

Road Safety and Simulation International Conference - RSS 2013

Factors Influencing Freeway Traffic Upstream of an Incident

Eleni I. Vlahogianni, Ph.D.

National Technical University of Athens School of Civil Engineering <u>www.vlahogianni.gr</u>

Matthew G. Karlaftis, Ph.D.

National Technical University of Athens School of Civil Engineering <u>http://users.civil.ntua.gr/mgk/</u>

Nikolas Papageorgiou, M.Sc.

National Technical University of Athens School of Civil Engineering

October 23-25, 2013, Rome, Italy

Outline

National Technical University Athens

- Incident Effects on Freeways
- Scope
- Methodology
- Application and Results
- Conclusions

National Technical University Athens

Effect of Incidents

- On Freeway Traffic
 - $\checkmark\,$ Formation of increased density areas upstream of an incident
- On Road Safety
 - ✓ Increased density → high risk areas → Increased secondary incident likelihood

Previous Research

- Static effect of incidents to traffic
 - $\checkmark\,$ Setting thresholds e.g. 15 minutes in the future and 2 km upstream
 - ✓ Detect secondary accidents based on these thresholds
- Dynamic Approaches
 - ✓ Duration of incidents, secondary accidents detection

Examine the effects of incident occurrence on freeway traffic

- Define indicators to describe the evolution of a traffic disturbance related to an incident
- Develop explanatory relationships of the spatio-temporal extent of the incident's influence to traffic with

✓ Geometry, incident and weather related factors

National Technical University Athens

Problem Formulation

Every incident may create a disturbance on traffic flow propagated upstream of the incident's location.

Assumptions

- Disturbance as a Latent Variable
- Indicators
 - ✓ maximum length *Lmax* and duration *T* of a disturbance formed upstream of an incident
- Predictors
 - ✓ traffic, weather, geometry and incident specific factors

Structural Equation Model

Multiple Indicators-Multiple Causes (MIMIC) latent variable model

Description of Data

National Technical University Athens

The available data

- Attica Tollway: a 65.2 km urban motorway.
 - ✓ 1287 accident records (2007-2010)
 - ✓ volume and speed from loop detectors
- METEONET network
 - ✓ (<u>http://meteonet.chi.civil.ntua.gr/en/divs.html</u>)
 - developed and operated by NTUA.
 - Rainfall episodes related to accident data records

Description of Data

National Technical University Athens

Variable	Туре	Description
Clearance Time	Continuous	The incident duration in minutes
Collision Type	Categorical	0 to 4, from less to more severe
Nr. Lanes	Categorical	1 to 3, 1:1 lane, 2: two, 3: more than 2
Nr. Vehicles	Categorical	1 to 3, 1:one vehicle, 2: two vehicles, 3: more than 2 vehicles involved
Heavy Vehicle	Categorical	0 to 1(Heavy Vehicle involved)
Travel Speed	Continuous	Travel speed (km/h) at the occurrence of the incident
Hourly volume	Continuous	Hourly volume (veh/h/lane) at the occurrence of the incident
Rainfall Intensity	Continuous	Rainfall at the occurrence of the incident in mm/10min
Alignment	Categorical	0 to 1 (curve)
Downstream Geometry	Categorical	0 to 4, 0: no special geometry, 1: adjacent to tunnel, 2: adjacent to toll, 3: adjacent to entrance/exit, 4: more than one
Upstream Geometry	Categorical	0 to 4, 0: no special geometry, 1: adjacent to tunnel, 2: adjacent to toll, 3: adjacent to entrance/exit, 4: more than one
		October 23-25, 2013, Rome, Italy

October 23-25, 2013, Rome, Italy

Technical University Athens

Estimation of the temporal and spatial extend of incident's influence to traffic

Description of Data

Typical propagation patterns

Information on:

- 1. the disturbance propagation length and duration
- 2. Secondary accident occurrence

Results

National Technical University Athens

- *T* is a stronger indicator than L_{max} .
- A negative relationship with the latent influence of the accident
 - ✓ Speed
 - ✓ rainfall intensity
- A strong positive relationship with the latent influence of the accident
 - ✓ Type of the accident (secondary or not)
 - ✓ Alignment (on a curve or not)
 - ✓ Entrance/exit ramps upstream of the accident location
- Weaker positive relationship
 - $\checkmark\,$ traffic volume and the clearance time of an accident.

- Predictors of Clearance Time
 - ✓ Involvement of trucks in the accident
 - ✓ Number of blocked lanes
 - \checkmark Existence of tolls adjacent to the area of the accident

Conclusions

- Quantitatively assess the effect of incidents to freeway traffic
- Methodology
 - ✓ Multivariate tool
 - \checkmark Structural equation modeling
 - ✓ Traffic disturbance introduced as a latent variable
- Factors
 - ✓ Primary traffic flow conditions and rainfall intensity
 - ✓ Alignment and upstream geometry
 - ✓ Type of incident

Conclusions

- Towards an online decision making mechanism to improve freeway operations with safety implications
 - ✓ Traffic specific measures for filtering traffic and affecting short-term demand
 - ✓ Online safety management
 - Predict high risk areas prone to secondary accidents occurrence
 - Informing road users on imminent high risk conditions on freeways

Road Safety and Simulation International Conference - RSS 2013

Factors Influencing Freeway Traffic Upstream of an Incident

Eleni I. Vlahogianni, Ph.D.

National Technical University of Athens School of Civil Engineering <u>www.vlahogianni.gr</u>

Matthew G. Karlaftis, Ph.D.

National Technical University of Athens School of Civil Engineering <u>http://users.civil.ntua.gr/mgk/</u>

Nikolas Papageorgiou, M.Sc.

National Technical University of Athens School of Civil Engineering

October 23-25, 2013, Rome, Italy