ntua.gr/dpavlou</a>
e-mail: <a href="mailto:dpavlou@central.ntua.gr">dpavlou@central.ntua.gr</a>

#### Together with:

Eleonora Papadimitriou, Panagiotis Papantoniou, Sophia Vardaki, Costas Antoniou, John Golias, George Yannis