Factors Influencing Freeway Traffic Upstream of an Incident

Eleni I. Vlahogianni, Ph.D.
National Technical University of Athens
School of Civil Engineering
www.vlahogianni.gr

Matthew G. Karlaftis, Ph.D.
National Technical University of Athens
School of Civil Engineering
http://users.civil.ntua.gr/mgk/

Nikolas Papageorgiou, M.Sc.
National Technical University of Athens
School of Civil Engineering
Outline

• Incident Effects on Freeways
• Scope
• Methodology
• Application and Results
• Conclusions
Effect of Incidents

• On Freeway Traffic
 ✓ Formation of increased density areas upstream of an incident

• On Road Safety
 ✓ Increased density → high risk areas → Increased secondary incident likelihood

Previous Research

• Static effect of incidents to traffic
 ✓ Setting thresholds e.g. 15 minutes in the future and 2 km upstream
 ✓ Detect secondary accidents based on these thresholds

• Dynamic Approaches
 ✓ Duration of incidents, secondary accidents detection
Examine the effects of incident occurrence on freeway traffic

• Define indicators to describe the evolution of a traffic disturbance related to an incident

• Develop explanatory relationships of the spatio-temporal extent of the incident’s influence to traffic with
 ✓ Geometry, incident and weather related factors
Problem Formulation

Every incident may create a disturbance on traffic flow propagated upstream of the incident’s location.

Assumptions

• Disturbance as a Latent Variable

• Indicators
 ✓ maximum length L_{max} and duration T of a disturbance formed upstream of an incident

• Predictors
 ✓ traffic, weather, geometry and incident specific factors
Methodology

Structural Equation Model
Multiple Indicators-Multiple Causes (MIMIC) latent variable model
The available data

• Attica Tollway: a 65.2 km urban motorway.
 ✓ 1287 accident records (2007-2010)
 ✓ volume and speed from loop detectors

• METEONET network
 ✓ (http://meteonet.chi.civil.ntua.gr/en/divs.html)
 o developed and operated by NTUA.
 o Rainfall episodes related to accident data records
Description of Data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance Time</td>
<td>Continuous</td>
<td>The incident duration in minutes</td>
</tr>
<tr>
<td>Collision Type</td>
<td>Categorical</td>
<td>0 to 4, from less to more severe</td>
</tr>
<tr>
<td>Nr. Lanes</td>
<td>Categorical</td>
<td>1 to 3, 1: 1 lane, 2: two, 3: more than 2</td>
</tr>
<tr>
<td>Nr. Vehicles</td>
<td>Categorical</td>
<td>1 to 3, 1: one vehicle, 2: two vehicles, 3: more than 2 vehicles involved</td>
</tr>
<tr>
<td>Heavy Vehicle</td>
<td>Categorical</td>
<td>0 to 1 (Heavy Vehicle involved)</td>
</tr>
<tr>
<td>Travel Speed</td>
<td>Continuous</td>
<td>Travel speed (km/h) at the occurrence of the incident</td>
</tr>
<tr>
<td>Hourly volume</td>
<td>Continuous</td>
<td>Hourly volume (veh/h/lane) at the occurrence of the incident</td>
</tr>
<tr>
<td>Rainfall Intensity</td>
<td>Continuous</td>
<td>Rainfall at the occurrence of the incident in mm/10min</td>
</tr>
<tr>
<td>Alignment</td>
<td>Categorical</td>
<td>0 to 1 (curve)</td>
</tr>
<tr>
<td>Downstream Geometry</td>
<td>Categorical</td>
<td>0 to 4, 0: no special geometry, 1: adjacent to tunnel, 2: adjacent to toll, 3: adjacent to entrance/exit, 4: more than one</td>
</tr>
<tr>
<td>Upstream Geometry</td>
<td>Categorical</td>
<td>0 to 4, 0: no special geometry, 1: adjacent to tunnel, 2: adjacent to toll, 3: adjacent to entrance/exit, 4: more than one</td>
</tr>
</tbody>
</table>

October 23-25, 2013, Rome, Italy
Description of Data

Estimation of the temporal and spatial extend of incident’s influence to traffic

\[x^{(jam)}_{up}(t) = L_{i+1} - \int_{t}^{t} \frac{q_{0}^{(i)}(t) - q_{min}}{\rho_{max} - \left(q_{0}^{(i)}(t)/w_{0}^{(i)}(t) \right)} \, dt \]

\[x^{(jam)}_{down}(t) = L_{j} - \int_{t}^{t} \frac{q_{out}^{(j)}(t) - q_{min}}{\rho_{max} - \left(q_{out}^{(j)}(t)/w_{max}(t) \right)} \, dt \]

ASDA Model

Dynamic spatiotemporal boundaries of incident effect to traffic

Empirical Speed Threshold Algorithms

October 23-25, 2013, Rome, Italy
Description of Data

Information on:
1. the disturbance propagation length and duration
2. Secondary accident occurrence
October 23-25, 2013, Rome, Italy
Results

• T is a stronger indicator than L_{max}.

• A negative relationship with the latent influence of the accident
 ▶ Speed
 ▶ Rainfall intensity

• A strong positive relationship with the latent influence of the accident
 ▶ Type of the accident (secondary or not)
 ▶ Alignment (on a curve or not)
 ▶ Entrance/exit ramps upstream of the accident location

• Weaker positive relationship
 ▶ Traffic volume and the clearance time of an accident.
Results

• Predictors of Clearance Time

 ✓ Involvement of trucks in the accident

 ✓ Number of blocked lanes

 ✓ Existence of tolls adjacent to the area of the accident
Conclusions

• Quantitatively assess the effect of incidents to freeway traffic

• Methodology
 ✓ Multivariate tool
 ✓ Structural equation modeling
 ✓ Traffic disturbance introduced as a latent variable

• Factors
 ✓ Primary traffic flow conditions and rainfall intensity
 ✓ Alignment and upstream geometry
 ✓ Type of incident
Conclusions

• Towards an online decision making mechanism to improve freeway operations with safety implications

✓ Traffic specific measures for filtering traffic and affecting short-term demand

✓ Online safety management
 o Predict high risk areas prone to secondary accidents occurrence
 o Informing road users on imminent high risk conditions on freeways
Factors Influencing Freeway Traffic Upstream of an Incident

Eleni I. Vlahogianni, Ph.D.
National Technical University of Athens
School of Civil Engineering
www.vlahogianni.gr

Matthew G. Karlaftis, Ph.D.
National Technical University of Athens
School of Civil Engineering
http://users.civil.ntua.gr/mgk/

Nikolas Papageorgiou, M.Sc.
National Technical University of Athens
School of Civil Engineering